Skip to main content

TPGS Functionalized Carriers: An Emerging Approach for Pulmonary Drug Delivery

  • Chapter
  • First Online:
Pulmonary Drug Delivery Systems: Material and Technological Advances

Abstract

Tocophersolan (D-α-tocopheryl polyethylene glycol succinate or TPGS) is a non-ionic surfactant fabricated by esterifying Vitamin E succinate with polyethylene glycol. Owing to its amphipathic nature and unique physicochemical attributes, TPGS offers multiple advantages in drug delivery, such as improving solubility, permeability, and bioavailability as well as assisting in designing a range of vesicular, micellar, and novel multi-particulate drug formulations. Moreover, it possesses nutritional values and has been grouped as a safe excipient by US FDA and EMA for topical, parenteral, and nasal formulations. These unique attributes make TPGS more apt for the development of novel carriers for successful pulmonary drug delivery. The present chapter aims to summarize various TPGS-based pulmonary drug delivery systems. The introductory segment focuses on the pharmacotherapy of chronic respiratory disorders and the function of nutritional agents, i.e., TPGS in respiratory disease management. Subsequent section deals with physicochemical attributes and applications of TPGS in the pharmaceutical sector. The third section thoroughly describes the impact of TPGS-based biomaterials on aerosolization performance. The section also highlights the biological consequences after intratracheal administration of TPGS-based delivery systems and in vivo anticancer activity using a lung cancer-bearing animal model. The last piece of the chapter highlights the opportunities and challenges allied to TPGS-based delivery cargos. Briefly, TPGS-based multimodal therapeutic delivery platforms offer promising outcomes in respiratory disease management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chronic respiratory diseases. https://www.who.int/health-topics/chronic-respiratory-diseases#tab=tab_1

  2. Cukic V, Lovre V, Dragisic D, Ustamujic A. Asthma and chronic obstructive pulmonary disease (COPD)–differences and similarities. Mater Sociomed. 2012;24(2):100–5.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stolz D, Mkorombindo T, Schumann DM, Agusti A, Ash SY, Bafadhel M, et al. Towards the elimination of chronic obstructive pulmonary disease: a lancet commission. Lancet. 2022;S0140-6736(22):01273–9.

    Google Scholar 

  4. Mehta PP, Dhapte-Pawar V. Role of surfactants in pulmonary drug delivery. In: Green sustainable process for chemical and environmental engineering and science 2022 (pp. 559-577). Academic Press.

    Google Scholar 

  5. National Survey of Children's Health. NSCH 2011/12. Data query from the child and adolescent health measurement initiative, Data Resource Center for Child and Adolescent Health website.

    Google Scholar 

  6. Mehta PP, Dhapte-Pawar VS. Repurposing drug molecules for new pulmonary therapeutic interventions. Drug Deliv Transl Res. 2021;11(5):1829–48.

    Article  PubMed  Google Scholar 

  7. Mehta P, Bothiraja C, Kadam S, Pawar A. Potential of dry powder inhalers for tuberculosis therapy: facts, fidelity and future. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S791–806.

    Article  CAS  PubMed  Google Scholar 

  8. Mehta PP, Dhapte-Pawar VS. Novel and evolving therapies for COVID-19 related pulmonary complications. Am J Med Sci. 2021;361(5):557–66.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mehta PP. Dry powder inhalers: upcoming platform technologies for formulation development. Ther Deliv. 2019;10(9):551–4.

    Article  CAS  PubMed  Google Scholar 

  10. Mehta PP, Pawar AP, Mahadik KR, Kadam SS, Dhapte-Pawar V. Dry powder coating techniques and role of force controlling agents in aerosol. In: Polymer coatings: technology and applications; 2020. p. 41–74.

    Chapter  Google Scholar 

  11. Rogers LK, Cismowski MJ. Oxidative stress in the lung–the essential paradox. Curr Opin Toxicol. 2018;7:37–43.

    Article  PubMed  Google Scholar 

  12. Mehta P, Bothiraja C, Mahadik K, Kadam S, Pawar A. Phytoconstituent based dry powder inhalers as biomedicine for the management of pulmonary diseases. Biomed Pharmacother. 2018;108:828–37.

    Article  CAS  PubMed  Google Scholar 

  13. Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and health impacts of air pollution: a review. Front Public Health. 2020;8:14.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gibson GJ, Loddenkemper R, Lundbäck B, Sibille Y. Respiratory health and disease in Europe: the new European lung white book. Eur Respir J. 2013 Sep;42(3):559–63.

    Article  PubMed  Google Scholar 

  15. Scoditti E, Massaro M, Garbarino S, Toraldo DM. Role of diet in chronic obstructive pulmonary disease prevention and treatment. Nutrients. 2019;11(6):1357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Romieu I, Trenga C. Diet and obstructive lung diseases. Epidemiol Rev. 2001;23(2):268–87.

    Article  CAS  PubMed  Google Scholar 

  17. Keranis E, Makris D, Rodopoulou P, Martinou H, Papamakarios G, Daniil Z, Zintzaras E, Gourgoulianis KI. Impact of dietary shift to higher-antioxidant foods in COPD: a randomised trial. Eur Respir J. 2010;36(4):774–80.

    Article  CAS  PubMed  Google Scholar 

  18. Yang C, Wu T, Qi Y, Zhang Z. Recent advances in the application of Vitamin E TPGS for drug delivery. Theranostics. 2018;8(2):464–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo Y, Luo J, Tan S, Otieno BO, Zhang Z. The applications of Vitamin E TPGS in drug delivery. Eur J Pharm Sci. 2013;49(2):175–86.

    Article  CAS  PubMed  Google Scholar 

  20. Ribeiro AM, Estevinho BN, Rocha F. The progress and application of vitamin E encapsulation-a review. Food Hydrocoll. 2021;121:106998.

    Article  CAS  Google Scholar 

  21. Liang L, Qiu L. Vitamin E succinate with multiple functions: a versatile agent in nanomedicine-based cancer therapy and its delivery strategies. Int J Pharm. 2021;600:120457.

    Article  CAS  PubMed  Google Scholar 

  22. Sheu MT, Chen SY, Chen LC, Ho HO. Influence of micelle solubilization by tocopheryl polyethylene glycol succinate (TPGS) on solubility enhancement and percutaneous penetration of estradiol. J Control Release. 2003;88(3):355–68.

    Article  CAS  PubMed  Google Scholar 

  23. Ghosh I, Michniak-Kohn B. Design and characterization of submicron formulation for a poorly soluble drug: the effect of Vitamin E TPGS and other solubilizers on skin permeability enhancement. Int J Pharm. 2012;434(1–2):90–8.

    Article  CAS  PubMed  Google Scholar 

  24. Kim DS, Kim DW, Kim KS, Choi JS, Seo YG, Youn YS, Oh KT, Yong CS, Kim JO, Jin SG, Choi HG. Development of a novel l-sulpiride-loaded quaternary microcapsule: effect of TPGS as an absorption enhancer on physicochemical characterization and oral bioavailability. Colloids Surf B Biointerfaces. 2016;147:250–7.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao L, Feng SS. Enhanced oral bioavailability of paclitaxel formulated in vitamin E-TPGS emulsified nanoparticles of biodegradable polymers: in vitro and in vivo studies. J Pharm Sci. 2010;99(8):3552–60.

    Article  CAS  PubMed  Google Scholar 

  26. Singh H, Narang JK, Singla YP, Narang RS, Mishra V. TPGS stabilized sublingual films of frovatriptan for the management of menstrual migraine: formulation, design and antioxidant activity. J Drug Deliv Sci Technol. 2017;41:144–56.

    Article  CAS  Google Scholar 

  27. Dong Y, Zhang Z, Feng SS. d-alpha-Tocopheryl polyethylene glycol 1000 succinate (TPGS) modified poly(l-lactide) (PLLA) films for localized delivery of paclitaxel. Int J Pharm. 2008;350(1–2):166–71.

    Article  CAS  PubMed  Google Scholar 

  28. Papas AM, Vitamin E. TPGS and its applications in nutraceuticals. In: Nutraceuticals. Academic Press; 2021. p. 991–1010.

    Chapter  Google Scholar 

  29. Sheng X, Fan L, He C, Zhang K, Mo X, Wang H. Vitamin E-loaded silk fibroin nanofibrous mats fabricated by green process for skin care application. Int J Biol Macromol. 2013;56:49–56.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Z, Tan S, Feng SS. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials. 2012;33(19):4889–906.

    Article  CAS  PubMed  Google Scholar 

  31. Rathod S, Bahadur P, Tiwari S. Nano-carriers based on vitamin E-TPGS: design principle and molecular insights into improving the efficacy of anti-cancer drugs. Int J Pharm. 2021;592:120045.

    Article  CAS  PubMed  Google Scholar 

  32. Fan Z, Jiang B, Shi D, Yang L, Yin W, Zheng K, Zhang X, Xin C, Su G, Hou Z. Selective anti-tumor activity of drug-free TPGS nanomicelles with ROS-induced mitochondrial cell death. Int J Pharm. 2021;594:120184.

    Article  CAS  PubMed  Google Scholar 

  33. Li J, Cheng X, Chen Y, He W, Ni L, Xiong P, Wei M. Vitamin E TPGS modified liposomes enhance cellular uptake and targeted delivery of luteolin: an in vivo/in vitro evaluation. Int J Pharm. 2016;512(1):262–72.

    Article  CAS  PubMed  Google Scholar 

  34. Liu Y, Ma Y, Xu J, Chen Y, Xie J, Yue P, Zheng Q, Yang M. Apolipoproteins adsorption and brain-targeting evaluation of baicalin nanocrystals modified by combination of Tween80 and TPGS. Colloids Surf B Biointerfaces. 2017;160:619–27.

    Article  CAS  PubMed  Google Scholar 

  35. Thant Y, Wang Q, Wei C, Liu J, Zhang K, Bao R, Zhu Q, Weng W, Yu Q, Zhu Y, Xu X. TPGS conjugated pro-liposomal nano-drug delivery system potentiate the antioxidant and hepatoprotective activity of Myricetin. J Drug Deliv Sci Technol. 2021;66:102808.

    Article  CAS  Google Scholar 

  36. Xiong S, Wang Z, Liu J, Deng X, Xiong R, Cao X, Xie Z, Lei X, Chen Y, Tang G. A pH-sensitive prodrug strategy to co-deliver DOX and TOS in TPGS nanomicelles for tumor therapy. Colloids Surf B: Biointerfaces. 2019;173:346–55.

    Article  CAS  PubMed  Google Scholar 

  37. Luiz MT, Di Filippo LD, Alves RC, Araújo VH, Duarte JL, Marchetti JM, Chorilli M. The use of TPGS in drug delivery systems to overcome biological barriers. Eur Polym J. 2020;110129

    Google Scholar 

  38. Duhem N, Danhier F, Préat V. Vitamin E-based nanomedicines for anti-cancer drug delivery. J Control Release. 2014;182:33–44.

    Article  CAS  PubMed  Google Scholar 

  39. Alavijeh RK, Akhbari K. Vitamin E-based nanomedicines for anticancer drug delivery. In: Nanomedicine for bioactives. Singapore: Springer; 2020. p. 11–70.

    Chapter  Google Scholar 

  40. Muddineti OS, Ghosh B, Biswas S. Current trends in the use of vitamin E-based micellar nano-carriers for anti-cancer drug delivery. Expert Opin Drug Deliv. 2017;14(6):715–26.

    Article  CAS  PubMed  Google Scholar 

  41. Li N, Mai Y, Liu Q, Gou G, Yang J. Docetaxel-loaded D-α-tocopheryl polyethylene glycol-1000 succinate liposomes improve lung cancer chemotherapy and reverse multi-drug resistance. Drug Deliv Transl Res. 2021;11(1):131–41.

    Article  CAS  PubMed  Google Scholar 

  42. Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm. 2013 Aug 30;453(1):198–214.

    Article  CAS  PubMed  Google Scholar 

  43. Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the delivery of poorly soluble drugs: from nanoformulation to clinical approval. Adv Drug Deliv Rev. 2020;156:80–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ghosh B, Biswas S. Polymeric micelles in cancer therapy: state of the art. J Control Release. 2021;332:127–47.

    Article  CAS  PubMed  Google Scholar 

  45. Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, Nicoli S. Polymeric micelles in drug delivery: an insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release. 2021;332:312–36.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang XY, Zhang YD. Enhanced antiproliferative and apoptosis effect of paclitaxel-loaded polymeric micelles against non-small cell lung cancers. Tumour Biol. 2015;36(7):4949–59.

    Article  CAS  PubMed  Google Scholar 

  47. Jiang ZM, Dai SP, Xu YQ, Li T, Xie J, Li C, Zhang ZH. Crizotinib-loaded polymeric nanoparticles in lung cancer chemotherapy. Med Oncol. 2015;32(7):193.

    Article  PubMed  Google Scholar 

  48. Pan J, Wang Y, Feng SS. Formulation, characterization, and in vitro evaluation of quantum dots loaded in poly(lactide)-vitamin E TPGS nanoparticles for cellular and molecular imaging. Biotechnol Bioeng. 2008 Oct 15;101(3):622–33.

    Article  CAS  PubMed  Google Scholar 

  49. Sato Y, Watanabe S, Kodama T, Goto M, Shimosato Y. Stainability of lung cancer cells with Leu-7 and OKT-9 monoclonal antibodies. Jpn J Clin Oncol. 1985;15:537–44.

    CAS  PubMed  Google Scholar 

  50. Singh RP, Sharma G, Sonali AP, Pandey BL, Koch B, Muthu MS. Transferrin receptor targeted PLA-TPGS micelles improved efficacy and safety in docetaxel delivery. Int J Biol Macromol. 2016;83:335–44.

    Article  CAS  PubMed  Google Scholar 

  51. Yan H, Wei P, Song J, Jia X, Zhang Z. Enhanced anti-cancer activity in vitro and in vivo of luteolin incorporated into long-circulating micelles based on DSPE-PEG2000 and TPGS. J Pharm Pharmacol. 2016;68(10):1290–8.

    Article  CAS  PubMed  Google Scholar 

  52. Cagel M, Tesan FC, Bernabeu E, Salgueiro MJ, Zubillaga MB, Moretton MA, Chiappetta DA. Polymeric mixed micelles as nanomedicines: achievements and perspectives. Eur J Pharm Biopharm. 2017 Apr;113:211–28.

    Article  CAS  PubMed  Google Scholar 

  53. Attia AB, Ong ZY, Hedrick JL, Lee PP, Ee PL, Hammond PT, Yang YY. Mixed micelles self-assembled from block copolymers for drug delivery. Curr Opin Colloid Interface Sci. 2011 Jun 1;16(3):182–94.

    Article  Google Scholar 

  54. Naqvi AZ, Panda M. Mixed micellization: improved physicochemical behavior of different amphiphiles in presence of gemini surfactants. J Mol Liq. 2021 Dec;1(343):116876.

    Article  Google Scholar 

  55. Yan H, Zhang Z, Jia X, Song J. D-α-Tocopheryl polyethylene glycol succinate/Solutol HS 15 mixed micelles for the delivery of baohuoside I against non-small-cell lung cancer: optimization and in vitro, in vivo evaluation. Int J Nanomedicine. 2016;11:4563–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yan H, Song J, Jia X, Zhang Z. Hyaluronic acid-modified didecyldimethylammonium bromide/ d-a-tocopheryl polyethylene glycol succinate mixed micelles for delivery of baohuoside I against non-small cell lung cancer: in vitro and in vivo evaluation. Drug Deliv. 2017;24(1):30–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li Y, Zhou T, Ma C, Song W, Zhang J, Yu Z. Ginsenoside metabolite compound K enhances the efficacy of cisplatin in lung cancer cells. J Thorac Dis. 2015;7(3):400–6.

    PubMed  PubMed Central  Google Scholar 

  58. Zhang Y, Tong D, Che D, Pei B, Xia X, Yuan G, Jin X. Ascorbyl palmitate/d-α-tocopheryl polyethylene glycol 1000 succinate monoester mixed micelles for prolonged circulation and targeted delivery of compound K for anti-lung cancer therapy in vitro and in vivo. Int J Nanomedicine. 2017;12:605–14.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yang L, Zhang Z, Hou J, Jin X, Ke Z, Liu D, Mei D, Jia X, Lv H. Targeted delivery of ginsenoside compound K using TPGS/PEG-PCL mixed micelles for effective treatment of lung cancer. Int J Nanomedicine. 2017;12:7653–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hao W, Zhong Q, Zhong R, Huang H, Xia Z, Ke Z, Zhang Z, Song J, Jia X. Preparation and anti-tumor evaluation of self-assembling oleanolic acid-loaded Pluronic P105/d-α-tocopheryl polyethylene glycol succinate mixed micelles for non-small-cell lung cancer treatment. Int J Nanomedicine. 2016;11:6337–52.

    Article  Google Scholar 

  61. Gill KK, Kaddoumi A, Nazzal S. Mixed micelles of PEG(2000)-DSPE and vitamin-E TPGS for concurrent delivery of paclitaxel and parthenolide: enhanced chemosenstization and anti-tumor efficacy against non-small cell lung cancer (NSCLC) cell lines. Eur J Pharm Sci. 2012;46(1–2):64–71.

    Article  CAS  PubMed  Google Scholar 

  62. Huang G, Zang B, Wang X, Liu G, Zhao J. Encapsulated paclitaxel nanoparticles exhibit enhanced anti-tumor efficacy in A549 non-small lung cancer cells. Acta Biochim Biophys Sin Shanghai. 2015;47(12):981–7.

    Article  CAS  PubMed  Google Scholar 

  63. Nair HH, Alex VV, Anto RJ. Significance of nutraceuticals in cancer therapy. In: Evolutionary diversity as a source for anticancer molecules. Academic Press; 2021 Jan 1. p. 309–21.

    Google Scholar 

  64. Ding Y, Wang C, Wang Y, Xu Y, Zhao J, Gao M, Ding Y, Peng J, Li L. Development and evaluation of a novel drug delivery: Soluplus®/TPGS mixed micelles loaded with piperine in vitro and in vivo. Drug Dev Ind Pharm. 2018;44(9):1409–16.

    Article  CAS  PubMed  Google Scholar 

  65. Chen Y, Feng X, Li L, Song K, Zhang L. Preparation and anti-tumor evaluation of hinokiflavone hybrid micelles with mitochondria targeted for lung adenocarcinoma treatment. Drug Deliv. 2020;27(1):565–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. de Melo-Diogo D, Gaspar VM, Costa EC, Moreira AF, Oppolzer D, Gallardo E, Correia IJ. Combinatorial delivery of Crizotinib-Palbociclib-sildenafil using TPGS-PLA micelles for improved cancer treatment. Eur J Pharm Biopharm. 2014;88(3):718–29.

    Article  PubMed  Google Scholar 

  67. Moura MJ, Gil MH, Figueiredo MM. Cisplatin delivery systems based on different drug encapsulation techniques. Eur Polym J. 2019 Apr 1;113:357–64.

    Article  CAS  Google Scholar 

  68. He L, Xu J, Cheng X, Sun M, Wei B, Xiong N, Song J, Wang X, Tang R. Hybrid micelles based on Pt (IV) polymeric prodrug and TPGS for the enhanced cytotoxicity in drug-resistant lung cancer cells. Colloids Surf B Biointerfaces. 2020;195:111256.

    Article  CAS  PubMed  Google Scholar 

  69. Brooks PC, Clark RAF, Cheresh DA. Requirement of vascular integrin alpha(v) beta(3) for angiogenesis. Science. 1994;264:569–71.

    Article  CAS  PubMed  Google Scholar 

  70. Murphy EA, Majeti BK, Barnes LA, Makale M, Weis SM, Lutu-Fuga K, Wrasidlo W, Cheresh DA. Nanoparticle mediated drug delivery to tumor vasculature suppresses metastasis. Proc Natl Acad Sci U S A. 2008;105:9343–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Girard OM, Hanahan D, Mattrey RF, Ruoslahti E. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell. 2009;16:510–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shen J, Meng Q, Sui H, Yin Q, Zhang Z, Yu H, Li Y. iRGD conjugated TPGS mediates codelivery of paclitaxel and survivin shRNA for the reversal of lung cancer resistance. Mol Pharm. 2014;11(8):2579–91.

    Article  CAS  PubMed  Google Scholar 

  73. Sriwidodo UAK, Wathoni N, Zothantluanga JH, Das S, Luckanagul JA. Liposome-polymer complex for drug delivery system and vaccine stabilization. Heliyon. 2022;8(2):e08934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon. 2022;8(5):e09394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mehta PP, Ghoshal D, Pawar AP, Kadam SS, Dhapte-Pawar VS. Recent advances in inhalable liposomes for treatment of pulmonary diseases: concept to clinical stance. J Drug Deliv Sci Technol. 2020;56:101509.

    Article  CAS  Google Scholar 

  76. Mehta P. Imagine the superiority of dry powder inhalers from carrier engineering. J Drug Deliv. 2018;2018:1.

    Article  Google Scholar 

  77. Mehta P. Dry powder inhalers: a focus on advancements in novel drug delivery systems. J Drug Deliv. 2016;2016:1.

    Article  Google Scholar 

  78. Yang L, Xin J, Zhang Z, Yan H, Wang J, Sun E, Hou J, Jia X, Lv H. TPGS-modified liposomes for the delivery of ginsenoside compound K against non-small cell lung cancer: formulation design and its evaluation in vitro and in vivo. J Pharm Pharmacol. 2016;68(9):1109–18.

    Article  CAS  PubMed  Google Scholar 

  79. Aziz N, Kim MY, Cho JY. Anti-inflammatory effects of luteolin: a review of in vitro, in vivo, and in silico studies. J Ethnopharmacol. 2018 Oct 28;225:342–58.

    Article  CAS  PubMed  Google Scholar 

  80. Sarawek S, Derendorf H, Butterweck V. Pharmacokinetics of luteolin and metabolites in rats. Nat Prod Commun. 2008 Dec;3(12):1934578X0800301218.

    Google Scholar 

  81. Fu J, Zeng W, Chen M, Huang L, Li S, Li Z, Pan Q, Lv S, Yang X, Wang Y, Yi M. Apigenin suppresses tumor angiogenesis and growth via inhibiting HIF-1α expression in non-small cell lung carcinoma. Chem Biol Interact. 2022 Jul 1;361:109966.

    Article  CAS  PubMed  Google Scholar 

  82. Jin X, Li M, Yin L, Zhou J, Zhang Z, Lv H. Tyroservatide-TPGS-paclitaxel liposomes: Tyroservatide as a targeting ligand for improving breast cancer treatment. Nanomedicine. 2017 Apr;13(3):1105–15.

    Article  CAS  PubMed  Google Scholar 

  83. Huang YT, Zhao L, Fu Z, Zhao M, Song XM, Jia J, Wang S, Li JP, Zhu ZF, Lin G, Lu R, Yao Z. Therapeutic effects of tyroservatide on metastasis of lung cancer and its mechanism affecting integrin-focal adhesion kinase signal transduction. Drug Des Devel Ther. 2016 Mar 3;10:649–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Jin X, Yang Q, Zhang Y. Synergistic apoptotic effects of apigenin TPGS liposomes and tyroservatide: implications for effective treatment of lung cancer. Int J Nanomedicine. 2017;12:5109–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang G, Yu B, Wu Y, Huang B, Yuan Y, Liu CS. Controlled preparation and anti-tumor efficacy of vitamin E TPGS-functionalized PLGA nanoparticles for delivery of paclitaxel. Int J Pharm. 2013;446(1–2):24–33.

    Article  CAS  PubMed  Google Scholar 

  86. Tiejun Zhao, Hezhong Chen, Yuchao Dong, Jiajun Zhang, Haidong Huang, Ji Zhu, Wei Zhang. Paclitaxel-loaded poly(glycolide-co-ε-caprolactone)-b-D-α-tocopheryl polyethylene glycol 2000 Succinate nanoparticles for lung cancer therapy. Int J Nanomedicine 2013:8 1947–1957.

    Google Scholar 

  87. Sun Y, Yu B, Wang G, Wu Y, Zhang X, Chen Y, Tang S, Yuan Y, Lee RJ, Teng L, Xu S. Enhanced anti-tumor efficacy of vitamin E TPGS-emulsified PLGA nanoparticles for delivery of paclitaxel. Colloids Surf B Biointerfaces. 2014;123:716–23.

    Article  CAS  PubMed  Google Scholar 

  88. Cheng W, Liang C, Xu L, Liu G, Gao N, Tao W, Luo L, Zuo Y, Wang X, Zhang X, Zeng X, Mei L. TPGS-functionalized Polydopamine-modified mesoporous silica as drug Nanocarriers for enhanced lung cancer chemotherapy against multidrug resistance. Small. 2017;13(29):1700623.

    Article  Google Scholar 

  89. Hou W, Zhao X, Qian X, Pan F, Zhang C, Yang Y, de la Fuente JM, Cui D. pH-sensitive self-assembling nanoparticles for tumor near-infrared fluorescence imaging and chemo-photodynamic combination therapy. Nanoscale. 2016;8(1):104–16.

    Article  CAS  PubMed  Google Scholar 

  90. Malamatari M, Somavarapu S, Bloxham M, Buckton G. Nanoparticle agglomerates of indomethacin: the role of poloxamers and matrix former on their dissolution and aerosolisation efficiency. Int J Pharm. 2015;495(1):516–26.

    Article  CAS  PubMed  Google Scholar 

  91. Leung SS, Wong J, Guerra HV, Samnick K, Prud'homme RK, Chan HK. Porous mannitol carrier for pulmonary delivery of cyclosporine a nanoparticles. AAPS J. 2017;19(2):578–86.

    Article  CAS  PubMed  Google Scholar 

  92. Levet V, Rosière R, Merlos R, Fusaro L, Berger G, Amighi K, Wauthoz N. Development of controlled-release cisplatin dry powders for inhalation against lung cancers. Int J Pharm. 2016;515(1–2):209–20.

    Article  CAS  PubMed  Google Scholar 

  93. Levet V, Merlos R, Rosière R, Amighi K, Wauthoz N. Platinum pharmacokinetics in mice following inhalation of cisplatin dry powders with different release and lung retention properties. Int J Pharm. 2017;517(1–2):359–72.

    Article  CAS  PubMed  Google Scholar 

  94. Ishak RA, Osman R. Lecithin/TPGS-based spray-dried self-micro emulsifying drug delivery systems: in vitro pulmonary deposition and cytotoxicity. Int J Pharm. 2015;485(1–2):249–60.

    Article  CAS  PubMed  Google Scholar 

  95. Laouini A. Characterization of different vitamin E carriers intended for pulmonary drug delivery. Int J Pharm. 2014;471:385–90.

    Article  CAS  PubMed  Google Scholar 

  96. Rossi I, Sonvico F, McConville JT, Rossi F, Fröhlich E, Zellnitz S, Rossi A, Del Favero E, Bettini R, Buttini F. Nebulized coenzyme Q10 nanosuspensions: a versatile approach for pulmonary antioxidant therapy. Eur J Pharm Sci. 2018;113:159–70.

    Article  CAS  PubMed  Google Scholar 

  97. Costabile G, Provenzano R, Azzalin A, Scoffone VC, Chiarelli LR, Rondelli V, Grillo I, Zinn T, Lepioshkin A, Savina S, Miro A, Quaglia F, Makarov V, Coenye T, Brocca P, Riccardi G, Buroni S, Ungaro F. PEGylated mucus-penetrating nanocrystals for lung delivery of a new FtsZ inhibitor against Burkholderia cenocepacia infection. Nanomedicine. 2020;23:102113.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vividha Dhapte-Pawar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehta, P.P., Dhapte-Pawar, V. (2023). TPGS Functionalized Carriers: An Emerging Approach for Pulmonary Drug Delivery. In: Mehta, P.P., Dhapte -Pawar, V. (eds) Pulmonary Drug Delivery Systems: Material and Technological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-99-1923-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1923-9_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1922-2

  • Online ISBN: 978-981-99-1923-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics