Skip to main content

Nanomaterial-Mediated Theranostics for Vascular Diseases

  • Chapter
  • First Online:
Smart Nanomaterials Targeting Pathological Hypoxia

Part of the book series: Smart Nanomaterials Technology ((SNT))

  • 132 Accesses

  • The original version of this chapter has been revised: Prof. Prajapati’s name was inadvertently published with an incorrect spelling as Prajapathi. This has now been corrected. The correction to this chapter is available at https://doi.org/10.1007/978-981-99-1718-1_22

Abstract

Vascular diseases are widely known to be the leading cause of death and disabilities across the world. Although the conventional treatment methods have shown success there is a need for advancement in order to enable early detection, screening and diagnosis. Nanotechnology is such a unique branch of science that enables not only effective treatment of malfunctioning cells in particular vessel lesions and evaluation of disease progression but also aids in screening, diagnosis and ultimately prevention of vascular diseases. There have been many developments in the field of nanotechnology which make combining therapeutic and diagnostic moieties possible. This review focuses on the use of nanotechnology-based theranostics for a myriad of vascular diseases, such as coronary artery disease, atherosclerosis, neurovascular diseases and thrombosis to name a few, and highlights their advantages, drawbacks and future scope of advancements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 23 August 2023

    A correction has been published.

Abbreviations

AAA:

Abdominal aortic aneurysm

ACPP:

Activatable cell penetrating peptide

ALA:

Aminolevulinic acid

AuNPs:

Gold nanoparticles

CAA:

Cerebral Amyloid Angiopathy

CAD:

Coronary artery disease

CEST:

Chemical exchanger saturation transfer

CVD:

Cardiovascular disease

DOX:

Doxycyline

DVT:

Deep vein thrombosis

EaRASMC:

Aneurysmal smooth muscle cells

EC:

Endothelial cells

ECM:

Extracellular matrix

EMMPRIN:

Extracellular matrix metalloproteinase inducer

FTP:

Fibrin-binding peptide

HMGB-1:

High mobility group box

IONPs:

Iron oxide nanoparticles

MFNPs:

Magnetic fluorescent nanoparticles

MI:

Myocardial infarction

MMP-2:

Metalloproteases

NCD:

Non-communicable diseases

PDT:

Photodynamic therapy

PS:

Photosensitiser

PVD:

Peripheral vascular disease

ROS:

Reactive oxygen species

SLN:

Solid lipid nanoparticles

SMCs:

Smooth muscle cells

SOD:

Superoxide dismutase

SPIONPs:

Superparamagnetic iron oxide nanoparticles

TAA:

Thoracic aortic aneurysm

TLRs:

Toll-like receptors

VEGF:

Vascular endothelial growth factors

References

  • Agrawal S et al (2020) Nanomaterial-mediated theranostics for vascular diseases. J Nanotheranostics 2(1):1–15

    Article  Google Scholar 

  • Agulla J et al (2014) In vivo theranostics at the peri-infarct region in cerebral ischemia. Theranostics 4(1):90–105

    Article  CAS  Google Scholar 

  • Agyare EK et al (2014) Engineering theranostic nanovehicles capable of targeting cerebrovascular amyloid deposits. J Control Release 185(1):121–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambesh P et al (2017) Nanomedicine in coronary artery disease. Indian Heart J (Elsevier B.V.) 244–251

    Google Scholar 

  • Ambesh P, Angeli DG (2015) Nanotechnology in neurology: genesis, current status, and future prospects. Ann Indian Acad Neurol (Medknow Publications) 382–386

    Google Scholar 

  • Bergheanu SC, Bodde MC, Jukema JW (2017) Pathophysiology and treatment of atherosclerosis: current view and future perspective on lipoprotein modification treatment. Neth Hear J 25(4):231–242

    Article  CAS  Google Scholar 

  • Bietenbeck M et al (2016) Remote magnetic targeting of iron oxide nanoparticles for cardiovascular diagnosis and therapeutic drug delivery: where are we now? Int J Nanomed (Dove Medical Press Ltd.) 3191–3203. https://doi.org/10.2147/IJN.S110542

  • Cuadrado I et al (2016) EMMPRIN-targeted magnetic nanoparticles for in vivo visualization and regression of acute myocardial infarction. Theranostics 6(4):545–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deb S et al (2015) Nanoimaging in cardiovascular diseases: current state of the art

    Google Scholar 

  • Deng Y et al (2020) Application of the nano-drug delivery system in treatment of cardiovascular diseases. Front Bioeng Biotechnol (Frontiers Media S.A.)

    Google Scholar 

  • Deveza L et al (2016) Polymer-DNA nanoparticle-induced CXCR4 overexpression improves stem cell engraftment and tissue regeneration in a mouse hindlimb ischemia model. Theranostics 6(8):1176–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duivenvoorden R et al (2014) A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat Commun 5

    Google Scholar 

  • Fan C et al (2020) Nanoparticle-mediated drug delivery for treatment of ischemic heart disease. Front Bioeng Biotechnol (Frontiers Media S.A.)

    Google Scholar 

  • Flores AM et al (2019) Nanoparticle therapy for vascular diseases. In: Arteriosclerosis, thrombosis, and vascular biology. NLM (Medline), pp 635–646

    Google Scholar 

  • Frangogiannis NG (2015) Pathophysiology of myocardial infarction. Compr Physiol 5(4):1841–1875

    Article  PubMed  Google Scholar 

  • Golestani R, Sadeghi MM (2014) Emergence of molecular imaging of aortic aneurysm: implications for risk stratification and management. J Nucl Cardiol 21(2):251–267

    Article  PubMed  PubMed Central  Google Scholar 

  • Haldar R et al (2016) Contemporary social network sites: relevance in anesthesiology teaching, training, and research. J Anaesthesiol Clin Pharmacol (Medknow Publications) 382–385

    Google Scholar 

  • Heun Y et al (2017) Targeting of magnetic nanoparticle-coated microbubbles to the vascular wall empowers site-specific lentiviral gene delivery in vivo. Theranostics 7(2):295–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jebari-Benslaiman S et al (2022) Pathophysiology of atherosclerosis. Int J Mol Sci (MDPI)

    Google Scholar 

  • Jennewine B, Fox J, Ramamurthi A (2017) Cathepsin K-targeted sub-micron particles for regenerative repair of vascular elastic matrix. Acta Biomater 52:60–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung E et al (2019) Stimulus-activatable echogenic maltodextrin nanoparticles as nanotheranostic agents for peripheral arterial disease. Biomaterials 192:282–291

    Article  CAS  PubMed  Google Scholar 

  • Kharlamov AN et al (2015) Silica-gold nanoparticles for atheroprotective management of plaques: results of NANOM-FIM trial on behalf of the team of NANOM FIM study

    Google Scholar 

  • Kim J et al (2011) Targeted delivery of nanoparticles to ischemic muscle for imaging and therapeutic angiogenesis. Nano Lett 11(2):694–700

    Article  CAS  PubMed  Google Scholar 

  • Liu H et al (2016) Label-free CEST MRI detection of citicoline-liposome drug delivery in ischemic stroke. Theranostics 6(10):1588–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobatto ME et al (2012) Imaging the efficacy of anti-inflammatory liposomes in a rabbit model of atherosclerosis by non-invasive imaging. In: Methods in enzymology. Academic Press Inc., pp 211–228

    Google Scholar 

  • MacRitchie N et al (2021) Nanoparticle theranostics in cardiovascular inflammation. In: Seminars in immunology. Academic Press

    Google Scholar 

  • Manners N et al (2022) Theranostic nanomedicines for the treatment of cardiovascular and related diseases: current strategies and future perspectives. Pharmaceuticals (MDPI)

    Google Scholar 

  • Matoba T et al (2017) Nanoparticle-mediated drug delivery system for atherosclerotic cardiovascular disease. J Cardiol (Japanese College of Cardiology (Nippon-Sinzobyo-Gakkai)) 206–211

    Google Scholar 

  • Matuszak J et al (2018) Drug delivery to atherosclerotic plaques using superparamagnetic iron oxide nanoparticles. Int J Nanomed 13:8443–8460

    Article  CAS  Google Scholar 

  • McCarthy JR et al (2010) A light-activated theranostic nanoagent for targeted macrophage ablation in inflammatory atherosclerosis. Small 6(18):2041–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myerson JW et al (2014) Thrombin-inhibiting nanoparticles rapidly constitute versatile and detectable anticlotting surfaces. Nanotechnology 25(39)

    Google Scholar 

  • Nakhlband A et al (2018) Combating atherosclerosis with targeted nanomedicines: recent advances and future prospective. BioImpacts 8(1):59–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen MM et al (2015) Enzyme-responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after myocardial infarction. Adv Mater 27(37):5547–5552

    Google Scholar 

  • Noukeu LC et al (2018) Nanoparticles for detection and treatment of peripheral arterial disease. Wiley-VCH Verlag, Small

    Book  Google Scholar 

  • de Oliveira Gonçalves K et al (2015) Aminolevulinic acid with gold nanoparticles: a novel theranostic agent for atherosclerosis. Analyst 140(6):1974–1980

    Google Scholar 

  • Pala R et al (2021) Nanomaterials as novel cardiovascular theranostics. Pharmaceutics (MDPI AG)

    Google Scholar 

  • Peripheral Vascular Disease—StatPearls—NCBI Bookshelf (2022)

    Google Scholar 

  • Potter LR et al (2009) Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. In: Handbook of experimental pharmacology, pp 341–366

    Google Scholar 

  • Russell P et al (2022) Theranostic nanoparticles for the management of thrombosis. Theranostics (Ivyspring International Publisher) 2773–2800

    Google Scholar 

  • Sharma M et al (2019) Nanotheranostics, a future remedy of neurological disorders. Expert Opin Drug Deliv 16(2):113–128

    Article  CAS  PubMed  Google Scholar 

  • Shazeeb MS, Feula G, Bogdanov A (2014) Liposome-encapsulated superoxide dismutase mimetic: theranostic potential of an MR detectable and neuroprotective agent. Contrast Media Mol Imaging 9(3):221–228

    Article  CAS  PubMed  Google Scholar 

  • Sivaraman B et al (2017) Magnetically-responsive, multifunctional drug delivery nanoparticles for elastic matrix regenerative repair. Acta Biomater 52:171–186

    Article  CAS  PubMed  Google Scholar 

  • Sivaraman B, Ramamurthi A (2013) Multifunctional nanoparticles for doxycycline delivery towards localized elastic matrix stabilization and regenerative repair. Acta Biomater 9(5):6511–6525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sontheimer DL (2006) Peripheral vascular disease: diagnosis and treatment

    Google Scholar 

  • Stone JR (2016) Diseases of small and medium-sized blood vessels. In: Cardiovascular pathology, 4th ed, pp 125–168

    Google Scholar 

  • Talev J, Kanwar JR (2020) Iron oxide nanoparticles as imaging and therapeutic agents for atherosclerosis. Semin Thromb Hemost 46(5):553–562

    Article  CAS  PubMed  Google Scholar 

  • Tang J et al (2012) Nanomedical theranostics in cardiovascular disease. Current Cardiovasc Imaging Rep (current Medicine Group LLC) 1:19–25

    Article  Google Scholar 

  • Tokutome M et al (2018) PPARγ-targeting nanomedicine promotes cardiac healing after acute myocardial infarction by skewing monocyte/macrophage polarization in preclinical animal models

    Google Scholar 

  • Tu C et al (2015) Nanoscale strategies: treatment for peripheral vascular disease and critical limb ischemia. ACS Nano 9(4):3436–3452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J et al (2017) Neuronal PirB upregulated in cerebral ischemia acts as an attractive theranostic target for ischemic stroke

    Google Scholar 

  • Wang X et al (2019) Gold nanoparticles that target degraded elastin improve imaging and rupture prediction in an AngII mediated mouse model of abdominal aortic aneurysm. Theranostics 9(14):4156–4167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y et al (2021) Functionalized polymeric hybrid micelles as an efficient nanotheranostic agent for thrombus imaging and thrombolysis. Acta Biomater 122:278–290

    Article  CAS  PubMed  Google Scholar 

  • Wolfram J et al (2015) Safety of nanoparticles in medicine HHS public access this mini-review addresses the safety considerations for nanoparticles in medicine. Curr Drug Targets

    Google Scholar 

  • Xue Y et al (2021) Engineered macrophage membrane-enveloped nanomedicine for ameliorating myocardial infarction in a mouse model. Bioeng Transl Med 6(2)

    Google Scholar 

  • Yang A et al (2020) Thrombin-responsive engineered nanoexcavator with full-thickness infiltration capability for pharmaceutical-free deep venous thrombosis theranostics. Biomater Sci 8(16):4545–4558

    Article  CAS  PubMed  Google Scholar 

  • Ye M et al (2019) SR-A-targeted phase-transition nanoparticles for the detection and treatment of atherosclerotic vulnerable plaques. ACS Appl Mater Interfaces 11(10):9702–9715

    Article  CAS  PubMed  Google Scholar 

  • Yin L et al (2021) Nanoparticle-assisted diagnosis and treatment for abdominal aortic aneurysm. Front Med (Frontiers Media S.A.)

    Google Scholar 

  • Yu J, Li W, Yu D (2018) Atrial natriuretic peptide modified oleate adenosine prodrug lipid nanocarriers for the treatment of myocardial infarction: in vitro and in vivo evaluation. Drug Des Dev Ther 12:1697–1706

    Article  CAS  Google Scholar 

  • Zhang P et al (2022) Theranostic nanoparticles with disease-specific administration strategies

    Google Scholar 

  • Zhu L et al (2007) DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Lett 7(12):3592–3597

    Google Scholar 

  • Zumla A et al (2016) Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. Lancet Infect Dis (Lancet Publishing Group) e47–e63

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bhupendra Prajapati or Saritha Shetty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Divanji, T., Desai, K., Prajapati, B., Shetty, S. (2023). Nanomaterial-Mediated Theranostics for Vascular Diseases. In: Chawla, S., Singh, S., Husen, A. (eds) Smart Nanomaterials Targeting Pathological Hypoxia. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1718-1_9

Download citation

Publish with us

Policies and ethics