
Chapter 4 
Sentence and Document Representation 
Learning 

Ning Ding, Yankai Lin, Zhiyuan Liu, and Maosong Sun 

Abstract Sentence and document are high-level linguistic units of natural lan-
guages. Representation learning of sentences and documents remains a core and 
challenging task because many important applications of natural language pro-
cessing (NLP) lie in understanding sentences and documents. This chapter first 
introduces symbolic methods to sentence and document representation learning. 
Then we extensively introduce neural network-based methods for the far-reaching 
language modeling task, including feed-forward neural networks, convolutional 
neural networks, recurrent neural networks, and Transformers. Regarding the char-
acteristics of a document consisting of multiple sentences, we particularly introduce 
memory-based and hierarchical approaches to document representation learning. 
Finally, we present representative applications of sentence and document repre-
sentation, including text classification, sequence labeling, reading comprehension, 
question answering, information retrieval, and sequence-to-sequence generation. 

4.1 Introduction 

A natural language sentence is a linguistic unit that conveys complete semantic 
information, which is composed of words and phrases guided by grammatical rules. 
Although all the elements in a sentence come from a finite set, they could constitute 
almost infinite semantics with complex sequential and hierarchical structures. 
Transforming sentence-level information into computable numerical representations 
is an intriguing and meaningful research issue for broad tasks of natural language 
processing. 
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In the early stage before deep learning, symbolic strategies are widely adopted 
to represent sentences. Following the bag-of-words assumption, sentences could 
be represented as one-hot or term frequency-inverse document frequency (TF-
IDF) vectors. However, such methods would bring the computational efficiency 
problem since the dimension of such representation vectors is usually up to 
thousands or millions. And these methods also neglect the syntactic structure of 
a sentence, which is the core of constituent words to express different semantics. 
By contrast, the n-gram probabilistic language model that assigns probabilities to 
sequences of words could consider the context while modeling sentences. Despite 
the simpleness of the probabilistic language model, it inspires the subsequent state-
of-the-art neural language models that are based on deep neural networks, such as 
convolutional neural networks and recurrent neural networks, etc. Compared with 
conventional symbolic sentence representations, deep neural networks can capture 
the internal structures of sentences, e.g., sequential and dependency information, 
through convolutional, recurrent, or self-attention operations, yielding significant 
success in sentence modeling and NLP tasks. 

Documents, usually regarded as the highest-level linguistic unit of natural 
language, are constituted when there are enough sentences, and they are organized in 
a particularly logical way. With the rapid development of the Internet, how to effec-
tively retrieve and mine the vast new-coming information from massive amounts of 
online text becomes a crucial problem for natural language processing. Therefore, 
document representation plays a vital role in a series of real-world applications 
and becomes an intriguing research problem. In principle, the aforementioned 
symbolic or neural-based methods for sentence representation learning could also 
be applied to documents. But it is also easy to see that the coherence between 
sentences provides space for more complex combinations to form document-
level semantics, thereby producing new challenges. Common approaches to tackle 
document representation include memory-based and hierarchical methods. 

In this chapter, we first introduce symbolic sentence representation learning 
methods in Sect. 4.2, including the bag-of-words model and probabilistic language 
models. Then we detail the techniques of neural language models in Sect. 4.3, 
including feed-forward neural networks, recurrent neural networks, convolutional 
neural networks, and Transformers. Memory-based and hierarchical methods to 
model document-level information are elaborated in Sect. 4.4. Finally, we com-
prehensively introduce representative applications of sentence and document rep-
resentation in Sect. 4.5, including text classification, sequence labeling, reading 
comprehension, question answering, information retrieval, recommendation, etc. 

4.2 Symbolic Sentence Representation 

When words and phrases form sentences, they obtain complete semantics. Similar 
to word representations in Chap. 2, sentences can also be represented symbolically. 
But with a slight difference, the sentence is not the smallest unit in this recipe.



4 Sentence and Document Representation Learning 83

A symbol-based sentence representation is composed of multiple symbolic word 
representations. In this section, we introduce the bag-of-words model and the 
probabilistic language model for symbolic sentence representation learning. 

4.2.1 Bag-of-Words Model 

As introduced in Chap. 2, one-hot representation is the most straightforward 
symbolic method for words and phrases. This approach represents each word with 
a fixed-length binary vector. For a vocabulary .V = {w1, w2, . . . , w|V |}, the one-
hot representation of word w is .w = [0, . . . , 0, 1, 0, . . . , 0]. Based on the one-hot 
word representation and the vocabulary, it can be extended to represent a sentence 
.s = {w1, w2, . . . , wN } based on the bag-of-words hypothesis. Bag-of-words model 
represents sentences as a multiset of its words while ignoring the order and other 
grammatical rules: 

.s =
N∑

i=1

wi , (4.1) 

where N indicates the length of the sentence s. The sentence representation . s is 
the sum of the one-hot representations of N words within the sentence, i.e., each 
element in . s represents the term frequency (TF) of the corresponding word. In 
practice, to prevent it from being biased toward longer texts, it is usually normalized 
according to the number of words in the whole text. 

However, TF alone cannot properly represent a sentence or document since not 
all the words are equally important. For example, the function words such as a, an, 
and the usually appear in almost all sentences and reserve little semantics that could 
represent the sentence or document. Therefore, the inverse document frequency 
(IDF) is developed to measure the prior importance of . wi in V as follows: 

.idfwi
= log

|D|
dfwi

, (4.2) 

where .|D| is the number of all sentences or documents in the corpus D and . dfwi

represents the document frequency (DF) of . wi , which is the number of documents 
that . wi appears. With the importance of each word, the sentences are represented 
more precisely as follows: 

.ŝ = s � idf, (4.3) 

where . � is the element-wise product. 
Here, . ̂s is the TF-IDF representation of the sentence s, and it could be naturally 

applied to both the sentence and document levels. The insight behind it is that the
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more frequently a word appears and the less it appears in other texts, the more 
it represents the uniqueness of the current text and thus will be assigned more 
weight. TF-IDF is one of the most popular methods in information retrieval and 
recommender system [76, 81]. 

4.2.2 Probabilistic Language Model 

One-hot sentence representation identifies important terms to construct the rep-
resentation and neglects the structural information in a sentence. In this section, 
we introduce the probabilistic language model, a symbolic sentence representation 
approach that takes context into account. 

A standard probabilistic language model defines the probability of a sentence 
.s = {w1, w2, . . . , wN } by the chain rule of probability: 

.P(s) = P(w1)P (w2|w1)P (w3|w1, w2) . . . P (wN |w1, . . . , wN−1). (4.4) 

= 
N∏

i=1 

P(wi |w1, . . . , wi−1). (4.5) 

The probability of each word is determined by all the preceding words. And the 
conditional probabilities of all the words jointly compute the probability of the 
sentence. However, the model indicated in the Eq. (4.5) is not practicable due to 
its enormous parameter space for long texts. This is where the n-gram model comes 
to play, whose core idea is not to use all previous words but .n − 1 words to predict 
the current word. We show an example of the n-gram model in Fig. 4.1. 

TuringAlan anwas English Mathematician 

TuringAlan anwas English 

TuringAlan anwas English 

TuringAlan anwas English 

Mathematician 

Mathematician 

Mathematician 

Fig. 4.1 An example of the n-gram language model, where .n = 3
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In practice, we set such .n − 1-sized context windows in the probabilistic 
language model, assuming that the probability of word .wi only depends on 
.{wi−n+1 · · · wi−1}. More specifically, an n-gram language model predicts word . wi

in the sentence s based on its previous .n − 1 words: 

.P(wi |w1, . . . , wi−1) ≈ P(wi |wi−n+1, . . . , wi−1). (4.6) 

After simplifying the language model problem, how to estimate the conditional 
probability is crucial. In practice, a common approach is maximum likelihood 
estimation (MLE), which is generally in the following form: 

.P(wi |wi−n+1, . . . , wi−1) = P(wi−n+1, . . . , wi)

P (wi−n+1, . . . , wi−1)
. (4.7) 

In this equation, the denominator and the numerator can be estimated by counting 
the frequencies in the corpus. To avoid the probability of some n-gram sequences 
from being zero, researchers also adopt several types of smoothing approaches, 
which assign some of the total probability mass to unseen words or n-grams, 
such as “add-one” smoothing, Good-Turing discounting [31], or back-off models 
[45]. 

n-gram model is a typical probabilistic language model for predicting the next 
word in an n-gram sequence, which follows the Markov assumption that the 
probability of the target word only relies on the previous .n − 1 words. The idea is 
employed by most current sentence modeling methods, where the n-gram language 
model serves as an approximation of the true language model. This hypothesis is 
crucial because it substantially simplifies the problem of learning the parameters 
of language models from data. Recent works on word representation learning 
[1, 69, 72] are mainly based on the n-gram language model. 

The introductory part of this chapter states that the semantic information 
of a sentence not only exists in constituent words but is also closely 
related to its flexible syntactic structure. Obviously, despite its simplicity, 
symbolic approaches treat constituent words as independent symbols and are 
not capable of representing rich semantic information. Symbolic methods 
for sentence representation learning have been extensively introduced by 
many classical textbooks [42]. In this chapter, we mainly focus on sentence 
representations based on neural networks, which is a common practice in modern 
NLP. 

4.3 Neural Language Models 

Although the aforementioned symbolic methods are cornerstones to represent 
sentences in inchoate NLP, they still face challenges in modeling rich semantic 
information and universal information distributed in flexible structures of sentences.
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To this end, a set of more powerful modeling tools, neural networks, are developed 
for language modeling. Different from symbolic methods, neural language models 
use continuous representations to represent all words, which enjoy better general-
ization and modeling capability for longer texts. 

A neural network could also be viewed as an estimator of the language model 
function, and the architecture could be flexible in this setting. Similar to n-gram 
probabilistic language models, neural language models are constructed and trained 
to model a probability distribution of a target word conditioned on previous words: 

.P(s) =
N∏

i=1

P(wi |wi−n+1, . . . , wi−1), (4.8) 

where the conditional probability of the selecting word . wi can be calculated by 
multiple kinds of neural networks and the common choices include the feed-forward 
neural network, recurrent neural network, convolutional neural network, etc. The 
training of neural language models is achieved by optimizing the cross-entropy loss 
function: 

.L = −
N∑

i=1

log P(wi |wi−n+1, . . . , wi−1). (4.9) 

The parameters of the language model will be iteratively optimized during training 
and result in a language model that could predict the next word based on the context. 
In the following sections, we will detail these neural language models. 

4.3.1 Feed-Forward Neural Network 

Whether it is a probabilistic language model or a neural language model, the 
primary goal is to estimate the conditional probability .P(wi |w1, . . . , wi−1). And  
as stated, adopting the idea of n-gram to approximate the conditional probability is 
a common approach, where each word is determined by its .n−1 context words, i.e., 
.P(wi |w1, . . . , wi−1) ≈ P(wi |wi−n+1, . . . , wi−1). In this section, we first introduce 
language modeling with the feed-forward neural network (FFN). 

The architecture of the FFN language model is proposed by Bengio et al. [1] 
(illustrated in Fig. 4.2). Although more sophisticated neural architectures could be 
applied to the problem, the FFN language model first elaborates on the methodology 
of neural-based language modeling. To evaluate the conditional probability of 
the word . wi , it first projects its .n − 1 context-related words to their word 
vector representations .[wi−n+1, . . . ,wi−1] and concatenate the representations
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Input 
Representation 

Hidden 
States 

Output 
Distribution 

Feed-forward Layer 

Output Layer 

wi-n+1 wi-n+2 wi-1 

... 

... 

Fig. 4.2 The architecture of the feed-forward neural network 

.x = concat(wi−n+1; . . . ;wi−1) to feed them into a FFN. The formulation can be 
generally written as follows: 

.h = Mf (W1x + b) + W2x + d, (4.10) 

where .f (·) is an activation function, .W1,W2 are weighted matrices to transform 
word vectors into hidden representations, . M is a weighted matrix for the connections 
between the hidden layer and the output layer, and .b,d are bias terms. And then, the 
conditional probability of the word . wi can be calculated by a Softmax function: 

.P(wi |wi−n+1, . . . , wi−1) = Softmax(h). (4.11) 

4.3.2 Convolutional Neural Network 

Convolutional neural networks (CNNs) use convolutional layers to conduct the basic 
operation. This type of neural network layer represents the context by extracting 
hierarchical information from it [23]. For the input words .{w1, . . . , wl}, we first 
obtain their word embeddings .[w1, . . . ,wN ]. Let d denote the dimension of the 
hidden states. The convolutional layer involves a sliding window with the size of k 
of the input vectors centered on each word vector using a kernel matrix . Wc. And  
the hidden representation could be calculated by 

.h = f (X ∗ Wc + b), (4.12)
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Fig. 4.3 The architecture of 
the convolutional neural 
network 

Wc * 

Convolution 

Layer 

Input 

Representation 

Hidden 

Representation 

w1 w2 w3 w4 w5 w6 

f (·) 

Output Layer 

where . ∗ is the convolution operation, .f (·) is a nonlinear activation function (e.g., a 
sigmoid or tangent function), .X ∈ R

l×d is the matrix of word embeddings, . Wc ∈
R

k×d×d ′
(. d ′ is the kernel size), and .b ∈ R

d ′
are learned parameters. The sliding 

window prevents the model from seeing the subsequent words so that . h does not 
learn information from future words. For each sliding step, the hidden state of the 
current word is computed based on the previous k words and then further fed to 
an output layer to calculate the probability of the present word. The architecture 
of a CNN is shown in Fig. 4.3. In practice, we can use distinct lengths of sliding 
windows to form multi-channel operations to learn local information with different 
scales. 

4.3.3 Recurrent Neural Network 

To address the lack of ability to model long-term dependency in the FFN language 
model, Mikolov et al. [70] propose a recurrent neural network (RNN) language 
model which applies an RNN in language modeling. RNNs are different from 
FFNs in a fundamental way in that they operate in an internal state space where 
representations can be sequentially processed. Therefore, the RNN language model 
can deal with those sentences of arbitrary length. At every time step, its input is 
the vector of its previous word instead of the concatenation of vectors of its .n − 1
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previous words. The information of all other previous words can be considered by 
its internal state. 

Given the input word embeddings .x = [w1,w2, . . . ,wN ], at timestep t , the  
current hidden state . ht is computed based on the current input . wt and the hidden 
state of the last timestep .ht−1. Formally, the RNN language model can be defined 
as 

.ht = f (W concat(wt ;ht−1) + b), . (4.13) 

y = Softmax(Mht + d), (4.14) 

where .f (·) is a nonlinear activation function, . y represents a probability distribution 
over the given vocabulary, . W and . M are weighted matrices and .b,d are bias terms. 
As the increase of the length of the sequence, a common issue of the RNN language 
model is the vanishing gradients problem. The architecture of the RNN language 
model is shown in Fig. 4.4. Here, the RNN unit can also be implemented in other 
variants of recurrent neural networks, e.g., long short-term memory (LSTM) and 
gated recurrent unit (GRU). 

LSTM Since the raw RNN only utilizes the simple tangent function, it is hard to 
obtain the long-term dependency of a long sentence/document. Hochreiter et al.

＝ …

tanh 

RNN 

Unit 

RNN 

Unit 

RNN 

Unit 

RNN 

Unit 

σ σ σtanh 

GRU Cell 

σ σ  
tanh 

1-

wt 

ht h0 
h1 hl 

w0 w1 wl 

ht-1 

ct-1 

ht 

ct 

wt 

htht-1 

LSTM Cell 

wt 

Fig. 4.4 The architecture of recurrent neural networks. The figure is re-drawn according to 
the blog for introducing LSTM models (https://colah.github.io/posts/2015-08-Understanding-
LSTMs/)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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[37] propose long short-term memory (LSTM) networks to strengthen the ability to 
model long-term semantic dependency in RNN. 

LSTM introduces a cell state . ct to represent the current information at timestep 
t , which is computed from the cell state at the last timestep .ct−1 and the candidate 
cell state of the current timestep . ̃ct . And the representation of the current timestep 
. ht is calculated based on . ct . Formally, 

.c̃t = tanh(Wcconcat(wt ;ht−1) + bc), . (4.15) 

ct = ft � ct−1 + it � c̃t , . (4.16) 

ht = ot � tanh(ct ), (4.17) 

where . � is the element-wise multiplication operation, .Wc and . bc are learnable 
parameters and . ft , . it , and . ot are different gates introduced in LSTM to control 
the information flow. Specifically, . ft is the forgetting gate to determine how much 
information of the cell state at the last timestep .ct−1 should be forgotten, . it is the 
input gate to control how much information of the candidate cell state at the current 
timestep . ̃ct should be reserved, and . ot is the output gate to control how much 
information of the current cell state . ct should be output to the representation . ht . 
And all these gates are computed by the representation of the last timestep .ht−1 and 
the current input . wt . Formally, it could be written as 

.ft = Sigmoid(Wf concat(wt ;ht−1) + bf ), . (4.18) 

it = Sigmoid(Wiconcat(wt ;ht−1) + bi ), . (4.19) 

ot = Sigmoid(Woconcat(wt ;ht−1) + bo), (4.20) 

where .Wf , . Wi , .Wo are weight matrices and . bf , . bi , . bo are bias terms in different 
gates. It is generally believed that LSTM could model longer text than the vanilla 
RNN model. 

GRU To simplify LSTM and obtain more efficient algorithms, Chung et al. [19] 
propose to utilize a simple but comparable RNN architecture, named gated recurrent 
unit (GRU), which also utilizes the gating mechanism to handle information flow. 
But compared to several gates with different functionalities, GRU uses an update 
gate . zt to control the information flow. And a reset gate . rt is adopted to control how 
much information from the last step hidden state .ht−1 would flow into the candidate 
hidden state of the current step . ̃h. Formally, the computation flow of GRU is as 
follows: 

.zt = Sigmoid(Wzconcat(wt ;ht−1) + bz), . (4.21) 

rt = Sigmoid(Wrconcat(wt ;ht−1) + br ), . (4.22)
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h̃t = tanh(Whconcat(wt ; rt � ht−1) + bh), . (4.23) 

ht = (1 − zt ) � ht−1 + zt � h̃t , (4.24) 

where . Wz, . Wr , .Wh are weight matrices and . bz, . br , . bh are bias terms. The update 
gate . z in GRU simultaneously manages the historical and current information. 
Moreover, the model also omits cell modules . c in LSTM and directly uses hidden 
states . h in the computation. GRU has fewer parameters, which brings higher 
efficiency and could be seen as a simplified version of LSTM. 

Generally, compared to CNNs, RNNs are more suitable for the sequential 
characteristic of textual data. However, the nature of each step’s hidden state is 
dependent on the previous step also makes RNNs difficult to perform parallel 
computation and thus slower in training. 

4.3.4 Transformer 

Since 2017, a more powerful neural architecture, the Transformer [96] model, which 
is equipped with a self-attention mechanism, has received extensive attention from 
the NLP community. Compared to RNNs, Transformers could handle sequential 
data in parallel instead of processing a word at a timestep. The Transformer model 
has become a mainstream choice of neural networks to model natural language and 
pre-trained language models based on deep Transformers have achieved state-of-
the-art results on various NLP tasks. In this section, we introduce the mechanism of 
the Transformer model. We will use the next chapter to introduce the progress and 
research issues of representation learning brought by pre-trained models. 

Structure A Transformer is a nonrecurrent encoder-decoder architecture with a 
series of attention-based blocks. For the encoder, there are multiple layers, and 
each layer is composed of a multi-head attention sublayer and a position-wise feed-
forward sublayer. And there is a residual connection and layer normalization of 
each sublayer. The decoder also contains multiple layers, and each layer is slightly 
different from the encoder. First, sublayers of multi-head attention and feed-forward 
with identical structures with the encoder are adopted. And the input of the multi-
head attention sublayer is from both the encoder and the previous sublayer, which 
is additionally developed. This sublayer is also a multi-head attention sublayer that 
performs self-attention over the outputs of the encoder. And the sublayer adopts 
a masking operation to prevent the decoder from seeing subsequent tokens. The 
architecture of the Transformer is shown in Fig. 4.5. 

Attention There are several attention heads in the multi-head attention sublayer. 
A head represents a scaled dot-product attention structure, which takes the query
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Inputs Outputs 

(shifted right) 

N × 

Feed 

Forward 

Add & Norm 

Multi-Head 

Attention 

Add & Norm 
Masked 

Multi-Head 

Attention 

Add & Norm 

Feed 

Forward 

Add & Norm 

Multi-Head 

Attention 

Add & Norm 

N × 

Positional 

Encoding 

Positional 

Encoding 

Linear 

Softmax 

Output 

Probabilities 

Fig. 4.5 The architecture of a Transformer. This figure is re-drawn according to Fig. 1 from 
Google’s Transformer paper [96] 

matrix . Q, the key matrix . K, and the value matrix . V as the inputs, and the output is 
computed by 

. ATT(Q,K,V) = Softmax

(
QK�
√

dk

)
V, (4.25)
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where . dk is the dimension of the query matrix; note that in language models, . Q, . K, 
and . V usually come from the same source, i.e., the input sequences. Specifically, 
they are obtained by the multiplication of the input embedding . H and three weight 
matrices .WQ, .WK , and .WV , respectively. The dimensions of query, key, and value 
vectors are . dk , . dk , and . dv , respectively. The computation in Eq. (4.25) is typically 
known as the self-attention mechanism. 

The multi-head attention sublayer linearly projects the input hidden states . H
several times into the query matrix, the key matrix, and the value matrix for h heads. 
The multi-head attention sublayer could be formulated as follows: 

. Multihead(H) = [head1, head2, . . . , headh]WO, (4.26) 

where .headi = ATT(QWQ
i ,KWK

i ,VWV
i ) and .WQ

i , .WK
i , and .WV

i are linear 
projections. .WO is also a linear projection for the output. 

After operating self-attention, the output would be fed into a fully connected 
position-wise feed-forward sublayer, which contains two linear transformations 
with ReLU activation: 

. FFN(x) = W2 max(0,W1x + b1) + b2. (4.27) 

Input Tokenization Tokenization is a crucial step in NLP to process the raw input 
sequences. Generally, tokenization converts the input sequence into “tokens” and 
feeds them to subsequence processing modules. A simple approach is to directly 
regard a word as a token, whereas such a method cannot well handle unknown out-
of-vocabulary (OOV) words and cannot grasp the correlations of similar words. 
For example, it is more intuitive to tokenize “apples” into “apple” and “s” than a 
separate token independent of “apple.” In modern NLP, more mature methods like 
byte pair encoding (BPE) and wordpiece are extensively applied to Transformer-
based models. Taking BPE as an example, it iteratively replaces two adjacent units 
with a new unit, which ensures that common words will remain as a whole and 
uncommon words are split into multiple subwords. Practically, BPE is applied to 
many pre-trained models such as RoBERTa [64] and GPT-2 [79], and wordpiece is 
used to pre-train BERT [24]. 

Positional Encoding Positional encoding indicates the position of each token in 
an input sequence. The self-attention mechanism of Transformers does not involve 
positional information. Thus, the model needs to represent positional information 
of the input sequence additionally. Transformers do not use integers to represent 
positions because the value range varies with the input length. For example, 
positional values may become very large if the model process a long text, which 
will restrain the generalization over texts of different lengths. 

Specifically, each position is encoded to a particular vector with the same 
dimension d of the hidden states to represent the positional information. For the k-th
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token, let . pk be the positional vector; the i-th element of the positional encoding . pk
i

is calculated by 

.pk
i = sin

(
k

10,000
2j
d

)
, if i = 2j, (4.28) 

.pk
i = cos

(
k

10,000
2j
d

)
, if i = 2j + 1. (4.29) 

In this way, for each positional encoding vector, the frequency would decrease 
along with the dimension. We can imagine that at the end of each vector, 

.k/10,000
2j
d is near to 0 since the denominator becomes very large, which makes 

.sin(k/10,000
2j
d ) approximates 0 and .cos(k/10,000

2j
d ) approximates 1. Assuming 

the state of alternating 0s and 1s is a kind of “stable point,” for different positions 
k, the “speed” to reach such a stable point is also different. That is, the later the 

token is (larger k), the later the value .k/10,000
2j
d will be close to 0. Moreover, no 

matter the text lengths the model is currently processing, the encoding values are 
stable and range from .−1 to 1. Alternatively, learnable positional embeddings could 
also be applied to Transformers and could consistently yield similar performance. 
Pre-trained language models like BERT [24] adopt learnable position embeddings 
rather than sinusoidal encoding. 

Although the Transformer model was proposed to tackle machine translation, the 
powerful capability to model sequential data makes it the most popular backbone 
of NLP applications. For example, it has become the standard architecture for 
pre-trained language models, and GPT is a representative example of using a 
Transformer for the language modeling task. As stated, the overall objective is . L =
−∑N

i=1 log P(wi |wi−n+1, . . . , wi−1). Here, we use the decoder of a Transformer to 
adopt the self-attention mechanism to the previous .n − 1 words of the current word, 
and the output will be further fed into the feed-forward sublayer. After multiple 
layers of propagation, the final probability distribution P is computed by a softmax 
function acting on the hidden representation. Compared to RNNs, Transformers 
could better model the long-term dependency, where all tokens will be equally 
considered and computed during the attention operation. 

4.3.5 Enhancing Neural Language Models 

The foregoing parts have described representative neural language models. Next, 
we introduce some techniques that can further improve the performance of such 
models, including word classification and the caching approach.
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Word Classification Researchers [9, 32] propose a class-based language model to 
adopt word classification to improve the performance and speed of the language 
model. In this class-based language model, all words are assigned to a unique class, 
and the conditional probability of a word given its context can be decomposed into 
the probability of the word’s class given its previous words and the probability of 
the word given its class and history, which is formally defined as 

. P(wi |wi−n+1, . . . , wi−1) =
∑

c(wi)∈C

P (wi |c(wi))P (c(wi)|wi−n+1, . . . , wi−1),

(4.30) 

where C indicates the set of all classes and .c(wi) indicates the class of word . wi . 

Moreover, Morin et al. [73] propose a hierarchical neural network language 
model, which extends word classification to hierarchical binary clustering of words 
in the language model. Instead of simply assigning each word a unique class, it first 
builds a hierarchical binary tree of words according to the word similarity obtained 
from WordNet. Next, it assigns a unique bit vector . [c1(wi), c2(wi), . . . , cN (wi)]
for each word, which indicates the hierarchical classes of them. And then, the 
conditional probability of each word can be defined as 

. P(wi |wi−n+1, . . . , wi−1)

=
N∏

j=1

P(cj (wi)|c1(wi), . . . , cj−1(wi), wi−n+1, . . . , wi−1). (4.31) 

The hierarchical neural network language model can achieve .O(k/ log k) speed 
up as compared to a standard language model. However, the experimental results of 
[73] show that it performs worse than the standard language model. The reason is 
that the introduction of hierarchical architecture or word classes imposes a negative 
influence on word classification by neural network language models. 

Caching Caching is also one of the important extensions of neural language 
models. A type of cache-based language model assumes that each word in a recent 
context is more likely to appear again [90]. Hence, the conditional probability of a 
word can be calculated by the information from history and caching: 

. P(wi |wi−n+1, . . . , wi−1) = λPs(wi |wi−n+1, . . . , wi−1)

+ (1 − λ)Pc(wi |wi−n+1, . . . , wi−1), (4.32) 

where .Ps(wi |wi−n+1, . . . , wi−1) indicates the conditional probability generated by 
standard language models and .Pc(wi |wi−n+1, . . . , wi−1) indicates the conditional 
probability retrieved from cache, and . λ is a constant.
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Another cache-based language model is also used to speed up the RNN language 
modeling [39]. The main idea of this approach is to store the outputs and states of 
language models for future predictions given the same contextual history. 

Neural language models are among the most powerful techniques for sentence 
representations, which could comprehensively model the complex syntactical struc-
tures of long texts. Even for longer documents, modern approaches are based on 
neural networks. And in the next chapter, we will discuss how to model documents 
more effectively. 

4.4 From Sentence to Document Representation 

The aforementioned representation learning approaches could be applied to both 
sentence- and document-level texts since most existing works treat documents as 
“longer sentences” in practice. However, the interactions of multiple sentences in a 
document bring more complex semantics, thereby establishing new challenges. In 
this section, we introduce two types of document representation learning methods. 
Memory-based document representation treats the document as a whole to directly 
learn the representation, and hierarchical document representation performs the 
fusion of the information of different levels of linguistic units to obtain the final 
document representation. 

4.4.1 Memory-Based Document Representation 

A direct way to learn the document representation is to regard the document as a 
whole. We regard this type of method as the memory-based document representation 
whose intuition is to use inherent modules to remember the context with critical 
information of the target document. 

Paragraph Vector Here, we extend the idea of word2vec to the document 
level, which is named paragraph vector (PV) [53]. Given a target word and the 
corresponding contexts from the document, the training objective of this strategy 
is to use the paragraph vector to predict the target word. More specifically, similar 
to word2vec, PV has two variants: distributed memory (denoted as PV-DM) and 
distributed bag-of-words (denoted as PV-DBOW). 

As illustrated in Fig. 4.6, PV-DM adds an additional token in each document 
and uses the token representation to represent the document. By extending the 
idea of CBOW, PV-DM predicts the target word according to historical contexts 
and document representation in the training phase. There are multiple choices 
exploiting the document representation and word representations. For example, one 
can directly concatenate these representations or average them. It can be seen that 
the additional document representation here acts as a memory module that gradually
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Fig. 4.6 The architecture of PV-DM model. This figure is re-drawn according to Fig. 2 from the 
paragraph vector paper [53] 
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Fig. 4.7 The architecture of PV-DBOW model. This figure is re-drawn according to Fig. 3 from 
the paragraph vector paper [53] 

captures the key semantics of the document as it participates in the training process 
of predicting words based on context. After training, the paragraph vectors can 
be regarded as the representations of the documents and be used as pre-trained 
document embeddings like pre-trained word embeddings. 

Besides PV-DM, PV-DBOW extends the idea of skip-gram to learn document 
representation. As illustrated in Fig. 4.7, PV-DBOW ignores the context words in the 
input text and directly uses the document representation to predict the target word in 
a randomly sampled window. In the training phase, the model will randomly sample 
a window and then randomly sample a word to be the prediction target. Obviously, 
it is simpler in concept than PV-DM, and experiments have shown that this method 
is also effective for document representation. 

However, when the document is too long, PV may not have enough capacity to 
remember enough information. These issues could be alleviated by modern deep 
neural networks. In the following parts, we introduce deep neural networks that
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yield superior performance in storing and representing historical information as 
memories. 

Memory Networks In the era of deep learning, memory networks [104] have  
become one of the representative methods for learning document representation, 
which uses memory units to store and maintain long-term information. Compared 
to standard neural networks that utilize special aggregation operations to obtain 
the document representation, memory networks explicitly adopt memory neural 
modules to store information, which could prevent information forgetting. Given an 
input document with n sentences .d = {s1, s2, . . . , sn}, for the  i-th sentence . si , the  
model firstly uses a feature extractor F to transform the input into a sentence-level 
representation . hs

i : 

.hs
i = F(si). (4.33) 

A memory unit M is responsible for storing and updating memories according to 
the current inputs. In this case, the memories will be updated by certain operations. 
For the specific update mechanism of the memory module, there are many options 
to define M . Here we introduce one of the most straightforward methods by using 
slots. The basic idea of this approach is to store the representation of each input into 
a separate “slot”: 

.mH(si ) = F(si), (4.34) 

where .H(·) is used to select a particular index of a slot for the input sentence . si . In  
this case, M only updates one slot with index .H(si) given the input . si and does not 
interfere with any other memories. 

Given memories stored through the aforementioned process, we could find 
the k most relevant memories given a query q and generate a final output. An 
output module O is adapted to select supporting memories and generate the latent 
representation of the output of the current query q. We take .k = 1 as an example, 
where the module selects one memory index: 

.o = O(q,m) = argmaxj sO(q,mj ), (4.35) 

where .sO(·) is a score function to evaluate the relevance of the query and memories. 
Then we can use a decoder D to generate concrete tokens. In particular, if the final 
output y is a single word, given query q, memory .mo (o is the selected index of 
memory produced by O), and dictionary V , we use another score function .sy(·) that 
measures the candidate word and o to produce y: 

.y = argmaxw∈V sy([q,mo], w). (4.36) 

The framework is illustrated in Fig. 4.8.



4 Sentence and Document Representation Learning 99

Memory 

Update 

input s 

F 
M 

OutputF(s) 

O 

Look Up 

D 

Encoder 

Memory 
Unit 

Output 
Unit 

Decoder 
query q 

Fig. 4.8 The general architecture of memory networks 

In this general framework, each module can be carefully designed to store various 
historical information. The framework is effective for document modeling and could 
be applied to many related tasks. For example, in reading comprehension question 
answering, we can store the representation of each sentence of the input passage as 
memory and then match the query against the memory to select the answer more 
accurately. 

Variants of Memory Networks Subsequently, many memory network variants are 
designed from different perspectives. Generally, the improvement can be delivered 
from the training strategy and the memory form. 

Training Strategy If the operation of each module is designed discretely, it is not 
easy to directly train the network via back-propagation. 

The end-to-end memory network [91] presents a continuous version of this 
framework, which uses an RNN-based architecture (it can also be replaced with 
other neural backbones) to read the stored memories before outputting the results. 
Specifically, given a document .d = [s1, s2, . . . , sn], for a sentence . si , an encoder F 
is adopted to obtain the representation . hs

i , which is regarded as the raw memory for 
. si . Given a query q, whose representation is . q, we need to extract relevant memories 
and produce the final output. As shown in Fig. 4.9, the model generates a memory 
vector . mi and an output vector . ci for each . hs

i with a trainable matrix .Wm and another 
trainable matrix . Wc, respectively: 

.mi = Wmhs
i , ci = Wchs

i . (4.37) 

Memory vectors are used to compute matching scores p against the query q with a 
softmax function. Specifically for the i-th memory vector: 

.pi = Softmax(m�
i q). (4.38)
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Fig. 4.9 The architecture of end-to-end memory network. This figure is re-drawn according to 
Fig. 1 from the end-to-end memory network paper [91] 

The matching score . pi is then used as a weight of the output vector . ci to represent 
the relevance between q and . mi . By conducting a weighted sum, we obtain a vector 
. o that is responsible for the final output: 

.o =
∑

pici . (4.39) 

Finally, the final output y given a query q could be derived from the query 
representation . q and the vector . o: 

.y = Softmax(Wo(q + o)), (4.40) 

where .Wo are trainable parameters. As we can see, in the training procedure, .Wm, 
. Wc, . Wo, and the encoder F will be optimized in an end-to-end manner by directly 
minimizing the cross-entropy loss between the prediction and the ground truth label. 

Dynamic memory networks [48] present a similar methodology. After the model 
produces representations for all the input sentences and the current query, the query 
representation will trigger a retrieval procedure based on the attention mechanism. 
This procedure will iteratively read the stored memories and retrieve the relevant 
ones to produce the output. The transformation of memory networks into the end-
to-end manner in terms of training strategies has further expanded its influence and 
inspired new research works [61, 62, 106, 108]. 

Memory Form In addition to the training strategy perspective, we can also improve 
memory networks from the perspective of the form of stored memories. It is 
easy to see that such a framework may be difficult to store vast amounts of 
information because it is hard to compute matching scores for large-scale memories. 
Hierarchical memory networks [10] give a solution that organizes memories in 
a hierarchical form. This method forms a group of memories, and then multiple
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Fig. 4.10 The architecture of key-value memory network. This figure is re-drawn according to 
Fig. 1 from the key-value memory network paper [71] 

groups can be reorganized into higher-level groups. It uses a maximum inner 
product search combined with the attention mechanism to efficiently retrieve desired 
memory. This approach effectively improves the efficiency of searching memory but 
may also risk losing some precision as the number of levels increases. 

Key-value memory network (KV-MemNN) [71], as the name means, uses a key-
value structure to store and organize memories. The design of such a structure 
is to boost the process of retrieving memories and could store information from 
different sources (e.g., text and knowledge graphs). The framework is illustrated 
in Fig. 4.10. Formally, the memories are pairs of key-values .(ki , vi ). Suppose that 
we already have large-scale established key-value memories, given a query q and 
the corresponding representation . q; the model could use it to preselect a small group 
of memories by directly matching the words in the query and memories with the 
reverse index. After narrowing the search space, one can calculate the relevant score 
between the query and a key: 

.pi = Softmax(fQ(q) · fK(ki )), (4.41) 

where .fQ(·) and .fK(·) are feature mapping functions. Similar to the end-to-end 
memory network, in the reading stage, the vector . o responsible for the final output 
could be calculated by a weighted sum: 

.o =
∑

pifV (vi ), (4.42)
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where .fV (·) is a feature mapping function. It is noteworthy that the output vector 
leverages both the key and value representations. Another prominent feature of KV-
MemNN is that the query can be iteratively updated during the training process. The 
intuition of this mechanism is that the retrieved memory key could be incorporated 
into the query and produce a new query to find more accurate memories. Formally, 
the updated query is 

.qj+1 = Wq(qj + o), (4.43) 

where .Wq is a transformation matrix. Accordingly, the relevant score of the updated 
query and memories is .pi = Softmax(q�

j+1fK(ki )). The number of updates to 
the query H is a fixed value, which is treated as a hyperparameter. Thus, the final 
prediction of the model is 

.y = argmaxk Softmax(q�
H+1fY (yk)), (4.44) 

where . yk is an output candidate of all the possible outputs in a particular task, 
and .fY (·) is a feature mapping function. At this time, key-value memories conduct 
interactions with the output candidates. In the training phase, all the aforementioned 
feature mapping functions and trainable parameters are optimized in an end-to-end 
manner. KV-MemNN could also be generalized to a variety of applications with 
different forms of knowledge by flexibly designing . fQ, . fK , and . fV . For example, 
for storing world knowledge in the form of a triplet, we can regard the head entity 
and the relation as the key and the tail entity as the value. For textual knowledge, 
we can encode sentences or words directly into both key and value in practice. 

Although memory networks are proposed for better document modeling, it 
has profoundly influenced the academic community with this idea. We can use 
additional modules to store information explicitly and enhance the memory capacity 
of neural networks. To this day, this framework is still a common idea for 
modeling very long texts. There are three key points in designing such a network: 
representation learning of memory, the matching mechanism between memory and 
query, and how to perform memory retrieval based on the input efficiently. 

4.4.2 Hierarchical Document Representation 

As mentioned in the former sections, higher-level units in natural languages are 
often composed of lower-level units, and documents are composed of multiple 
sentences in a specific logical order. Therefore, an intuitive way to obtain sentence 
representations is to perform hierarchical modeling [55], where word represen-
tations are used to compose sentence representations, which in turn compose 
document representations. With the powerful representation capabilities of neural 
networks, we can explicitly develop this type of method. Here, we introduce several 
neural-based methods of learning document representation hierarchically.
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Hierarchical Document Encoder The basic idea of the hierarchical document 
encoder is to use low-level representations to produce high-level representations. 
First, the word vectors obtained by pre-training with self-supervised methods can 
be directly used as the basic word representations. We can also optimize these word 
representations according to specific tasks. And there are various ways to get the 
sentence representation through the constituent word representation. For example, 
we can let it pass through a layer of multilayer perceptron (MLP) and then average 
over all the hidden states. Here we attempt to recurrently process the document and 
take LSTM as an example, and the input document is .d = {s1, . . . , sm}, where . si
is a sentence .si = {w1, . . . , wn}. We input a sentence . sj directly into LSTM (other 
neural networks like GRU and CNN can also be applied) and get the corresponding 
hidden states. In this way, according to the previous equations, the hidden state of 
each step is calculated from the hidden state of the previous step and the input of 
the current step: 

.hw
i = LSTM(wi ,hw

i−1). (4.45) 

Thus, the hidden state of the last time step contains the semantic information of the 
whole sentence and can be used as a sentence representation: 

.sj = hw
n . (4.46) 

At this point, we get a representation of each sentence. Considering the sentence 
as a basic unit, we can build another LSTM on the sentence level to process the 
sentence representation sequentially. The hidden state at each sentence-level step 
is determined by the previous hidden state and the current sentence representation 
input, just like the word-level LSTM: 

.hs
j = LSTM(sj ,hs

j−1). (4.47) 

Repeating the above operation, the hidden state of the last step of this LSTM 
contains all the information of the sentence representation. It thus can be regarded 
as a document representation: 

.d = hs
m. (4.48) 

To this end, we introduce basic hierarchical modeling of document representa-
tion. When there is a supervised signal, we can use this document representation 
directly for neural network training with document-level classification. When there 
is no supervised signal, we can self-code the document representation, which can 
be decoded in the reverse order, i.e., first decode the document representation into 
a sentence representation and then generate words sequentially. The supervised and 
autoencoding frameworks are illustrated in Figs. 4.11 and 4.12, respectively.
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Fig. 4.11 The framework of hierarchical document representation for supervised learning. The 
figure is a modification of Fig. 2 of the hierarchical autoencoding paper [55] 
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Fig. 4.12 The framework of hierarchical autoencoding of document representation. The figure is 
re-drawn according to Fig. 2 of the hierarchical autoencoding paper [55] 

Hierarchical Attention Network Following the idea of hierarchical modeling, 
we can make various improvements to the model, such as replacing the LSTM 
with a more powerful neural network structure and adding attention mechanisms 
to enhance the transmission of long-dependency information. The hierarchical 
attention network (HAN [109]) is proposed to use attention mechanisms to capture 
the hierarchical correlations of documents. The key insight of this model is that 
while doing hierarchical modeling, different attention weights are assigned to 
components (words and sentences) using the attention mechanism to learn the
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Fig. 4.13 The architecture of 
the hierarchical attention 
network. This figure is 
re-drawn according to Fig. 2 
from the hierarchical 
attention network paper [109] 
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document’s representation dynamically. The framework is illustrated in Fig. 4.13. It  
is worth noting that the intuition of hierarchical attention networks could be applied 
to various neural networks. We use GRU, another version of RNNs, as the backbone 
to introduce the approach. 

The first step is also to model the basic linguistic units—words—using a 
bidirectional GRU to incorporate contextual information. The bidirectional hidden 
states for a word embedding . w is computed by 

.
−→
h w = −−→

GRU(w), . (4.49) 

←−
h w = ←−−

GRU(w). (4.50) 

By directly concatenating the two hidden states of both directions, we could obtain 
the final word representation: 

.hw = concat(
−→
h w;←−

h w). (4.51) 

Then, following the spirit of hierarchical modeling, we need to construct 
sentence-level representations. Instead of directly feeding word-level represen-
tations to a higher-level neural network, an attention mechanism is adopted to 
automatically determine how important a word is to the sentence-level represen-
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tation. First, we use a one-layer MLP to further extract the feature of one word: 

.uw = tanh(Whw + b). (4.52) 

Then, the sentence representation is computed by 

.s =
∑

i

αihi
w, (4.53) 

where . α is an attention score and is computed by: 

.αi = exp(ui�
w uw)∑

i exp(ui�
w uw)

. (4.54) 

Now we obtain the sentence representation . s. Logically, the foregoing procedures 
could be analogically applied to the sentence level and obtain the final document 
representation. We first still use a bidirectional GRU to capture the correlations 
between sentences: 

.
−→
h s = −−→

GRU(s), . (4.55) 

←−
h s = ←−−

GRU(s). (4.56) 

Similarly, the hidden state of a sentence is the concatenation of the two directions 
of hidden states: 

.hs = concat(
−→
h s;←−

h s). (4.57) 

Then exactly the same neural network and the attention mechanism are applied as 
follows: 

.us = tanh(Whs + b), . (4.58) 

αi = 
exp(ui�

s us)∑
i exp(ui�

s us) 
, . (4.59) 

hd =
∑

i 
αihi 

s . (4.60) 

Here, we again use the hierarchical spirit, equipped with the attention technique, 
to construct the document representation . hd . This representation can be fed to an 
output layer for document-level classification, thereby training the model. 

This section introduces two primary frameworks, memory-based and hierarchical 
approaches, to model documents. As opposed to directly treating documents 
as longer sentences and then directly applying neural language modeling, such 
methods more accurately grasp the characteristics of documents with complex 
structures.
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4.5 Applications 

Sentence and document representations play a crucial role in multifarious down-
stream tasks, many of which are the cornerstone tasks of modern information 
processing. In this section, we introduce typical applications of sentence and 
document representations in real-world scenarios, which could fall into three 
groups: classification, sequence labeling, and generation. For classification, we 
introduce text classification, information retrieval, reading comprehension, open-
domain question answering, sequence labeling, its three representative applications, 
and sequence-to-sequence generation and its typical applications. 

4.5.1 Text Classification 

Text classification is a typical NLP application that covers many important real-
world tasks, such as parsing and semantic analysis. Therefore, it has attracted 
the interest of many researchers. The conventional text classification models (e.g., 
the LDA [5] and tree kernel [78] models) focus on capturing more contextual 
information and correct word order by extracting more useful and distinct features 
but still expose a few issues (e.g., data sparseness) which has a significant impact 
on the classification accuracy. With the development of deep learning in the 
various fields of artificial intelligence, neural models have been introduced into the 
text classification field, given their abilities of text representation learning. This 
section will introduce the three typical text classification tasks, including topic 
classification, sentiment classification, and natural language inference (NLI). 

Topic Classification Topic classification aims to assign a sentence to an appropri-
ate category (e.g., type of questions, type of news article), which is a fundamental 
task of the text classification application. Examples of topic classification are listed 
in Table 4.1. 

Considering the effectiveness of the CNN-based models in capturing sentence 
semantics, many works use CNNs as representation encoders. The character-level 
CNN [110] is among the first few works to apply character-level information 

Table 4.1 Some examples of topic classification 

Sentence Topic 

One of the faculties of Stanford just won a Nobel Prize for her contributions to 
organic chemistry 

Sci-Tech 

After IPO, the company’s share price has risen 147.4% in 2 weeks, and several 
media outlets are scrambling to cover the news 

Business 

The Golden State Warriors, led by Stephen Curry, won an NBA championship, 
and now they’re eyeing contract extensions for their core players 

Sports
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modeling to topic classification. Increasing the depth of the CNNs [20] helps extract 
the hierarchical information from scattered characters to whole sentences. MG-CNN 
[111] captures multiple features from multiple sets of embeddings and concatenates 
them at the penultimate layer. 

RNN-based models, which aim to capture the sequential information of sen-
tences, are also widely used in sentence classification. Recurrent CNN [51] applies 
a recurrent structure to capture contextual information. Hierarchical attention 
networks [109] introduce word-level and sentence-level attention mechanisms into 
an RNN-based model as well as a hierarchical structure to capture the hierarchical 
information of the document for sentence classification. Combining an LSTM with 
a CNN [112] also shows better performance on text classification, as it captures both 
local and global features. 

Sentiment Classification Sentiment classification is a particular task of the sen-
tence classification application, whose objective is to determine the sentimental 
polarities of opinions a piece of text contains, e.g., favorable or unfavorable and 
positive or negative. This task appeals to the NLP community since it has many 
potential downstream applications, such as movie review suggestions. Examples of 
sentiment classification are illustrated in Table 4.2. 

Similar to text classification, sentence representation based on neural models 
has also been widely explored for sentiment classification. Text-CNN [47] utilizes 
the CNNs trained on top of pre-trained word embeddings and achieves promising 
results on several sentiment classification datasets. The dynamic CNN model [44] 
can handle sentences of varying lengths and uses dynamic max-pooling over linear 
sequences, which could help the model capture both short-range and long-range 
semantic relations in sentences. 

Xavier et al. [29] adopt a stacked denoising autoencoder in sentiment classifica-
tion. Then, a series of studies based on recursive neural networks are presented to 
learn sentence representations for sentiment classification, including the recursive 
autoencoder (RAE) [88], matrix-vector recursive neural network (MV-RNN) [87], 
and recursive neural tensor network (RNTN) [89]. Besides, Johnson et al. [40] adopt 
a CNN to learn sentence-level representations and yield promising experimental 
results in sentiment classification. 

The RNN models also benefit sentiment classification as they are able to 
capture sequential information. Studies [54, 93] investigate tree-structured LSTM 

Table 4.2 Some examples of sentiment classification 

Sentence Sentiment 

The plot and set design of this movie is breathtaking Positive 

He is immersed in sorrow Negative 

All the audience who saw the film stood up and clapped their hands, this is a 
masterpiece that deserves to be watched again and again 

Positive 

This book is written without any rules, and the author is very self-righteous Negative
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models on text classification. Hierarchical neural models are proposed to tackle the 
document-level sentiment classification problem [3, 94], which generate semantic 
representations at different levels within a document. Besides, an RNN-based 
multitask learning framework [63] learns across multiple sentence classification 
tasks and employs three different mechanisms of sharing information to model 
sentences with task-specific and shared layers. Moreover, the attention mechanism 
is also introduced into sentiment classification, which aims to determine the 
importance of each word contributing to the whole sentiment [109]. 

Natural Language Inference Natural language inference (NLI) is a classification 
task involving two sentences. Its objective is to determine whether the first 
sentence entails the second sentence or not. For example, I was late for class on 
Monday entails that I had a class on Monday. It could be viewed as a semantic 
matching problem of two sentences that requires a high-level understanding of 
sentence-level information. We provide more examples in Table 4.3 to help readers 
better understand the task. Same as other classification tasks, neural models can 
automatically learn the two-sentence representations, and a classifier is used for 
the detection of entailment. The RNN [7] is one of the baseline models for NLI 
tasks, which derives the representations for both sentences. Apart from using 
sentence representation directly, some also perform word-level matching to facilitate 
semantic learning [99]. Kim et al. [46] concatenate features from the attention 
mechanism with the original hidden states at each layer of RNNs and obtain better 
performance. Linguistic features like syntactic information [14] are also used to 
enhance LSTM representation. The recurrent entity network [35] is an entity-
centered RNN, which contains several RNN cells, and each cell learns specific 
entity-related representations. It improves the memory capacity of the original RNN 
and achieves satisfactory results on NLI tasks. 

Table 4.3 Some examples of natural language inference 

Premise Relation Hypothesis 

A cat jumped Entailment A cat moved 

Some cats walked Contradiction No cats moved 

Every cat jumped Neutral One cat ate 

It is nice talking to you all 
righty 

Neutral I talk to you every day 

Fun for adults and children Contradiction Fun only for children 

Well it’s been very interesting Entailment It has been very intriguing 

You can access the database 
anytime you want 

Entailment The database is accessible to 
you 

He smiled back at me Neutral He was so happy at that 
moment
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4.5.2 Information Retrieval 

In the Internet era, information retrieval becomes one of the most critical appli-
cations of sentence and document representations. Information retrieval aims to 
obtain relevant resources from a large-scale collection of information resources. 
As shown in Fig. 4.14, given the query “William Shakespeare” as input, the search 
engine (a typical information retrieval application) provides relevant webpages for 
users. Traditional information retrieval data consists of search queries and document 
collections D. And the ground truth is available through explicit human judgments 
or implicit user behavior data such as clickthrough rate. 

For the given query q and document d , traditional information retrieval models 
estimate their relevance through lexical matches. Neural information retrieval mod-
els pay more attention to garnering the query and document relevance from semantic 
matches. Both lexical and semantic matches are essential for neural information 
retrieval. Thriving from neural network black magic, it helps information retrieval 
models catch more sophisticated matching features and have achieved the state of 
the art in the information retrieval task [22]. 

Neural ranking models typically fall into two groups: representation-based and 
interaction-based [34]. Studies in the early stage primarily focus on representation-
based models. They learn informative representations and match them in the 
embedding space of queries and documents. On the other hand, interaction-based 
methods model the query-document matches from the interactions of their terms. 

Fig. 4.14 An example of information retrieval. This is a screenshot of the Google search engine
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4.5.3 Reading Comprehension 

Reading comprehension is crucial to question-answering systems and therefore 
has been the focus of NLP research. The development of neural-based models 
has dramatically boosted the performance of reading comprehension. As shown in 
Fig. 4.15, machine reading comprehension aims to determine the answer given a 
question and a passage. The task could be viewed as a standard supervised learning 
task: with a set of training instances, our goal is to learn a mapping that takes the 
context (i.e., the passage) and related questions as inputs and outputs an answer. 
The input context can be either a single passage or multiple passages. Intuitively, 
the longer the provided context is, the more complex the task is. The evaluation 
metric is typically correlated with the answer type, which will be discussed in the 
following. 

Generally, the current machine reading comprehension task could be divided into 
four groups according to the answer types [11], i.e., cloze style, multiple-choice, 
span prediction, and free-form answer. 

Cloze Style The cloze style task such as CNN/DAILY MAIL [36] consists of fill-
in-the-blank sentences where the question contains a placeholder to be filled in. The 
answer is either from a predefined candidate set or the vocabulary. 

Multiple-Choice The multiple-choice task such as RACE [50] and MCTEST [83] 
aims to select the best answer from a set of answer choices. It is typical to use 
accuracy to measure the performance on these two tasks: the percentage of correctly 

Fig. 4.15 An example of machine reading comprehension from SQuAD [80]
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answered questions in the whole example set, since the question could be either 
correctly answered or not from the given hypothesized answer set. 

Span Prediction The span prediction task such as SQuAD [80] is perhaps the most 
widely adopted task among all since it compromises flexibility and simplicity. It 
extracts a most likely text span from the passage as the answer to the question, which 
is usually modeled as predicting the start position and end position of the answer 
span. We typically use two evaluation metrics proposed by the SQuAD benchmark 
[80]. The exact match assigns a full score of .1.0 to the predicted answer span if 
it exactly equals the ground truth answer; otherwise, . 0.0. F1-score measures the 
degree of overlap between prediction and truth by computing a harmonic mean of 
the precision and recall. 

Free-Form Answer The free-form answer task such as MS MARCO [74] does 
not restrict the answer form or length and is also referred to as generative question 
answering. It is practical to model the task as a sequence generation problem, where 
the discrete token-level prediction was made. Currently, a consensus on the ideal 
evaluation metrics has not been achieved. It is common to adopt standard metrics in 
machine translation and summarization, including ROUGE [58] and BLEU [95]. 

Since the span prediction format is the most widely researched problem, the 
following part of this section will be mainly devoted to the mainstream methods 
in machine reading comprehension with span prediction. With neural networks, 
the machine reading comprehension system is commonly composed of three 
consecutive phases: the embedding phase, the reasoning phase, and the prediction 
phase. Like many other NLP tasks, the embedding phase often adopts pre-trained 
or contextual word embedding with RNNs, character embedding, or hybrid embed-
dings. The query and the context are separately encoded. The reasoning phase is 
responsible for joint learning based on the two representations and is the focus 
of most works. The prediction phase decides how the output is finally drawn. For 
extractive mode like span prediction, where a piece of text is extracted from the 
context, a standard operation is to predict the start position and the end position of 
the extracted part. 

We will mainly introduce the different approaches in the reasoning phase. As 
shown in Fig. 4.16, while encoding the passage, the model retains the length of 
the sequence and encodes the question into a fixed-length hidden representation 
. q. The question’s hidden vector is then used as a pointer to scan over the passage 
representation .{pi}ni=1 and compute scores on every position in the passage. While 
maintaining this similar architecture, most machine reading comprehension models 
vary in the interaction methods between the passage and the question. In the 
following, we will introduce several classic reading comprehension architectures 
that follow this paradigm. Most of them merge the two lines of information from 
the query and the context with the attention mechanism. And they mainly differ 
in two aspects: the direction of attention and the dimension of attention. Direction 
refers to whether using only query-to-context attention (as shown in Fig. 4.16) or  
both directions. Dimension refers to whether attention is only calculated at the
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Fig. 4.16 The architecture of 
classic machine reading 
comprehension models 

q 

p1 p2 p3 pn-1 pn 

… 

… 

sentence representation level, which outputs a single-dimension vector, or at the 
word embedding level, where output is an embedding matrix. 

Single Direction and Single Dimension The first attempt [36] to apply neural 
networks on machine reading comprehension constructs bidirectional LSTM reader 
models along with attention mechanisms. The work introduces two reader models, 
i.e., the attentive reader and the impatient reader. After encoding the passage and 
the query into hidden states using LSTMs, the attentive reader computes a scalar 
distribution over the passage tokens and uses it to calculate the weighted sum of the 
passage’s hidden states. The impatient reader extends this idea further by repeatedly 
updating the weighted sum of passage hidden states after seeing each query token. 
Following Hermann et al. [36], Chen et al. [12] modify the method to compute 
attention and simplify the prediction layer in the attentive reader with a simple 
bilinear term. 

Bidirectional Attention and Single Dimension The attention-over-attention 
reader [21] also computes both query-to-context and context-to-query attention 
but handles them differently. Instead of simply averaging the token-level query-
to-context attention to obtain a final vector for prediction, attention-over-attention 
computes a weighted vector with a query word importance vector. The word 
importance vector is computed by averaging the context-to-query attention. This 
operation is considered to learn the contributions of individual question words 
explicitly. 

Bidirectional Attention Flow and Multi-Dimension Instead of unifying the 
document and query representation to a single vector with query-to-context attention 
only, the BiDAF network [85] computes the attentive token representation of both 
query-to-context and context-to-query at each bidirectional long short-term memory 
(BiLSTM) layer to allow fine-grained information flow. It consists of the token 
embedding layer, the contextual embedding layer, the bidirectional attention flow
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layer, the LSTM modeling layer, and the Softmax output layer. At each layer, 
the input is the concatenation of the previous layer’s hidden states, the query-to-
context representation, and the context-to-query representation. The representation 
of multiple granularities and a bidirectional attention flow can fully capture the 
interaction between document and query for start and end position prediction. 

The gated-attention reader [25] adopts the gated-attention module, where each 
token representation of the passage is scaled by the attended query vector after each 
BiGRU layer. This gated-attention mechanism allows the query to interact directly 
with the token embeddings of the passage at the semantic level. And such layer-
wise interaction enables the model to learn conditional token representation given 
the question at different representation levels. 

4.5.4 Open-Domain Question Answering 

Open-domain QA (OpenQA) [33] aims to answer open-domain questions utilizing 
external resources such as collections of documents [98], webpages [15, 49], 
structured knowledge graphs [2, 6], or automatically extracted relational triples [28]. 
Recently, with the development of machine reading comprehension techniques [12, 
25, 86, 102], researchers attempt to answer open-domain questions via performing 
reading comprehension on plain texts with neural-based models [13]. As illustrated 
in Fig. 4.17, a neural-based OpenQA system usually retrieves relevant articles or 
paragraphs of the question from a large-scale corpus (e.g., Wikipedia). It then 
generates answers from these texts by a reading comprehension model introduced in 
the last section. Open-domain question answering essentially combines two critical 
applications: information retrieval and reading comprehension. 

The system [13], namely, DrQA, is composed of two modules: (1) one document 
retriever module to retrieve relevant articles or paragraphs and (2) one document 
reader to produce the final answers from the extracted articles. 

Fig. 4.17 An example of open-domain question answering. This figure is re-drawn according to 
Fig. 1 in the DrQA paper [13]
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The document retriever is used as a first quick skim to narrow the search space 
and focus on potentially relevant documents. The retriever builds TF-IDF weighted 
bag-of-words vectors for the documents and the questions and computes similarity 
scores for ranking. The retriever uses bigram counts with hash to further utilize 
local word order information while ensuring speed and memory efficiency. The 
document reader model takes in the top five Wikipedia articles yielded by the 
document retriever and extracts the final answer to the question. The document 
reader predicts an answer span with a confidence score for each article. The final 
prediction is made by maximizing the unnormalized exponential prediction scores 
across the documents. 

Given each document, the document reader first builds a feature representation 
for each word in the document, which is often the concatenation of the following 
components: (1) Word embeddings: The pre-trained word embeddings like GloVe 
embeddings pre-trained on Wikipedia. (2) Manual features: The manual features 
combined with part-of-speech (POS) and named entity recognition tags and nor-
malized term frequencies (TF). (3) Exact match: This feature indicates whether the 
word in the document can be precisely matched to one question word. (4) Aligned 
question embeddings: This feature aims to encode a soft alignment between words 
in the document and the question in the word embedding space. 

Then the feature representation of the document is fed into a multilayer bidirec-
tional LSTM (BiLSTM) to encode the contextual representation. For the question, 
the contextual representation is simply obtained by encoding the word embeddings 
using a multilayer BiLSTM. After that, the contextual representation is aggregated 
into a fixed-length vector using self-attention. In the answer prediction phase, 
the start and end probability distributions are calculated following the paradigm 
mentioned in the strategy in Sect. 4.5.3. 

Despite its success, the DrQA system is prone to noise in retrieved texts which 
may hurt the performance of the system. Hence, several approaches [18, 100] are  
proposed to attempt to tackle the noise problem in DrQA by using two separate 
procedures for question answering: paragraph selection and answer extraction. 
However, they both only select the most relevant paragraph among all retrieved 
paragraphs to extract answers and may lose valuable information distributed in other 
paragraphs. 

Wang et al. [101] adopt strength-based and coverage-based methods for re-
ranking, aggregating the answers that existing methods retrieved from all the 
paragraphs. Nevertheless, the challenge of noisy data is still unsolved. To address 
this issue, a coarse-to-fine denoising OpenQA model [60] is developed to the first 
screen out relevant paragraphs and then retrieve correct answers. 

4.5.5 Sequence Labeling 

Sequence labeling is a classic application in natural language processing. In this 
paradigm, given an input sequence .{w1, . . . , wn}, we need to assign a label .yi
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Fig. 4.18 An example of 
sequence labeling 

Superman     will     catch     the     bomb 

Part of Speech Tagger 

Named Entity Recognizer 

NOUN AUX VERB NOUNDET 

B-PER O O O O  

to each token . wi . Part-of-speech (POS) tagging and named entity recognition 
(NER) are the two most representative sequence labeling tasks. Sequence labeling 
requires the model to capture the correlations of words in the sequence accurately. 
Hence, classic approaches use probabilistic graphical models (PGM) to represent 
the dependency structure of different words. Modern methods use powerful deep 
neural networks to produce richer representations and adopt conditional random 
field (CRF) or direct token-level classification to conduct sequence labeling [38]. In 
addition to these two tasks, word segmentation of languages without delimiters (e.g., 
Chinese) is typically treated as a sequence labeling task [26, 66, 107] (Fig. 4.18). 

Part-of-Speech (POS) Tagging POS tagging aims to assign part-of-speech tags 
to each word in a given piece of text, including nouns, verbs, adjectives, etc. 
Some tags might be evident and static (e.g., proper nouns), while most words are 
polysemy, and their part-of-speech attributes are context-dependent. For example, 
the word “record” can be either a noun or a verb. Early on, Brill et al. [8] 
propose rule-based methods that highly rely on expert knowledge and extraction 
of rich linguistic features in syntax, morphology, and lexicon. Classical statistical 
models like the hidden Markov model (HMM) [41] model the probability of tags 
given words in a context-aware manner. Modern neural networks are based on 
contextual representations of words and parameterize the predicted probability with 
a conditional random field (CRF) layer and a simple MLP classifier head. CNNs 
and RNNs are common backbones used for feature extraction [67, 77]. 

Named Entity Recognition (NER) In NER, we need to identify if a word in an 
input sequence is a named entity, a term that could specifically indicate a real-
world object. Typical named entity types include Person, Organization, Location, 
etc. A named entity could be one word or a phrase with multiple words. Hence, 
in this task, a BIO label schema is universally adopted, where a word could be 
classified at the beginning of an entity (B), inside an entity (I), and outside an
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entity (O). Final entity prediction is extracted based on the word assigned tags, 
and evaluation is conducted at the entity level [27, 103]. Feature-based methods 
extract word-level and character-level features and adopt classic classification 
models for prediction. Bike et al. [4] and Mcnamee et al. [68] propose an HMM-
based and support vector machine (SVM)-based NER system, respectively. Deep 
learning methods allow for richer feature representation. Apart from using pre-
trained word embeddings like skip-gram, a series of works [16, 52, 56, 82] also learn 
character-level features and incorporate them with word representations for better 
performance. The bidirectional LSTM-CNN [16] encodes character-level features 
with a CNN and word-level features with a BiLSTM. The bidirectional LSTM-CRF 
model [38] also adds other features, including spelling features, context features, 
and gazetteer features, to enhance final representations in a BiLSTM-CRF model. 

4.5.6 Sequence-to-Sequence Generation 

Sequence-to-sequence generation refers to a group of tasks that require sequence 
generation based on an input sequence, including machine translation, text sum-
marization, question generation, etc. A famous model structure for sequence-to-
sequence problems is an encoder-decoder structure, where the model is composed 
of an encoder and a decoder. The encoder encodes the input source language . S =
{s1, s2, . . . , sn} and passes the encoded representation to the decoder. The decoder 
decodes and outputs tokens in target language .T = {t1, t2, . . . , tm} based on encoder 
output. More specifically, output tokens are typically generated in an autoregressive 
manner, i.e., each . ti is generated depending on the previously generated tokens 
.{t1, t2, . . . , ti−1}. Both structures are trained in an end-to-end fashion with parallel 
training data. Below is a formalized training objective for a sequence-to-sequence 
problem: 

. arg max
m∏

i=1

P(ti |tj<i, S) (4.61) 

Metrics First, it is essential to learn the commonly used metrics to evaluate a 
sequence-to-sequence system. 

BLEU [75] is an adjusted precision calculation based on the count of n-grams. 
First, it extracts all n-grams in the output sequence. Then, it calculates the sum of 
occurrences of these n-grams in the reference sequence (i.e., the correct translation) 
against the total number of n-grams in the output sequence. For example, if the 
output is the cat cat and the reference is the cat jumps, all 2 grams in the output 
is “the cat,” cat cat and the total number of their occurrence in the reference is 1 
(the cat’). So the score of 2-gram will be .p2 = 1

2 = 0.5. BLEU also takes a brevity 
penalty (BP) that penalizes the mismatch of output and reference length. Suppose 
we set a range for the number of grams involving the calculation as . [1, N ], the
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BLEU score is 

.BLEU = BP · exp

(
N∑

i=1

wi log pi

)
, (4.62) 

.BP =
{

1 c > r

e(1−r/c) c ≤ r,
(4.63) 

where . wi is a weight and can be set to . 1
N

, c is the length of the output sequence, and 
r is the length of the reference sequence. 

ROUGE [58] is a group of metrics often used in evaluating text summarization 
systems. ROUGE-N (most commonly ROUGE-1 and ROUGE-2) calculates the 
recall of n-grams. So take the example above; we can get .ROUGE-1 = 2/3 and 
.ROUGE-2 = 1/2. ROUGE-L concerns the ratio of the length of the longest com-
mon subsequence against the reference length. In the example above, . ROUGE-L =
2/3. 

Next, we introduce some representative models in machine translation and text 
summarization. 

Machine Translation Machine translation aims to translate texts in one language 
into another language while retaining their semantic meanings. While traditional 
rule-based and statistical machine translation systems require abundant expert 
knowledge and often fail to capture meaning from context to handle polysemy, 
the development of deep neural networks has inspired neural machine translation 
systems and achieved competitive performance. 

Kalchbrenner et al. [43] use a one-dimensional CNN as the encoder and a 
single-layer RNN as the decoder. Cho et al. [17] enhance the alignment scores 
calculation between phrases with an RNN encoder-decoder structure and improve 
on the traditional statistical machine translation system. Sutskever et al. [92] adopt 
a deep LSTM encoder-decoder. 

GNMT [105] is the first NMT system put into production. It has an eight-layer 
LSTM encoder and 8-layer LSTM decoder, and the first layer of the encoder is 
bidirectional. The attention mechanism is also applied to the output of the encoder. 
In terms of decoding, it also adds coverage penalty and length normalization to 
encourage the generation of longer and high-quality sentences. And the Transformer 
[96], an encoder-decoder neural network, is proposed initially as a sequence-to-
sequence model and used on the machine translation task. The model then achieves 
the new state-of-art performance on benchmark datasets compared to models based 
on LSTM. 

Text Summarization Text summarization takes a long passage as its input and 
generates a relatively short one that summarizes the key points in the original 
passage. It is worth noting that typically sequence-to-sequence models can be
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simultaneously applied to machine translation and text summarization since the task 
is of the same form. 

Pointer-generator network [84] is one of the most classical text summarization 
models that combine LSTM-attention-based encoder-decoder with pointer network 
[97]. The basic structure contains a single-layer bidirectional LSTM encoder with 
attention and a single-layer LSTM decoder. Apart from the standard encoder-
decoder pipeline, it applies an extra pointer while decoding. The pointer depends 
on the encoder output, the current decoder hidden states, and decoder input and 
calculates a probability .pgen indicating how much we favor the decoder generated 
results. The final distribution from which the next token is drawn is a weighted sum 
of distribution given by the decoder and distribution given by attention weights of 
the encoder output, each weighted by .pgen and .1 − pgen. So the pointer serves as 
a mediator between generated tokens and copied tokens from the original input. It 
is especially beneficial for text summarization as copying original words from the 
input can help keep the semantics on the right track. 

4.6 Summary and Further Readings 

This chapter introduces basic concepts, methodologies, and applications of sentence 
and document representation learning, which encode sentences and documents into 
real-valued representation vectors. We first introduce the symbolic representation 
for sentences and probabilistic language models. Then we extensively introduce 
several neural language models, including adopting feed-forward neural networks, 
convolutional neural networks, recurrent neural networks, and Transformers for 
language models. We further introduce document representation learning methods, 
including memory-based and hierarchical approaches. Finally, we introduce sev-
eral typical applications of sentence and document representation. Sentence and 
document representations provide an effective way of downstream tasks utilizing 
high-level semantic information and have significantly improved the performances 
of these tasks. For further understanding of sentence representation learning and its 
applications, there are also some recommended surveys and books that introduce 
neural network methods [30, 42], sentence representation methods [57], and Trans-
formers [59]. 

More recently, pre-trained language models based on deep Transformers show 
state-of-the-art performance in this area. Meanwhile, it also spawns particular 
research issues of sentence and document representation learning. We will introduce 
and discuss this topic in the next chapter. In addition, the use of more efficient 
neural network architectures, the establishment of a more stable and universal 
representation of long text, and the development of a comprehensive evaluation 
approach are worthy research topics in this field.
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