Skip to main content

Aluminum-Induced Neural Cell Death

  • Chapter
  • First Online:
Neurotoxicity of Aluminum
  • 180 Accesses

Abstract

Aluminum (Al), an abundant element in the Earth’s crust, is well known for its neurotoxicity. Nonetheless, its causal role in neurodegenerative diseases, particularly in Alzheimer’s disease (AD), is still under debate. Many studies have shown that neural cell death and cognitive deficits induced by Al are similar to those in AD. In the present chapter, we separately demonstrate Al-induced cell death in neurons, neuroglial cells, and cocultured neural cells from newborn rats and zebrafish to illustrate the neurotoxic effects. Moreover, we not only examined the classic cell death pathways of apoptosis and necrosis but also compared them with autophagy and a newly discovered cell death pathway known as necroptosis, which demonstrates its crucial roles in Al-induced neural cell death. Finally, we verified the cell death pathways attributed to neural cell death in an Al-induced AD-like mouse model. This series of studies could provide an underlying mechanism and potential therapeutic agents for Al-induced neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alasfar RH, Isaifan RJ (2021) Aluminum environmental pollution: the silent killer. Environ Sci Pollut Res Int 28(33):44587–44597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bastos WR, Vieira SM, Manzatto ÂG et al (2018) Heterogeneity of multimedia exposures to neurotoxic elements (Al, As, Cd, Pb, Mn, and Hg) in breastfed infants from Porto Velho, Brazil. Biol Trace Elem Res 184(1):7–15

    Article  CAS  PubMed  Google Scholar 

  3. Mold M, Linhart C, Gómez-Ramírez J et al (2020) Aluminum and amyloid-β in familial Alzheimer’s disease. J Alzheimers Dis 73(4):1627–1635

    Article  CAS  PubMed  Google Scholar 

  4. Song J (2018) Animal model of aluminum-induced Alzheimer’s disease. Adv Exp Med Biol 1091:113–127

    Article  CAS  PubMed  Google Scholar 

  5. Mold MJ, O’Farrell A, Morris B et al (2021) Aluminum and tau in neurofibrillary tangles in familial Alzheimer’s disease. J Alzheimer’s Dis Rep 5(1):283–294

    Article  Google Scholar 

  6. McLachlan DRC, Bergeron C, Alexandrov PN et al (2019) Aluminum in neurological and neurodegenerative disease [retracted in: Mol Neurobiol. 2020; 57(3): 1779]. Mol Neurobiol 56(2):1531–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zeng X, Macleod J, Berriault C et al (2021) Aluminum dust exposure and risk of neurodegenerative diseases in a cohort of male miners in Ontario. Canada Scand J Work Environ Health 47(7):531–539

    Article  CAS  PubMed  Google Scholar 

  8. Salkov VN, Khudoerkov RM (2021) Rol’ alyuminiya i svintsa v razvitii boleznei Al’tsgeimera i Parkinsona [the role of aluminum and lead in the development of Alzheimer’s and Parkinson’s diseases]. Arkh Patol 83(3):56–61

    Article  CAS  PubMed  Google Scholar 

  9. Bondy SC (2014) Prolonged exposure to low levels of aluminum leads to changes associated with brain aging and neurodegeneration. Toxicology 315:1–7

    Article  CAS  PubMed  Google Scholar 

  10. Butti E, Bacigaluppi M, Chaabane L et al (2019) Neural stem cells of the subventricular zone contribute to Neuroprotection of the corpus callosum after cuprizone-induced demyelination. J Neurosci 39(28):5481–5492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rodella L, Rezzani R, Lanzi R et al (2001) Chronic exposure to aluminum decreases NADPH-diaphorase positive neurons in the rat cerebral cortex. Brain Res 889(1–2):229–233

    Article  CAS  PubMed  Google Scholar 

  12. Fu HJ, Hu QS, Lin ZN et al (2003) Aluminum-induced apoptosis in cultured cortical neurons and its effect on SAPK/JNK signal transduction pathway. Brain Res 980(1):11–23

    Article  CAS  PubMed  Google Scholar 

  13. Aremu DA, Meshitsuka S (2005) Accumulation of aluminum by primary cultured astrocytes from aluminum amino acid complex and its apoptotic effect. Brain Res 1031(2):284–296

    Article  CAS  PubMed  Google Scholar 

  14. Brenner S (2002) Aluminum neurotoxicity is reduced by dantrolene and dimethyl sulfoxide in cultured rat hippocampal neurons. Biol Trace Elem Res 86(1):85–89. https://doi.org/10.1385/BTER:86:1:85

    Article  CAS  PubMed  Google Scholar 

  15. Ghribi O, DeWitt DA, Forbes MS et al (2001) Coinvolvement of mitochondria and endoplasmic reticulum in regulation of apoptosis: changes in cytochrome c, Bcl-2 and Bax in the hippocampus of aluminum-treated rabbits. Brain Res 903(1–2):66–73

    Article  CAS  PubMed  Google Scholar 

  16. Guo GW, Liang YX (2001) Aluminum-induced apoptosis in cultured astrocytes and its effect on calcium homeostasis. Brain Res 888(2):221–226

    Article  CAS  PubMed  Google Scholar 

  17. Lankoff A, Banasik A, Duma A et al (2006) A comet assay study reveals that aluminum induces DNA damage and inhibits the repair of radiation-induced lesions in human peripheral blood lymphocytes. Toxicol Lett 161(1):27–36. https://doi.org/10.1016/j.toxlet.2005.07.012

    Article  CAS  PubMed  Google Scholar 

  18. Zhang QL, Boscolo P, Niu PY, Wang F, Shi YT, Zhang L, Wang LP, Wang J, Di Gioacchino M, Conti P, Li QY, Niu Q (2008) How do rat cortical cells cultured with aluminum die: necrosis or apoptosis? Int J Immunopathol Pharmacol 21(1):107–115. https://doi.org/10.1177/039463200802100112

    Article  CAS  PubMed  Google Scholar 

  19. Prakash A, Dhaliwal GK, Kumar P et al (2017) Brain bimetals and Alzheimer’s disease - boon or bane? Int J Neurosci 127(2):99–108. https://doi.org/10.3109/00207454.2016.1174118

    Article  CAS  PubMed  Google Scholar 

  20. Wang Z, Wei X, Yang J et al (2016) Chronic exposure to aluminum and risk of Alzheimer’s disease: a meta-analysis. Neurosci Lett 610:200–206. https://doi.org/10.1016/j.neulet.2015.11.014

    Article  CAS  PubMed  Google Scholar 

  21. Hao YX, Li MQ, Zhang JS et al (2020) Aluminum-induced “mixed” cell death in mice cerebral tissue and potential intervention. Neurotox Res 37(4):835–846

    Article  CAS  PubMed  Google Scholar 

  22. Liang R (2018) Cross talk between aluminum and genetic susceptibility and epigenetic modification in Alzheimer’s disease. Adv Exp Med Biol 1091:173–191

    Article  CAS  PubMed  Google Scholar 

  23. Nie J (2018) Exposure to aluminum in daily life and Alzheimer’s disease. Adv Exp Med Biol 1091:99–111

    Article  CAS  PubMed  Google Scholar 

  24. Hao NP, Zhang LF (2022) Research progress of epigenetic regulation in the pathogenesis of aluminum exposure. Chin J Prev Med 56(3):240–244

    CAS  Google Scholar 

  25. Kawahara M (2016) Link between aluminum neurotoxicity and neurodegenerative disorders. Nihon Rinsho 74(7):1176–1185

    PubMed  Google Scholar 

  26. McLachlan DRC, Bergeron C et al (2019) Aluminum in neurological and neurodegenerative disease [retracted in: Mol Neurobiol. 2020; 57(3): 1779]. Mol Neurobiol 56(2):1531–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maya S, Prakash T, Madhu KD et al (2016) Multifaceted effects of aluminum in neurodegenerative diseases: a review. Biomed Pharmacother 83:746–754

    Article  CAS  PubMed  Google Scholar 

  28. Capriello T, Monteiro SM, Félix LM et al (2021) Apoptosis, oxidative stress and genotoxicity in developing zebrafish after aluminum exposure. Aquat Toxicol 236:105872

    Article  CAS  PubMed  Google Scholar 

  29. Zhu M, Huang C, Ma X et al (2016) Modulation of miR-19 in aluminum-induced neural cell apoptosis. J Alzheimers Dis 50(4):1149–1162

    Article  CAS  PubMed  Google Scholar 

  30. Okouchi M, Ekshyyan O, Maracine M et al (2007) Neuronal apoptosis in neurodegeneration. Antioxid Redox Signal 9(8):1059–1096. https://doi.org/10.1089/ars.2007.1511

    Article  CAS  PubMed  Google Scholar 

  31. Savory J, Herman MM, Ghribi O (2006) Mechanisms of aluminum-induced neurodegeneration in animals: implications for Alzheimer’s disease. J Alzheimers Dis 10(2–3):135–144

    Article  PubMed  Google Scholar 

  32. Tong B, Shi Y, Ntambiyukuri A et al (2021) Integration of small RNA and degradome sequencing reveals the regulatory network of Al-induced programmed cell death in peanut. Int J Mol Sci 23(1):246. Published 2021 Dec 27

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zilkova M, Koson P, Zilka N (2006) The hunt for dying neurons: insight into the neuronal loss in Alzheimer’s disease. Bratisl Lek Listy 107(9–10):366–373

    CAS  PubMed  Google Scholar 

  34. Golstein P, Kroemer G (2007) Cell death by necrosis: toward a molecular definition. Trends Biochem Sci 32(1):37–43. https://doi.org/10.1016/j.tibs.2006.11.001

    Article  CAS  PubMed  Google Scholar 

  35. Degterev A, Huang Z, Boyce M et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1(2):112–119. https://doi.org/10.1038/nchembio711

    Article  CAS  PubMed  Google Scholar 

  36. Jagtap PG, Degterev A, Choi S et al (2007) Structure-activity relationship study of tricyclic necroptosis inhibitors. J Med Chem 50(8):1886–1895

    Article  CAS  PubMed  Google Scholar 

  37. Zhang QL, Niu Q, Ji XL et al (2008) Is necroptosis a death pathway in aluminum-induced neuroblastoma cell demise? Int J Immunopathol Pharmacol 21(4):787–796. https://doi.org/10.1177/039463200802100403

    Article  CAS  PubMed  Google Scholar 

  38. Yan-Ru C, Fei Q, Wen-Jing Z et al (2022) Beneficial effects of aloperine on inflammation and oxidative stress by suppressing necroptosis in lipopolysaccharide-induced acute lung injury mouse model. Phytomedicine 100:154074

    Article  Google Scholar 

  39. Alegre-Cortés E, Muriel-González A, Canales-Cortés S et al (2020) Toxicity of Necrostatin-1 in Parkinson’s disease models. Antioxidants (Basel) 9(6):524

    Article  PubMed  Google Scholar 

  40. Yang SH, Shin J, Shin NN et al (2019) A small molecule Nec-1 directly induces amyloid clearance in the brains of aged APP/PS1 mice. Sci Rep 9(1):4183

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang L, Xuebai L, Jue T et al (2021) Cardioprotective effect of Nec-1 in rats subjected to MI/R: downregulation of autophagy-like cell death. Cardiovasc Ther 2021:9956814

    Article  PubMed  PubMed Central  Google Scholar 

  42. Małgorzata P, Tomasz J, Brożyna Anna A et al (2020) Coriolus versicolor protein-bound polysaccharides from induce RIPK1/RIPK3/MLKL-mediated necroptosis in ER-positive breast cancer and amelanotic melanoma cells. Cell Physiol Biochem 54:591–604

    Article  Google Scholar 

  43. Jantas D, Chwastek J, Grygier B et al (2020) Neuroprotective effects of Necrostatin-1 against oxidative stress-induced cell damage: an involvement of cathepsin D inhibition. Neurotox Res 37(3):525–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fan J, Dawson TM, Dawson VL (2017) Cell death mechanisms of neurodegeneration. Adv Neurobiol 15:403–425

    Article  PubMed  Google Scholar 

  45. Crapper DR, Krishnan SS, Dalton AJ (1973) Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration. Science 180(4085):511–513

    Article  CAS  PubMed  Google Scholar 

  46. House E, Esiri M, Forster G et al (2012) Aluminum, iron and copper in human brain tissues donated to the medical research council’s cognitive function and aging study. Metallomics 4(1):56–65. https://doi.org/10.1039/c1mt00139f

    Article  CAS  PubMed  Google Scholar 

  47. Kawahara M, Kato-Negishi M (2011) Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. Int J Alzheimers Dis 2011(2):276393. https://doi.org/10.4061/2011/276393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ulusoy HB, Sonmez MF, Kilic E et al (2015) Intraperitoneal administration of low dose aluminum in the rat: how good is it to produce a model for Alzheimer disease. Arch Ital Biol 153:266–278

    CAS  PubMed  Google Scholar 

  49. Karin W, Thomas G, Oduro Jennifer D et al (2019) Aluminum toxicokinetics after intramuscular, subcutaneous, and intravenous injection of Al citrate solution in rats. Arch Toxicol 93:37–47

    Article  Google Scholar 

  50. Miu AC, Benga O (2006) Aluminum and Alzheimer’s disease: a new look. J Alzheimers Dis 10(2–3):179–201

    Article  CAS  PubMed  Google Scholar 

  51. Qinli Z, Meiqing L, Xia J, Li X, Weili G, Xiuliang J, Junwei J, Hailan Y, Ce Z, Qiao N (2013) Necrostatin-1 inhibits the degeneration of neural cells induced by aluminum exposure. Restor Neurol Neurosci 31(5):543–555. https://doi.org/10.3233/RNN-120304

    Article  CAS  PubMed  Google Scholar 

  52. Gao X, Zhang P, Chen J, Zhang L, Shang N, Chen J, Fan R, Wang Y, Huang T, Niu Q, Zhang Q (2022) Necrostatin-1 Relieves Learning and Memory Deficits in a Zebrafish Model of Alzheimer’s Disease Induced by Aluminum. Neurotox Res 40(1):198–214. https://doi.org/10.1007/s12640-021-00463-6

    Article  CAS  PubMed  Google Scholar 

  53. Ng PY, Chang IS, Koh Rhun Y et al (2020) Recent advances in tau-directed immunotherapy against Alzheimer’s disease: an overview of preclinical and clinical development. Metab Brain Dis 35:1049–1066

    Article  CAS  PubMed  Google Scholar 

  54. Hitomi J, Christoferson DE, Ng A et al (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135(7):1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rosenbaum DM, Degterev A, David J et al (2010) Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia–reperfusion injury model. J Neurosci Res 88(7):1569–1576. https://doi.org/10.1002/jnr.22314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu X, Chua CC, Zhang M et al (2010) The role of PARP activation in glutamate-induced necroptosis in HT-22 cells. Brain Res 1343:206–212. https://doi.org/10.1016/j.brainres.2010.04.080

    Article  CAS  PubMed  Google Scholar 

  57. Mehta SL, Manhas N, Raghubir R (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 54(1):34–66. https://doi.org/10.1016/j.brainresrev.2006.11.003

    Article  CAS  PubMed  Google Scholar 

  58. Han W, Xie J, Li L, Liu Z et al (2009) Necrostatin-1 reverts shikonin-induced necroptosis to apoptosis. Apoptosis 14(5):674–686. https://doi.org/10.1007/s10495-009-0334-x

    Article  CAS  PubMed  Google Scholar 

  59. Yu J, Bingling Z, Lin Z et al (2021) Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) inhibitors Necrostatin-1 (Nec-1) and 7-cl-O-Nec-1 (Nec-1 s) are potent inhibitors of NAD(P)H: quinone oxidoreductase 1 (NQO1). Free Radic Biol Med 173:64–69

    Article  CAS  PubMed  Google Scholar 

  60. Cho YS (2020) Receptor interacting protein 3 is required for Arsenite-mediated necroptosis. Int J Sci: Basic Appl Res (IJSBAR) 53(1):51–65

    Google Scholar 

  61. Abd-Elrahman KS, Ferguson Stephen SG (2021) Noncanonical metabotropic glutamate receptor 5 signaling in Alzheimer’s disease. Annu Rev Pharmacol Toxicol 62:235–254

    Article  PubMed  Google Scholar 

  62. Abd-Elrahman KS, Alison H, Awatif A et al (2020) mGluR5 contribution to neuropathology in Alzheimer mice is disease stage dependent. ACS pharmacol transl sci 3(2):334–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hu Z, Yu P, Yangyang Z et al (2022) Inhibition of the ISR abrogates mGluR5-dependent long-term depression and spatial memory deficits in a rat model of Alzheimer’s disease. Transl Psychiatry 12(1):96–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fronza Mariana G, Manoela S, Diego A et al (2022) 1-(7-Chloroquinolin-4-yl)-N-(4-Methoxybenzyl)-5-methyl-1H-1,2,3-Triazole-4- carboxamide reduces Aβ formation and tau phosphorylation in cellular models of Alzheimer’s disease. Neurochem Res 47:1110–1122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the National Natural Scientific Foundation of China (30371203, 30671777, 30740032, 81673142) and Shanxi Provincial Natural Science Foundation (2009011054-1).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Q. (2023). Aluminum-Induced Neural Cell Death. In: Niu, Q. (eds) Neurotoxicity of Aluminum. Springer, Singapore. https://doi.org/10.1007/978-981-99-1592-7_9

Download citation

Publish with us

Policies and ethics