
Chapter 9 
Stable Isotope Signatures of Authigenic 
Minerals from Methane Seeps 

Shanggui Gong, Jörn Peckmann, and Dong Feng 

Abstract Authigenic minerals forming at marine seeps constitute an excellent 
archive of past methane seepage and biogeochemical processes. Over the past two 
decades, authigenic carbonate and sulfur-bearing minerals from methane seeps of 
the South China Sea (SCS) have been widely investigated, providing insight into 
fluid sources and seepage dynamics and facilitating the establishment of geochem-
ical proxies to trace sulfate-driven anaerobic oxidation of methane (SD-AOM). 
Authigenic carbonates from all seep sites in the SCS commonly exhibit low δ13C 
and high δ18O values, confirming the incorporation of methane-derived carbon and 
oxygen from a pore water pool probably affected by gas hydrate dissociation. Pyrite 
is a common authigenic mineral at methane seeps, also forming at low methane 
flux where authigenic carbonate tends to be absent. The identification of methane 
seepage and SD-AOM activity consequently benefited from the advancement of 
sulfur isotope geochemistry, particularly from in situ measurements of δ34Spyrite 
values using nanoSIMS and multiple sulfur isotopes. Quantification of carbon and 
sulfur fluxes in the course of SD-AOM in modern and ancient marine sedimen-
tary environments remains challenging, highlighting the need for more field-based 
research and modeling work. Furthermore, other elemental cycles and biogeochem-
ical processes at methane seeps archived in authigenic minerals, such as nitrogen-
based metabolisms, remain largely unknown. We highlight that SCS seeps are 
fascinating natural laboratories to better understand methane-driven biogeochem-
ical processes and their signatures in authigenic minerals, representing a rewarding 
but also challenging object of research in the field of geomicrobiology.
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9.1 Introduction 

Authigenic minerals resulting from sulfate-driven anaerobic methane oxidation (SD-
AOM) constitute a unique archive of past methane seepage and biogeochemical 
processes. As the key process at marine seeps, SD-AOM represents the main methane 
sink in marine sedimentary environments (Boetius et al. 2000; Reeburgh 2007; Egger 
et al. 2018), providing the local chemotrophic community with energy (Campbell 
2006; Suess et al. 2018; Yang et al. 2020), regulating greenhouse gas emissions at 
the seafloor (Olson et al. 2016), and representing a hotspot of the marine carbon 
and sulfur cycles (Peckmann and Thiel 2004; Hu et al.  2022). SD-AOM releases 
dissolved bicarbonate and hydrogen sulfide, thereby favoring the precipitation of 
authigenic carbonate and sulfide minerals in the shallow sedimentary subsurface at 
marine seeps (Boetius et al. 2000). In turn, authigenic carbonate and sulfide and 
other sulfur-bearing minerals archive locally prominent biogeochemical process in 
the form of diagnostic stable isotope, trace element, and lipid biomarker patterns 
(Peckmann and Thiel 2004; Feng et al. 2016; Smrzka et al. 2019, 2020; Lin et al. 
2022). These authigenic minerals record modes of methane transport and early diage-
netic environments and allow the exploration of the role of methane in Earth’s surface 
environments by tracing SD-AOM activity (Peckmann and Thiel 2004; Feng et al. 
2016, 2018; Gong et al. 2022). 

Authigenic carbonates with different mineralogies and carbon and oxygen isotope 
compositions have been widely reported from the South China Sea (SCS; Chen et al. 
2005; Han et al. 2008, 2014; Tong et al. 2013; Wang et al. 2014; Feng and Chen 2015; 
Liang et al. 2017; Huang et al. 2022b). The morphologies of these seep carbonates 
vary, including crusts, mounds, pipes, tubes, and highly irregular bodies, reflecting 
different seepage intensities and the interaction of burrowing megafauna with fluid 
migration (Fig. 9.1; Han et al. 2013; Feng and Chen 2015; Sun et al. 2020b; Lu et al.  
2021). Multiple carbonate mineral phases have been identified in the SCS, including 
aragonite, low-Mg calcite, high-Mg calcite, and dolomite (Fig. 9.2). These carbon-
ates mainly consist of microcrystalline minerals, particularly calcite and dolomite 
(Fig. 9.3), with larger cement crystals typically represented by aragonite (Feng and 
Chen 2015). The formation of carbonate is governed by supersaturation, dissolved 
species concentration (Ca2+ and Mg2+, SO4 

2−, and PO4 
3−), and microbial activity, all 

of which are highly variable in space and time due to changing methane flux (Peck-
mann et al. 2001; Luff and Wallmann 2003; Feng and Chen 2015; Gong et al. 2018a; 
Tong et al. 2019; Lu et al.  2021). In general, the occurrence of aragonite reflects 
a relatively high methane flux, where high levels of carbonate supersaturation and 
sulfate concentration as well as relatively low levels of sulfide favor aragonite over 
calcite precipitation (Burton 1993; Luff and Wallmann 2003). Combined with miner-
alogical analysis, trace element and lipid biomarker inventories allow to constrain 
the dynamics of the seep activity by reconstructing redox conditions (Feng and Chen 
2015; Guan et al. 2016; Liang et al. 2017, 2022; Gong et al. 2018a; Smrzka et al. 
2020). The carbon and oxygen isotope compositions of authigenic carbonates are 
established proxies to reconstruct the composition and temperature of fluids from
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Fig. 9.1 Seafloor images of typical seep manifestations. a Massive carbonate crusts; b tubular 
carbonate exposed on the seafloor. Image collected at the Jiulong methane reef (water depth: 684 m) 
during ROPOS dives 2070 and 2073 in 2018 

Fig. 9.2 Composition of the 
carbonate fraction in seep 
carbonates at South China 
Sea. Data are from Tong 
et al. (2013), Han et al. 
(2014), Feng and Chen 
(2015), Lu et al. (2015) and  
Liang et al. (2017) 
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which carbonates precipitated, promoting the understanding of the sources and poten-
tial forces of methane seepage in the South China Sea (Chen et al. 2005; Han et al. 
2008, 2013; Feng et al. 2015; Liang et al. 2017; Feng et al. 2018). 

The extremely negative δ13C values of authigenic seep carbonates are recognized 
as the most distinctive geological feature of SD-AOM inherited from the 13C deple-
tion of biogenic methane (−110‰ to −50‰) and thermogenic methane (−50‰ to 
−30‰; Sackett 1978; Whiticar 1999; Peckmann et al. 2001; Chen et al. 2005). The 
δ13Ccarbonate signature of SD-AOM can be masked by admixture of dissolved inor-
ganic carbon (DIC) from sources other than methane oxidation: DIC sourced from 
organoclastic sulfate reduction (OSR), seawater DIC with a δ13C value of 0‰, and 
a residual 13C-enriched pool after methanogenesis (Feng et al. 2018). Admixture of 
DIC from other sources than methane oxidation was probably more common in paleo-
oceans before the early Paleozoic Era, which were characterized by high seawater
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Fig. 9.3 Thin section photomicrographs of seep carbonate obtained from Site F, plane-polarized 
light (details in Feng and Chen 2015). a Typical microcrystalline carbonate matrix with enclosed 
terrigenous sediment. b Microcrystalline carbonate with abundant pyrite framboids (dark) enclosed

DIC and/or low seawater sulfate levels resulting in a lower ratio of SD-AOM-sourced 
DIC and seawater DIC (Bristow and Grotzinger 2013). Furthermore, the δ13C proxy 
typically cannot be employed for tracing SD-AOM in methane diffusion-limited 
settings, as authigenic carbonate tends to form only in settings with relatively high 
methane flux (Luff and Wallmann 2003; Hu et al.  2020). 

Fortunately, sulfur-bearing minerals, benefiting from recent advances in sulfur 
isotope biogeochemistry, can be used to identify SD-AOM even in low flux settings 
and to constrain the sulfur cycle in methane-bearing environments (Jørgensen et al. 
2004; Chen et al. 2006; Feng and Robert 2011; Lin et al. 2015, 2016a, b, 2017; Li  
et al. 2016; Gong et al. 2018a, b; Liu et al. 2022a). Innovative approaches have been 
applied and new understanding has been obtained thanks to research on seepage in the 
SCS: (1) environmental controls on the morphology and δ34S of SD-AOM-derived 
pyrite (Chen et al. 2005; Lin et al. 2016a, b, 2017; Li et al.  2016; Gong et al. 2018a); 
(2) the extremely high variability of δ34S in SD-AOM-derived pyrite via nanoSIMS 
analysis (Lin et al. 2016a, b); (3) a carbonate-based proxy for SD-AOM (Feng et al. 
2016); and (4) diagnostic multiple sulfur isotope systematics of SD-AOM (Lin et al. 
2017; Gong et al. 2018b, 2022; Liu et al. 2020, 2022a). These achievements provide 
a robust approach for SD-AOM tracing in the subrecent marine sedimentary record 
and the older rock record and promise deeper future insight into the mechanisms of 
pyritization during early diagenesis, which are key requirements for reconstructing 
the global sulfur cycle (Wang et al. 2021; Peng et al. 2022). 

Overall, methane-derived authigenic carbonate and sulfide minerals provide a 
useful geological archive of fluid composition, past SD-AOM activity, and early 
diagenetic environments. In this chapter, we review the current knowledge of the 
key biogeochemical processes archived in methane-derived authigenic carbonate 
and sulfide minerals from a stable carbon, oxygen, and sulfur isotope geochemistry 
perspective, focusing on (1) the recognition of biogeochemical processes and fluid 
sources archived in authigenic carbonates and (2) the sulfur isotope systematics of 
SD-AOM in modern marine sediments and its implication for tracing past SD-AOM.
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9.2 Fluid Sources and Biogeochemical Processes Archived 
in Authigenic Carbonate Minerals 

9.2.1 C–O Isotope Signatures of Methane-Derived 
Authigenic Carbonate 

13C-depleted carbonates found at all seep sites of the SCS revealed that precipitation 
was predominantly driven by microbial oxidation of methane (Fig. 9.4; Chen et al. 
2005; Han et al. 2008, 2013, 2014; Tong et al. 2013; Wang et al. 2014; Feng and 
Chen 2015; Liang et al. 2017; Lu et al.  2017; Yang et al. 2018). Biological methane 
sources have been identified across seep sites in the SCS based on the δ13C values 
of methane and DIC (Chuang et al. 2013; Zhuang et al. 2016; Hu et al.  2018, 2019; 
Jin et al. 2022). However, the δ13C values of carbonates in the SCS are typically 
higher than −50‰, indicating significant admixture of DIC from other sources than 
methane oxidation, including seawater, decomposition of organic matter, and residual 
DIC after methanogenesis (Peckmann and Thiel 2004; Feng et al. 2018; Huang et al. 
2022a). The great variability of δ13C values indicates that the degree of mixing among 
the different DIC pools varies in both space and time. Therefore, the δ13C values of 
lipid biomarkers are better proxies to identify different methane sources (Himmler 
et al. 2015; Guan et al. 2016, 2018). Furthermore, high resolution measurement δ13C 
values of carbonate with nanoSIMS analysis is another promising tool to determine 
methane sources (Feng et al. 2018).

The oxygen isotope composition of authigenic carbonates provides the means 
to calculate the temperature during precipitation and the δ18O value of the parent 
fluid (Naehr et al. 2007; Han et al. 2014). The δ18O value of authigenic carbonate is 
controlled by a combination of factors, including (1) mineralogy and chemistry, (2) 
ambient temperature, and (3) δ18O value of the parent fluid (Anderson and Arthur 
1983; Grossman and Ku 1986; Kim and O’Neil 1997; Mavromatis et al. 2012). Many 
seep carbonates collected from the SCS exhibit δ18O values higher than the calculated 
equilibrium values based on the mineral type, bottom water temperature, and δ18O 
value of seawater (Feng and Chen 2015; Liang et al. 2017; Yang et al. 2018). This 
18O enrichment can be explained by the addition of 18O-rich fluids resulting from 
gas hydrate dissociation (Bohrmann et al. 1998; Han et al. 2013; Feng and Chen 
2015; Liang et al. 2017). However, 18O-rich fluids could also originate from clay 
mineral dehydration (Hesse 2003) and deep-sourced fluids modified by mineral– 
water interactions (Holser et al. 1979; Giggenbach 1992). Therefore, the sources of 
18O-rich fluids and their diagnostic signatures require further study. Reconstruction 
of the temperature during carbonate precipitation can provide additional information 
on the environmental settings at methane seeps. However, due to the variable δ18O 
values of parent fluids, the paleo-temperature during carbonate precipitation cannot 
be calculated using δ18O values alone. Recently, a carbonate clumped isotope (\47) 
thermometer has been explored for methane-derived authigenic carbonates (Wacker
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Fig. 9.4 Compilation of 
published δ13C and  δ18O 
values of seep carbonates 
retrieved from the South 
China Sea. Data are from 
Chen et al. (2005); Han et al. 
(2008, 2014); Tong et al. 
(2013); Feng and Chen 
(2015); Lu et al. (2015, 
2018); Liang et al. (2017); 
Huang et al. (2022a) and  Liu  
et al. (2022b)
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et al. 2014; Loyd et al.  2016; Zhang et al. 2019; Thiagarajan et al. 2020). Both equi-
librium and disequilibrium clumped isotope values have been reported for methane-
derived authigenic carbonates, highlighting that additional proxies (e.g., \48) are  
needed to further constrain the factors (e.g., the kinetic isotope effect) affecting the
\47 value, hopefully allowing for more accurate paleotemperature reconstructions 
in the future. 

9.2.2 Diagnostic δ18OSO4 Versus δ34SSO4 Patterns 
of SD-AOM 

Since the signature of 13C depletion of SD-AOM can be diluted by admixture of 
DIC from other sources than methane oxidation, a new carbonate-based proxy for 
SD-AOM has been established by Feng et al. (2016). The work of these authors 
emphasized that the isotopic signal of porewater sulfate can be preserved in authi-
genic carbonate in the form of carbonate-associated sulfate. For a given porewater 
sulfate profile, the slope of the tangent along the gradient of δ18OSO4 and δ34SSO4 
values (referred to as the δ18OSO4/δ34SSO4 slope) is related to the net sulfate reduction 
rate (Böttcher et al. 1998, 1999; Aharon and Fu 2000; Antler et al. 2013; Turchyn et al.
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2016). This relationship has been interpreted as a decrease in the ratio of reverse and 
forward fluxes during intracellular enzymatic steps with increasing sulfate reduction 
rate (Brunner et al. 2005; Antler et al. 2013). The net sulfate reduction rate at methane 
seeps is several orders of magnitude higher than that in OSR-dominated settings, 
resulting in the diagnostic small δ18OSO4/δ34SSO4 slope (<0.5) of SD-AOM, which 
is distinct from the larger δ18OSO4/δ34SSO4 slope (>0.7) in OSR-dominated settings 
(Aharon and Fu 2000; Feng and Robert 2011; Antler et al. 2015). Although a small 
δ18OSO4/δ34SSO4 slope (0.36 ± 0.06) was also observed in organic-rich sediments of 
mangroves (Crémière et al. 2017), the contribution of SD-AOM to the overall removal 
of sulfate remained uncertain, and the organic-rich environment in mangroves does 
not support massive carbonate precipitation (Antler and Pellerin 2018). Thus, a diag-
nostic small δ18OSO4/δ34SSO4 slope preserved in carbonate-associated sulfate is a 
robust proxy for tracing SD-AOM in the geological record (Feng et al. 2016; Tong 
et al. 2019). 

Given the utility of this proxy, Gong et al. (2022) quantified the lowest 
methane flux (i.e., 200 mmol m−2 yr−1) required to produce the diagnostic small 
δ18OSO4/δ34SSO4 slope of SD-AOM studying the Haima seeps of the SCS, where 
the contribution of OSR to overall sulfate consumption is negligible. As shown in 
Fig. 9.5, plotting the δ18OSO4/δ34SSO4 slope versus net sulfate reduction rates allows 
to distinguish between OSR– and SD-AOM-dominated settings. These observations 
indicated that the types of electron donors play a vital role in controlling isotope 
fractionation during microbial sulfate reduction in marine sediments. The δ18OSO4 

versus δ34SSO4 patterns of porewater profiles have been widely used to explore sulfur-
based reactions in marine sediments, including OSR, SD-AOM, and sulfide oxidation 
(Böttcher et al. 1998; Aharon and Fu 2000; Böttcher and Thamdrup 2001; Antler 
et al. 2014, 2015; Bertran et al. 2020). Generally, methane fluxes and the contribu-
tion of SD-AOM to overall sulfate reduction must be considered when using δ18OSO4 

versus δ34SSO4 patterns to study the sulfur cycle.
δ18OSO4 versus δ34SSO4 patterns are also controlled by sulfide oxidation and the 

oxygen isotope composition of sulfate diffusing into the sulfate methane transition 
zone (SMTZ), highlighting the need for considering the pitfalls and new perspec-
tives of this proxy (Antler and Pellerin 2018; Gong et al. 2021). First, separating 
SD-AOM from OSR at different depths is challenging in methane-diffusion-limited 
settings, where OSR in the upper sulfate reduction zone can drive δ18OSO4 values 
to an apparent equilibrium value before AOM-SR can imprint its signature on the 
δ18OSO4 versus δ34SSO4 slope (Fig. 9.6). Second, the δ18OSO4 versus δ34SSO4 slope is 
affected by sulfide reoxidation in two ways: (1) sulfide reoxidation occurring in the 
whole sulfate reduction zone can increase the δ18OSO4 versus δ34SSO4 slope; (2) quan-
titative reoxidation of sulfide in the subsurface can alter the initial sulfur and oxygen 
isotope composition of porewater sulfate. With a higher or lower initial δ18OSO4 

value, δ18OSO4 can reach the apparent equilibrium value faster or slower, respec-
tively, consequently resulting in a greater or smaller δ18OSO4 versus δ34SSO4 slope
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Fig. 9.5 Slope of δ18OSO4 versus δ34SSO4 in the apparent linear phase versus the average net 
sulfate reduction rate (nSRR; modified after Gong et al. 2021). Note OSR and SD-AOM denote 
organoclastic sulfate reduction and sulfate-driven anaerobic oxidation of methane, respectively. 
Reprinted from Chemical Geology, 581, Gong et al. (2021) Deciphering the sulfur and oxygen 
isotope patterns of sulfate-driven anaerobic oxidation of methane, 120394, Copyright (2021), with 
permission from Elsevier

(Turchyn et al. 2010), respectively. The occurrence and extent of sulfur reoxidation 
depend on the relative sulfate reduction rate and oxidant replenishment, which vary 
with the sedimentary environment (Gong et al. 2021). Third, the δ18OSO4 versuss 
δ34SSO4 slope also depends on the oxygen isotope composition of marine sulfate 
(Turchyn et al. 2010; Feng et al. 2016; Antler et al. 2017), which has likely changed 
during Earth history (Claypool et al. 1980). Finally, δ18OSO4 values associated with 
SD-AOM are diagnostically higher than typical apparent equilibrium δ18OSO4 values 
in OSR-dominated settings and can serve as a new proxy for the SD-AOM activity 
(Gong et al. 2021) because the increase in δ18OSO4 is not limited in the course of 
microbial sulfate reduction with kinetically dominated oxygen isotope fractionation 
(Turchyn et al. 2010). With the above factors considered, the combined use of δ18OSO4 

versus δ34SSO4 is a promising proxy to trace the sulfur cycle in modern and ancient 
marine sediments.
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Fig. 9.6 Schematic plots of δ18OSO4 and δ34SSO4 for porewater sulfate at methane seeps. The red 
arrow denotes a linear correlation between δ18OSO4 and δ34SSO4 with a small slope in an SD-AOM-
dominated setting (barite data are marked by gray cycles with data from Feng and Roberts (2011); 
the colored circles denote porewater data obtained from Gong et al. (2021)). The green diamond is 
the porewater sulfate profile of core W19-15, representing a methane-diffusion-limited setting (Hu 
et al. 2020). The gray arrow indicates an increase in δ18OSO4 and δ34SSO4 values at the onset of the 
curve in OSR-dominated settings, with δ18OSO4 reaching apparent equilibrium values (22–29‰; 
Wortmann et al. 2007; Turchyn et al. 2016). Note OSR and SD-AOM denote organoclastic sulfate 
reduction and sulfate-driven anaerobic oxidation of methane, respectively 

9.3 Biogeochemical Processes Archived in Authigenic 
Sulfides 

9.3.1 High δ34S Values Indicative of Enhanced Pyrite 
Formation 

34S-enriched pyrite preserved in continental-margin sediments has been used to trace 
the paleo-SMTZ (Jørgensen et al. 2004; Peketi et al. 2012, 2015; Lin et al. 2016a, 
b, 2017; Wang et al. 2018). During microbial sulfate reduction, 32S is preferentially 
distilled into reduced products, resulting in the formation of 34S-depleted pyrite. 
Distinct from pyrite derived from OSR, SD-AOM-derived pyrite is generally char-
acterized by a higher δ34Spy values due to (1) the smaller magnitude of sulfur isotope 
fractionation for SD-AOM (e.g., <40‰) than that for OSR and (2) higher rates of 
SD-AOM than OSR rates, causing accumulation of dissolved sulfide to high concen-
trations due to relatively closed system conditions with little sulfate replenishment 
and high sulfate consumption rates (Aharon and Fu 2000; Deusner et al. 2014; Gong 
et al. 2018a). However, 34S-enriched pyrite may not develop in settings with a major 
contribution of OSR to pyrite formation, low iron availability, and intense sulfide
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reoxidation reactions (Borowski et al. 2013; Lin et al. 2016a, b; Formolo and Lyons 
2013; Pierre 2017; Feng et al. 2018). 

Recent work on the sulfur isotopic signature of SD-AOM-derived pyrite in sedi-
ments and carbonates retrieved from seeps of the SCS resulted in a better under-
standing of pyritization in the SMTZ and the control of dynamic methane fluxes on 
δ34Spy values (Pu et al. 2007; Li et al.  2016; Lin et al. 2016a, b, 2017; Hu et al.  2017, 
2020; Gong et al. 2018a, 2022). The typical δ34S value of OSR-derived pyrite in the 
continental slope of the SCS ranges from −50‰ to −20‰ (Hu et al. 2015, 2018; Lin  
et al. 2017; Wang et al. 2018), whereas the δ34Spy of SD-AOM-derived pyrite is typi-
cally higher than −20‰ due to the low sulfur isotope fractionation during SD-AOM 
(<40‰; Aharon and Fu 2000; Deusner et al. 2014; Gong et al. 2021). Combined 
with the high ratios of total sulfur to total organic carbon, the widely observed high 
δ34Spy values in the SMTZ indicate extensive methane seepage activity along the 
continental margin of the SCS (Feng et al. 2018). The extremely high nanoSIMS 
δ34S values of SD-AOM-derived pyrite reported for the SCS reach 130.3‰, repre-
senting the heaviest stable sulfur isotope composition of pyrite ever reported to our 
the best of our knowledge in a marine sedimentary environment and reflecting the 
great variability of δ34S values of SD-AOM-derived pyrite (Lin et al. 2016b; Guo  
et al. 2022). 

Figure 9.7a provides a schematic diagram of the environmental controls on the 
δ34S value of pyrite under high methane flux with the SMTZ close to the seafloor, 
dissolved sulfide accumulating to high concentrations, and the δ34S value of pore-
water sulfide generally increasing with depth from −20‰ to approximately 21‰. 
Under such conditions, pyrite is only moderately 34S-enriched as supported by the 
typical δ34S value of pyrite enclosed in methane-derived authigenic carbonates (Feng 
et al. 2016; Gong et al. 2018b; Crémière et al.  2020; Sun et al. 2020a). Figure 9.7b 
depicts a methane-diffusion-limited setting with a relatively deep SMTZ, where OSR 
causes porewater sulfate diffusion into the SMTZ resulting in high δ34S values. Under 
such conditions, isotopically super-heavy pyrite can form in the SMTZ. Overall, the 
δ34S value of SD-AOM-derived pyrite can be used to trace the relative methane flux 
and the dynamics of methane seepage (Gong et al. 2018a, 2022). However, potential 
admixture of early OSR-derived pyrite during the extraction of chromium-reducible 
sulfides can mask the δ34Spy signatures of SD-AOM. Fortunately, such signatures 
have been detected for hand-picked pyrite (Lin et al. 2016a, b), via mass-balance 
calculations (Hu et al. 2020; Gong et al. 2022), and through petrographic study of 
authigenic pyrite combined with nanoSIMS analysis of stable sulfur isotopes (Lin 
et al. 2016a, b).



9 Stable Isotope Signatures of Authigenic Minerals from Methane Seeps 159

SMTZ 

SMTZ 

34 OSR-derived pyrite with low δ S value  
34 Pyrite with extremely high δ S value 

Relative low methane flux 
34 Extremely S-enriched pyrite 

Methane-diffusion-limited setting a  SD-AOM-dominated setting 

Relative high methane flux
34 Moderately S-enriched pyrite 

34 Pyrite with moderately high δ S value 
Overgrowth pyrite 

Seafloor 

b 

Con. Con. Seafloor34 δ S 34 δ S 0 0+ 0 + +  +  

CH4 

CH4 

2-SO4 

2-SO4 

H S2 

H S2 

0 

Fig. 9.7 Schematic diagram of the variable sulfur isotope composition of pyrite at methane seeps. 
a Under a relatively low methane flux with a deep SMTZ (i.e., a methane-diffusion-limited setting), 
the OSR progress at shallow depth causes 34S-enriched sulfate to diffuse into the SMTZ, leading 
to a high δ34S value of SD-AOM-derived pyrite exceeding the value of seawater sulfate. b Under a 
relatively high methane flux with the whole sulfate reduction zone dominated by SD-AOM (i.e., SD-
AOM-dominated setting), SD-AOM-derived pyrite is moderately 34S-enriched, with δ34S values  
generally ranging from −20‰ to ca. 21‰. Note OSR, SD-AOM and SMTZ denote organoclastic 
sulfate reduction, sulfate-driven anaerobic oxidation of methane, and sulfate methane transition 
zone, respectively 

9.3.2 Multiple Sulfur Isotope Fingerprints of SD-AOM 

Recently, multiple sulfur isotopes have been applied to identify SD-AOM and to 
constrain the sulfur cycle in methane-bearing settings; such approach became neces-
sary because of the common overlap of δ34Spy values between OSR- and SD-AOM-
derived pyrite (Lin et al. 2017, 2018; Gong et al. 2018b, 2022; Crémière et al.  2020; 
Liu et al. 2020, 2022a). The multiple sulfur isotope proxy relies on the fact that 
sulfur-based reactions experience varying dependencies on the expression of mass 
that can yield small deviations (Eq. 9.1) from thermodynamic equilibrium predic-
tions at 0.515 (Farquhar et al. 2003; Johnston 2011). The small deviation of δ33S from 
the mass-dependent fractionation law can be expressed with the following capital 
delta notation (Eq. 9.3):
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33 θ = 
ln33α 
ln34α 

(9.1) 

δ3i = (3i R/3i RVC  DT  − 1) ∗ 1000, i = 3, 4 (9.2)

\33 S = δ33 S − 1000 ∗ ((δ34 S + 1) 0.515 − 1) (9.3) 

The difference in the isotope fractionation factor (34α and 33θ) among sulfur-based 
reactions can yield different relationships among multiple sulfur isotope composi-
tions (32S, 33S, and 34S) of sulfur-bearing compounds, which are expressed by\33S-
δ34S patterns. Combined \33S and δ34S analysis provides further constraints on 
the processes that contribute to sulfur cycling and help differentiating among various 
sulfur-based reactions including OSR, SD-AOM, sulfide oxidation, and sulfur dispro-
portionation (Farquhar et al. 2003; Johnston et al. 2005; Lin et al. 2017; Gong et al. 
2018b, 2022; Liu et al. 2022a). Below, we conclude that the diagnostic multiple sulfur 
isotope signatures of SD-AOM expressed in sulfur-bearing minerals are controlled 
by the low sulfur isotope fractionation during SD-AOM and the mass-transport effect 
on the isotope composition of dissolved sulfate and dissolved sulfide. 

For a given porewater profile, the \33SSO4 − δ34SSO4 pattern is mainly deter-
mined by the isotope fractionation of net sulfate reduction, with lower 1000ln34α 
and higher 33θ values leading to a larger slope of \33SSO4 − δ34SSO4 (Gong et al. 
2018b; Masterson et al. 2018). In OSR-dominated settings (Fig. 9.8a), the positive
\33SSO4 - δ34SSO4 pattern can be attributed to the low 1000ln34α value and high 
33θ value close to the equilibrium values at −70‰ and 0.515, respectively (Gong 
et al. 2018b, 2022; Masterson et al. 2018, 2022; Liu et al. 2022a). In SD-AOM-
dominated settings (Fig. 9.8b), the relatively high 1000ln34α (> −40‰) and 33θ values 
(<0.5125) yield negative \33SSO4 – δ34SSO4 correlations according to the simplified 
reaction-transport model (Gong et al. 2018b). In methane-diffusion-limited settings 
(Fig. 9.8c), the pore-water sulfate profile attains a positive \33SSO4 - δ34SSO4 corre-
lation in the upper sulfate reduction zone dominated by OSR, which switches to a 
negative \33SSO4 – δ34SSO4 correlation in the SMTZ. Overall, diagnostic negative
\33SSO4 – δ34SSO4 patterns of porewater sulfate profile in the SMTZ are distin-
guishable from the positive trajectory in OSR-dominated settings, highlighting that 
multiple sulfur isotope fractionation during microbial sulfate reduction is affected by 
the electron donor type, which facilitates the use of this proxy to identify SD-AOM 
(Gong et al. 2018b, 2022; Crémière et al.  2020; Liu et al. 2022a).

Under high methane fluxes, such as methane seeps with advective transport, the 
diagnostic negative \33SSO4 – δ34SSO4 correlation of SD-AOM can be preserved in 
barite and carbonate-associated sulfate, thus serving as a useful proxy for SD-AOM 
in the rock record (Gong et al. 2018b; Crémière et al.  2020). Sulfate, for example 
recovered from carbonate rock in the form of carbonate-associated sulfate, does 
not represent a single steady-state pore-water profile but rather different stages of 
pore water evolution indicating various successive mixtures of porewater sulfate at
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Fig. 9.8 Schematic plots of
\33S and  δ34S for porewater 
sulfate in different marine 
settings. a OSR-dominated 
setting (data from Strauss 
et al. (2012); Pellerin et al. 
(2015); Lin et al. (2017); 
Masterson et al. (2018); 
Gong et al. (2022); Liu et al. 
(2022a)); b SD-AOM-
dominated setting, such as 
methane seeps (data from 
Gong et al. (2018b); Crémière 
et al. (2020)). c Methane-
diffusion-limited setting 
(data retrieved from Gong 
et al. (2022); Liu et al. 
(2022a)). The black square 
denotes the seawater sulfate 
value of Tostevin et al. 
(2014). Note OSR and 
SD-AOM denote 
organoclastic sulfate 
reduction and sulfate-driven 
anaerobic oxidation of 
methane, respectively. 
Reprinted from Chemical 
Geology, 581, Gong et al. 
Reprinted from Earth and 
Planetary Science Letters, 
597, Gong et al. (2022) 
Multiple sulfur isotope 
systematics of pyrite for 
tracing sulfate-driven 
anaerobic oxidation of 
methane, 117827, Copyright 
(2022), with permission from 
Elsevier
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different depths. Consequently, negative \33SSO4 – δ34SSO4 correlations cannot be 
expected to be necessarily archived in barite and carbonate-associated sulfate even if 
SD-AOM was a prominent process. The mixture of two endmembers with different 
δ34S values can lead to a lower \33S value than that of at least one of the endmem-
bers (Ono et al. 2006; Johnston 2011). Thus,\33SSO4 values more negative than that 
of seawater coupled with high δ34SSO4 values preserved in the rock record consti-
tute a diagnostic signature of SD-AOM at methane seeps, sites typified by advective 
transport of methane (Gong et al. 2022). Globally, methane-diffusion-limited envi-
ronments are more widely distributed along continental margins than methane seeps 
(Egger et al. 2018; Hu et al.  2022). Due to the absence of methane-derived authigenic 
carbonates, however, the diagnostic multiple sulfur isotope signature of porewater 
sulfate in a methane-diffusion-limited setting can hardly be preserved in carbonate 
rock or barite. 

Case studies on methane-bearing environments of the SCS indicated that multiple 
sulfur isotope compositions of pyrite can be used for tracing SD-AOM in methane 
diffusion-limited settings (Lin et al. 2017; Gong et al. 2022). The instantaneously 
produced sulfide inherits the same\33SSO4 – δ34SSO4 trajectory of porewater sulfate, 
i.e., positive and negative correlations in OSR– and SD–AOM-dominated settings, 
respectively. However, the porewater sulfide accumulating in the course of sulfate 
reduction shows similar \33S –  δ34S patterns and approaches the sulfur isotopic 
composition of seawater sulfate in both organic compound-rich settings (Liu et al. 
2022a) and, thus, is expected to occur at methane seeps (Gong et al. 2022). This 
phenomenon can be explained by the independent diffusion of 32S, 33S, and 34S in  
sulfide in a setting where dissolved sulfide accumulates to high concentrations (e.g., 
>1 mmol/l; Jørgensen et al. 2004; Liu et al. 2022a; Masterson et al. 2022). Therefore, 
multiple sulfur isotopes of pyrite cannot trace SD-AOM activity at methane seeps and 
in organic-rich settings, as evidenced by the overlap of the \33Spy – δ34Spy areas of 
successively formed, composite pyrite derived from SD-AOM and OSR (Fig. 9.9b).

However, the diffusion effect of porewater sulfide is limited in organic-poor deeper 
settings such as the continental slope sediment of the SCS, where low sulfate reduc-
tion rates led to an excess of buried reactive iron and a low concentration of dissolved 
sulfide. Under this circumstance, the diffusion effect on the isotope composition of 
porewater sulfide and the contribution of OSR-derived sulfide to the sulfide pool in 
the SMTZ is limited. Consequently, the increased \33S and δ34S signatures of pore-
water sulfate diffusing into the SMTZ can be archived in pyrite, with the \33S value 
of the produced sulfide reaching as high as 0.3‰ in the upper SMTZ. Furthermore, 
the \33S values of instantaneously produced sulfide within the SMTZ decrease with 
increasing δ34S value, thus leading to a pronounced negative \33Spy value falling 
out of the \33Spy – δ34Spy area of the OSR. Therefore, the diagnostic larger \33S –  
δ34S field of pyrite relative to OSR-derived pyrite allows tracing of SD-AOM in 
continental slope settings (Fig. 9.9c).
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Fig. 9.9 Schematic plots of
\33S and  δ34S for porewater 
sulfide and authigenic pyrite 
in different marine settings: 
a OSR-dominated setting 
(data from Johnston et al. 
(2008); Strauss et al. (2012); 
Lin et al. (2017); Gong et al. 
(2022); Liu et al. (2022a)); 
b SD-AOM-dominated 
setting, such as methane 
seeps (data obtained 
from Crémière et al. (2020)). 
c Methane-diffusion-limited 
setting (data from Lin et al. 
(2017); Gong et al. (2022); 
Liu et al. (2022a)). The black 
square indicates the seawater 
sulfate value of Tostevin 
et al. (2014). The gray 
shaded area denotes the 
largest \33S–δ34S field of  
pyrite in the OSR-dominated 
setting, and the purple area 
denotes the \33S–δ34S field  
of SD-AOM-derived pyrite 
(modified from Gong et al. 
(2022)). Note OSR and 
SD-AOM denote 
organoclastic sulfate 
reduction and sulfate-driven 
anaerobic oxidation of 
methane, respectively. 
Reprinted from Earth and 
Planetary Science Letters, 
597, Gong et al. (2022) 
Multiple sulfur isotope 
systematics of pyrite for 
tracing sulfate-driven 
anaerobic oxidation of 
methane, 117827, Copyright 
(2022), with permission 
from Elsevier
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9.4 Summary and Future Studies 

Widespread methane seepage along the continental margins of the South China Sea 
provides the opportunity to study methane-related biogeochemical processes and 
their fingerprints in the sedimentary record, allowing to trace the occurrence and 
strength of methane seepage and its effect on local to global marine environments 
through geologic time. Previous work on authigenic minerals formed at methane 
seeps in the SCS mainly aimed to reconstruct the origin of seep fluids and seepage 
dynamics and to establish proxies for tracing past SD-AOM activity. One of the 
outstanding achievements in this endeavor is our improved understanding of the 
sulfur isotope systematics of SD-AOM, owed to in situ nanoSIMS analysis and 
multiple sulfur isotopes. The latter analytical approaches allow confident identifica-
tion of the origin of early diagenetic pyrite, the most common mineral at marine seeps. 
With respect to the South China Sea–now representing one of the best studied seepage 
provinces–further research targeting quantification of sulfur cycling will probably 
provide fundamental knowledge of the effect of SD-AOM on ocean margin sedi-
ments. Other biogeochemical processes taking place in association with SD-AOM, 
such as processes involving nitrogen, need to be further investigated to fully unravel 
the interaction between carbon, sulfur, and nitrogen cycling at marine methane seeps. 
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