Skip to main content

Effects of Exercise on Circulating Extracellular Vesicles in Cardiovascular Disease

  • Chapter
  • First Online:
Extracellular Vesicles in Cardiovascular and Metabolic Diseases

Abstract

The evidence that physical exercise has multiple beneficial effects and is essential to a healthy lifestyle is widely accepted for a long-time. The functional and psychological changes promoted by exercise improve clinical outcomes and prognosis in several diseases, by decreasing mortality, disease severity, and hospital admissions. Nonetheless, the mechanisms that regulate the release, uptake, and communication of several factors in response to exercise are still not well defined. In the last years, extracellular vesicles have attracted significant interest in the scientific community due to their ability to carry and deliver proteins, lipids, and miRNA to distant organs in the body, promoting a very exciting crosstalk machinery. Moreover, increasing evidence suggests that exercise can modulate the release of those factors within EVs into the circulation, mediating its systemic adaptations.

In this chapter, we summarize the effects of acute and chronic exercise on the extracellular vesicle dynamics in healthy subjects and patients with cardiovascular disease. The understanding of the changes in the cargo and kinetics of extracellular vesicles in response to exercise may open new possibilities of research and encourage the development of novel therapies that mimic the effects of exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caspersen CJ, Powell KE, Christenson GM (1985) Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Heal Rep 100:126–131

    CAS  Google Scholar 

  2. Ribeiro F (2020a) Time to include balance training in the cardiac rehabilitation programs of patients with heart failure with preserved ejection fraction. Arq Bras Cardiol 114:708–710

    Article  PubMed  PubMed Central  Google Scholar 

  3. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP (2011) Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43:1334–1359

    Article  PubMed  Google Scholar 

  4. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, Prescott E, Storey RF, Deaton C, Cuisset T, Agewall S, Dickstein K, Edvardsen T, Escaned J, Gersh BJ, Svitil P, Gilard M, Hasdai D, Hatala R, Mahfoud F, Masip J, Muneretto C, Valgimig BJ (2020) 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 41:407–477

    Article  PubMed  Google Scholar 

  5. Smith SC, Benjamin EJ, Bonow RO et al (2011) AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation. J Am Coll Cardiol 58:2432–2446

    Article  PubMed  Google Scholar 

  6. Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, Horton ES, Castorino K, Tate DF (2016) Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care 39:2065–2079

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ibanez B, James S, Agewall S et al (2018) 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 39:119–177

    Article  PubMed  Google Scholar 

  8. Anderson JL, Adams CD, Antman EM et al (2013) 2012 ACCF/AHA focused update incorporated into the ACCF/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association ta. Circulation 127:e663–e828

    PubMed  Google Scholar 

  9. O’Gara PT, Kushner FG, Ascheim DD, Casey DE Jr, Chung MK, de Lemos JA, Ettinger SM, Fang JC, Fesmire FM, Franklin BA, Granger CB, Krumholz HM, Linderbaum JA, Morrow DA, Newby LK, Ornato JP, Ou N, Radford MJ, Tamis-Holland JE, Tommaso CL, Tracy CM, Woo YYC (2013) 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation 127:362–425

    Article  Google Scholar 

  10. Neumann FJ, Sousa-Uva M, Ahlsson A et al (2019) 2018 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J 40:87–165

    Article  PubMed  Google Scholar 

  11. Gerhard-Herman MD, Gornik HL, Barrett C et al (2017) 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Coll Cardiol 69:1465–1508

    Article  PubMed  Google Scholar 

  12. Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37:2129–2200

    Article  PubMed  Google Scholar 

  13. Yancy CW, Jessup M, Bozkurt B et al (2017) 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the heart failure Society of America. Circulation 136:e137–e161

    Article  PubMed  Google Scholar 

  14. Ambrosetti M, Abreu A, Corrà U et al (2020) Secondary prevention through comprehensive cardiovascular rehabilitation: from knowledge to implementation. 2020 update. A position paper from the secondary prevention and rehabilitation section of the European Association of Preventive Cardiology. Eur J Prev Cardiol 0:1–42

    CAS  Google Scholar 

  15. Nytrøen K, Gullestad L (2013) Exercise after heart transplantation: an overview. World J Transplant 3:78–90

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ribeiro F (2020b) Correlation between heart rate variability and low-grade vascular wall inflammation with the angiographic burden of coronary artery disease: an opportunity to lifestyle interventions. Minerva Cardioangiol 69(2):111–113

    Google Scholar 

  17. Manresa-Rocamora A, Ribeiro F, Sarabia JM, Íbias J, Oliveira NL, Vera-García FJ, Moya-Ramón M (2020) Exercise-based cardiac rehabilitation and parasympathetic function in patients with coronary artery disease: a systematic review and meta-analysis. Clin Auton Res 31:187

    Article  PubMed  Google Scholar 

  18. Hambrecht R, Adams V, Erbs S et al (2003) Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 107:3152–3158

    Article  CAS  PubMed  Google Scholar 

  19. Ribeiro F, Alves AJ, Duarte JA, Oliveira J (2010) Is exercise training an effective therapy targeting endothelial dysfunction and vascular wall inflammation? Int J Cardiol 141:214–221

    Article  PubMed  Google Scholar 

  20. Ribeiro F, Ribeiro IP, Alves AJ, Do Céu Monteiro M, Oliveira NL, Oliveira J, Amado F, Remião F, Duarte JA (2013) Effects of exercise training on endothelial progenitor cells in cardiovascular disease: a systematic review. Am J Phys Med Rehabil 92:1020–1030

    Article  PubMed  Google Scholar 

  21. Anderson L, Oldridge N, Thompson DR, Zwisler AD, Rees K, Martin N, Taylor RS (2016) Exercise-based cardiac rehabilitation for coronary heart disease Cochrane systematic review and meta-analysis. J Am Coll Cardiol 67:1–12

    Article  PubMed  Google Scholar 

  22. Kachur S, Lavie CJ, Morera R, Ozemek C, Milani RV (2019) Exercise training and cardiac rehabilitation in cardiovascular disease. Expert Rev Cardiovasc Ther 17:585–596

    Article  CAS  PubMed  Google Scholar 

  23. Lavie CJ, Menezes AR, De Schutter A, Milani RV, Blumenthal JA (2016) Impact of cardiac rehabilitation and exercise training on psychological risk factors and subsequent prognosis in patients with cardiovascular disease. Can J Cardiol 32:S365–S373

    Article  PubMed  Google Scholar 

  24. Naci H, Salcher-Konrad M, Dias S, Blum MR, Sahoo SA, Nunan D, Ioannidis JPA (2019) How does exercise treatment compare with antihypertensive medications? A network meta-analysis of 391 randomised controlled trials assessing exercise and medication effects on systolic blood pressure. Br J Sports Med 53:859–869

    Article  PubMed  Google Scholar 

  25. Safdar A, Tarnopolsky MA (2018) Exosomes as mediators of the systemic. Cold spring Harb Perspect Med 8:a029827

    Article  PubMed  PubMed Central  Google Scholar 

  26. Guescini M, Canonico B, Lucertini F, Maggio S, Annibalini G, Barbieri E, Luchetti F, Papa S, Stocchi V (2015) Muscle releases alpha-sarcoglycan positive extracellular vesicles carrying miRNAs in the bloodstream. PLoS One 10:1–19

    Article  Google Scholar 

  27. Whitham M, Parker BL, Friedrichsen M et al (2018) Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab 27:237–251.e4

    Article  CAS  PubMed  Google Scholar 

  28. Annibalini G, Contarelli S, Lucertini F et al (2019) Muscle and systemic molecular responses to a single flywheel based iso-inertial training session in resistance-trained men. Front Physiol 10:1–10

    Article  Google Scholar 

  29. Bei Y, Xu T, Lv D et al (2017) Exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury. Basic Res Cardiol 112:38

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chaar V, Romana M, Tripette J, Broquere C, Huisse MG, Hue O, Hardy-Dessources MD, Connes P (2011) Effect of strenuous physical exercise on circulating cell-derived microparticles. Clin Hemorheol Microcirc 47:15–25

    Article  CAS  PubMed  Google Scholar 

  31. Frühbeis C, Helmig S, Tug S, Simon P, Krämer-Albers EM (2015) Physical exercise induces rapid release of small extracellular vesicles into the circulation. J Extracell Vesicles 4:28239

    Article  PubMed  Google Scholar 

  32. Guiraud T, Gayda M, Juneau M et al (2013) A single bout of high-intensity interval exercise does not increase endothelial or platelet microparticles in stable, physically fit men with coronary heart disease. Can J Cardiol 29:1285–1291

    Article  PubMed  Google Scholar 

  33. Lovett JAC, Durcan PJ, Myburgh KH (2018) Investigation of circulating extracellular vesicle microRNA following two consecutive bouts of muscle-damaging exercise. Front Physiol 9:1–8

    Article  Google Scholar 

  34. Rakobowchuk M, Ritter O, Wilhelm EN, Isacco L, Bouhaddi M, Degano B, Tordi N, Mourot L (2017) Divergent endothelial function but similar platelet microvesicle responses following eccentric and concentric cycling at a similar aerobic power output. J Appl Physiol 122:1031–1039

    Article  CAS  PubMed  Google Scholar 

  35. Rigamonti AE, Bollati V, Pergoli L et al (2020) Effects of an acute bout of exercise on circulating extracellular vesicles: tissue-, sex-, and BMI-related differences. Int J Obes 44:1108–1118

    Article  CAS  Google Scholar 

  36. Serviente C, Burnside A, Witkowski S (2019) Moderate-intensity exercise reduces activated and apoptotic endothelial microparticles in healthy midlife women. J Appl Phycol 126:102–110

    CAS  Google Scholar 

  37. Schwarz V, Düsing P, Liman T et al (2018) Marathon running increases circulating endothelial- and thrombocyte-derived microparticles. Eur J Prev Cardiol 25:317–324

    Article  PubMed  Google Scholar 

  38. Shill DD, Lansford KA, Hempel HK, Call JA, Murrow JR, Jenkins NT (2018) Effect of exercise intensity on circulating microparticles in men and women. Exp Physiol 103:693–700

    Article  CAS  PubMed  Google Scholar 

  39. Yin X, Zhao Y, Zheng YL, Wang JZ, Li W, Lu QJ, Huang QN, Zhang CY, Chen X, Ma JZ (2019) Time-course responses of muscle-specific MicroRNAs following acute uphill or downhill exercise in Sprague-Dawley rats. Front Physiol 10:1275

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wilhelm EN, Mourot L, Rakobowchuk M (2018) Exercise-derived microvesicles: a review of the literature. Sports Med 48:2025–2039

    Article  PubMed  Google Scholar 

  41. Oggero S, Austin-williams S, Norling LV (2019) The contrasting role of extracellular vesicles in vascular inflammation and tissue repair. Front Pharmacol 10:1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma G, Wang Y, Li Y, Cui L, Zhao Y, Zhao B, Li K (2015) MiR-206, a key modulator of skeletal muscle development and disease. Int J Biol Sci 11:345–352

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li L, Chen XP, Li YJ (2010) MicroRNA-146a and human disease. Scand J Immunol 71:227–231

    Article  CAS  PubMed  Google Scholar 

  44. Wilhelm EN, González-Alonso J, Parris C, Rakobowchuk M (2016) Exercise intensity modulates the appearance of circulating microvesicles with proangiogenic potential upon endothelial cells. Am J Physiol Heart Circ Physiol 311:H1297–H1310

    Article  PubMed  Google Scholar 

  45. Paulsen G, Ramer MU, Raastad T, Peake JM (2012) Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exerc Immunol Rev 18:42–97

    PubMed  Google Scholar 

  46. Trovato E, Di Felice V, Barone R (2019) Extracellular vesicles: delivery vehicles of myokines. Front Physiol 10:1–13

    Article  Google Scholar 

  47. Savina A, Furlán M, Vidal M, Colombo MI (2003) Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem 278:20083–20090

    Article  CAS  PubMed  Google Scholar 

  48. Hill CA, Thompson MW, Ruell PA, Thom JM, White MJ (2001) Skeletal muscle fatigue is characterized by a decrease in force production and a slower rate of tension development and relaxation. J Physiol 531:871–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Estébanez B, Jiménez-Pavón D, Huang CJ, Cuevas MJ, González-Gallego J (2020) Effects of exercise on exosome release and cargo in in vivo and ex vivo models: a systematic review. J Cell Physiol 236:3336–3353

    Article  PubMed  Google Scholar 

  50. Buzas EI, György B, Nagy G, Falus A, Gay S (2014) Emerging role of extracellular vesicles in inflammatory diseases. Nat Rev Rheumatol 10:356–364

    Article  CAS  PubMed  Google Scholar 

  51. Femminò S, Penna C, Margarita S, Comità S, Brizzi MF, Pagliaro P (2020) Extracellular vesicles and cardiovascular system: biomarkers and cardioprotective effectors. Vasc Pharmacol 135:106790

    Article  Google Scholar 

  52. Chaturvedi P, Kalani A, Medina I, Familtseva A, Tyagi SC (2015) Cardiosome mediated regulation of MMP9 in diabetic heart: role of mir29b and mir455 in exercise. J Cell Mol Med 19:2153–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen YC, Ho CW, Tsai HH, Wang JS (2015) Interval and continuous exercise regimens suppress neutrophil-derived microparticle formation and neutrophil-promoted thrombin generation under hypoxic stress. Clin Sci 128:425–436

    Article  CAS  Google Scholar 

  54. Van Craenenbroeck EM, Frederix G, Pattyn N et al (2015) Effects of aerobic interval training and continuous training on cellular markers of endothelial integrity in coronary artery disease: a SAINTEX-CAD substudy. Am J Physiol Heart Circ Physiol 309:H1876–H1882

    Article  PubMed  Google Scholar 

  55. Eichner NZM, Gilbertson NM, Heiston EM, Musante L, La Salvia S, Weltman A, Erdbrugger U, Malin SK (2020) Interval exercise lowers circulating CD105 extracellular vesicles in prediabetes. Med Sci Sports Exerc 52:729–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Feairheller DL, Diaz KM, Kashem MA, Thakkar SR, Veerabhadrappa P, Sturgeon KM, Ling C, Williamson ST, Kretzschmar J, Brown MD (2014) Effects of moderate aerobic exercise training on vascular health and blood pressure in African Americans. J Clin Hypertens 16:504–510

    Article  Google Scholar 

  57. Hsu CC, Fu TC, Huang SC, Wang JS (2020) High-intensity interval training recuperates capacity of endogenous thrombin generation in heart failure patients with reduced ejection fraction. Thromb Res 187:159–165

    Article  CAS  PubMed  Google Scholar 

  58. Kim JS, Kim B, Lee H, Thakkar S, Babbitt DM, Eguchi S, Brown MD, Park JY (2015) Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells. Am J Physiol Heart Circ Physiol 309:H425–H433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kränkel N, Strässler E, Uhlemann M et al (2020) Extracellular vesicle species differentially affect endothelial cell functions and differentially respond to exercise training in patients with chronic coronary syndromes. Eur J Prev Cardiol 28:1467

    Article  PubMed  Google Scholar 

  60. Ma C, Wang J, Liu H, Chen Y, Ma X, Chen S, Chen Y, Bihl J, Yang Y (2018) Moderate exercise enhances endothelial progenitor cell exosomes release and function. Med Sci Sports Exerc 50:2024–2032

    Article  PubMed  Google Scholar 

  61. Wang J, Liu H, Chen S, Zhang W, Chen Y, Yang Y (2020) Moderate exercise has beneficial effects on mouse ischemic stroke by enhancing the functions of circulating endothelial progenitor cell-derived exosomes. Exp Neurol 330:113325

    Article  CAS  PubMed  Google Scholar 

  62. Sossdorf M, Otto GP, Claus RA, Gabriel HHW, Lösche W (2011) Cell-derived microparticles promote coagulation after moderate exercise. Med Sci Sports Exerc 43:1169–1176

    Article  CAS  PubMed  Google Scholar 

  63. Hou Z, Qin X, Hu Y et al (2019) Longterm exercise-derived exosomal miR-342-5p: a novel Exerkine for Cardioprotection. Circ Res 124:1386–1400

    Article  CAS  PubMed  Google Scholar 

  64. Li YSJ, Haga JH, Chien S (2005) Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech 38:1949–1971

    Article  PubMed  Google Scholar 

  65. Babbitt DM, Diaz KM, Feairheller DL et al (2013) Endothelial activation microparticles and inflammation status improve with exercise training in African Americans. Int J Hypertens 2013:538017

    Article  PubMed  PubMed Central  Google Scholar 

  66. Boyle LJ, Credeur DP, Jenkins NT, Padilla J, Leidy HJ, Thyfault JP, Fadel PJ (2013) Impact of reduced daily physical activity on conduit artery flow-mediated dilation and circulating endothelial microparticles. J Appl Physiol 115:1519–1525

    Article  PubMed  PubMed Central  Google Scholar 

  67. Pelliccia A, Sharma S, Gati S et al (2021) 2020 ESC guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur Heart J 42:17–96

    Article  CAS  PubMed  Google Scholar 

  68. Holnthoner W, Bonstingl C, Hromada C et al (2017) Endothelial cell-derived extracellular vesicles size—dependently exert procoagulant activity detected by thromboelastometry. Sci Rep 7:3707

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hromada C, Mühleder S, Grillari J, Redl H, Holnthoner W (2017) Endothelial extracellular vesicles-promises and challenges. Front Physiol 8:275. https://doi.org/10.3389/fphys.2017.00275

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DYR, Srivastava D (2008) miR-126 regulates Angiogenic signaling and vascular integrity. Dev Cell 15:272–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gomes CPDC, Schroen B, Kuster GM, Robinson EL, Ford K, Squire IB, Heymans S, Martelli F, Emanueli C, Devaux Y (2020) Regulatory RNAs in heart failure. Circulation 141:313–328

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hao XZ, Fan HM (2017) Identification of miRNAs as atherosclerosis biomarkers and functional role of miR-126 in atherosclerosis progression through MAPK signalling pathway. Eur Rev Med Pharmacol Sci 21:2725–2733

    PubMed  Google Scholar 

  73. Li HY, Zhao X, Liu YZ, Meng Z, Wang D, Yang F, Shi QW (2016) Plasma MicroRNA-126-5p is associated with the complexity and severity of coronary artery disease in patients with stable angina pectoris. Cell Physiol Biochem 39:837–846

    Article  CAS  PubMed  Google Scholar 

  74. Gasecka A, Nieuwland R, Siljander PR (2019) Platelet-derived extracellular vesicles. In: Platelets, 4th edn. Elsevier, Amsterdam, pp 401–416

    Chapter  Google Scholar 

  75. Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D (2005) Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res 67:30–38

    Article  CAS  PubMed  Google Scholar 

  76. Yabluchanskiy A, Ma Y, Iyer RP, Hall ME, Lindsey ML (2013) Matrix metalloproteinase-9: many shades of function in cardiovascular disease. Physiology 28:391–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chong SY, Lee CK, Huang C et al (2019) Extracellular vesicles in cardiovascular diseases: alternative biomarker sources, therapeutic agents, and drug delivery carriers. Int J Mol Sci 20:3272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li S, Xu J, Qian J, Gao X (2020) Engineering extracellular vesicles for cancer therapy: recent advances and challenges in clinical translation. Biomater Sci 8:6978–6991

    Article  CAS  PubMed  Google Scholar 

  79. McVey MJ, Maishan M, Blokland KEC, Bartlett N, Kuebler WM (2019) Extracellular vesicles in lung health, disease, and therapy. Am J Physiol Lung Cell Mol Physiol 316:L977–L989

    Article  CAS  PubMed  Google Scholar 

  80. Izadpanah M, Seddigh A, Ebrahimi Barough S, Fazeli SAS, Ai J (2018) Potential of extracellular vesicles in neurodegenerative diseases: diagnostic and therapeutic indications. J Mol Neurosci 66:172–179

    Article  CAS  PubMed  Google Scholar 

  81. Li Y, Han C, Wang J, Zhou J, Liang C, Ranganna K, Hua SY (2017) Exosomes mediate the beneficial effects of exercise. Adv Exp Med Biol 1000:333–353

    Article  CAS  PubMed  Google Scholar 

  82. Kishore R, Khan M (2017) Cardiac cell-derived exosomes: changing face of regenerative biology. Eur Heart J 38:212–215

    PubMed  Google Scholar 

Download references

Acknowledgements

Manuel Teixeira (2020.08565.BD), Tânia Soares Martins (SFRH/BD/145979/2019), and Marisol Gouveia (SFRH/BD/128893/2017) are supported by individual Ph.D. grants from Fundação para a Ciência e a Tecnologia (FCT, Portuguese Foundation for Science and Technology). iBiMED is a research unit supported by the Portuguese Foundation for Science and Technology (UID/BIM/04501/2020) and FEDER/Compete2020 funds.

This work was supported by a grant from FCT [PTDC/MEC- CAR/30011/2017] and co-financed by the FEDER under the new Partnership Agreement PT2020 within the project POCI- 01-0145-FEDER-030011.

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Teixeira, M., Martins, T.S., Gouveia, M., Henriques, A.G., Santos, M., Ribeiro, F. (2023). Effects of Exercise on Circulating Extracellular Vesicles in Cardiovascular Disease. In: Xiao, J. (eds) Extracellular Vesicles in Cardiovascular and Metabolic Diseases. Advances in Experimental Medicine and Biology, vol 1418. Springer, Singapore. https://doi.org/10.1007/978-981-99-1443-2_16

Download citation

Publish with us

Policies and ethics