Skip to main content

General Design Considerations in Reproductive and Developmental Toxicity Studies

  • Chapter
  • First Online:
The Quintessence of Basic and Clinical Research and Scientific Publishing
  • 837 Accesses

Abstract

Developmental and reproductive toxicity studies are conducted with the objective of identifying adverse effects relevant to fertility, pregnancy and development. Many approaches are used to enlighten our understanding of reproductive toxicity. Each segment of the testing paradigm focuses on slightly different objectives, with an overarching goal to understand the mechanistic and exposure relationships of candidate therapeutics that drive toxicity. There are established standard design approaches for these developmental and reproductive toxicity (DART) studies. The DART strategy for each program should carefully consider the intended patient population and existing knowledge regarding the toxicity profile, exposure relationships and expected pharmacology. Overall, mammalian DART studies are large and complex, and require substantial planning and experience for appropriate design and interpretation. DART testing is typically conducted in mammalian rodent species (mouse or rat), with a second non-rodent species used to further evaluate teratogenic potential (often rabbit), but in some cases, studies can be combined, refined, or avoided. In addition, there are non-mammalian tools that can aid in strategy, study design and/or data interpretation. This chapter will explore considerations for the use and design of both ‘standard’ and alternative study types and tools to inform pharmaceutical and biopharmaceutical drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parker GA, Picut CA (eds) (2016) Atlas of histology of the juvenile rat. Academic Press, London, 462p

    Google Scholar 

  2. Gupta RC (ed) (2011) Reproductive and developmental toxicology. Academic Press, London, 1220p

    Google Scholar 

  3. Baldock R, Bard J, Davidson D, Morriss-Kay G (eds) (2015) Kaufman’s atlas of mouse development supplement: with coronal sections. Academic Press, London, 344p

    Google Scholar 

  4. Barrow PC (ed) (2013) Teratogenicity testing, vol 947: Methods in molecular biology. Humana Press, 599p. https://link.springer.com/book/10.1007/978-1-62703-131-8. Accessed 14 Dec 2022

  5. ICH (2021) S5(R3) detection of reproductive and developmental toxicity for human pharmaceuticals. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/s5r3-detection-reproductive-and-developmental-toxicity-human-pharmaceuticals. Accessed 9 Dec 2022

  6. ICH (2010) M3(R2) nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/m3r2-nonclinical-safety-studies-conduct-human-clinical-trials-and-marketing-authorization. Accessed 13 Dec 2022

  7. ICH (2013) M3(R2) nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals: questions and answers. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/m3r2nonclinical-safety-studies-conduct-human-clinical-trials-and-marketing-authorization. Accessed 13 Dec 2022

  8. ICH (2012) S6 (R1) preclinical safety evaluation of biotechnology derived pharmaceuticals. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/s6r1-preclinical-safety-evaluation-biotechnology-derived-pharmaceuticals. Accessed 13 Dec 2022

  9. ICH (2018) S9 nonclinical evaluation for anticancer pharmaceuticals questions and answers. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/s9-nonclinical-evaluation-anticancer-pharmaceuticals-questions-and-answers. Accessed 14 Dec 2022

  10. ICH (2010) S9 Nonclinical evaluation for anticancer pharmaceuticals. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/s9-nonclinical-evaluation-anticancer-pharmaceuticals. Accessed 14 Dec 2022

  11. Bowman CJ, Becourt-Lhote N, Boulifard V, Cordts R, Corriol-Rohou S, Enright B et al (2022) Science-based approach to harmonize contraception recommendations in clinical trials and pharmaceutical labels. Clin Pharmacol Ther. https://doi.org/10.1002/cpt.2602

  12. Scialli AR, Bailey G, Beyer BK, Bøgh IB, Breslin WJ, Chen CL et al (2015) Potential seminal transport of pharmaceuticals to the conceptus. Reprod Toxicol 58:213–221

    Article  CAS  PubMed  Google Scholar 

  13. Prell RA, Halpern WG, Rao GK (2016 May) Perspective on a modified developmental and reproductive toxicity testing strategy for cancer immunotherapy. Int J Toxicol 35(3):263–273

    Article  CAS  PubMed  Google Scholar 

  14. FDA (2019) Investigational enzyme replacement therapy products: nonclinical assessment. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/investigational-enzyme-replacement-therapy-products-nonclinical-assessment. Accessed 14 Dec 2022

  15. Clements JM, Hawkes RG, Jones D, Adjei A, Chambers T, Simon L et al (2020) Predicting the safety of medicines in pregnancy: a workshop report. Reprod Toxicol 93:199–210

    Article  CAS  PubMed  Google Scholar 

  16. McNerney M, Potter D, Augustine-Rauch K, Barrow P, Beyer B, Brannen K et al (2021) Concordance of 3 alternative teratogenicity assays with results from corresponding in vivo embryo-fetal development studies: final report from the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) DruSafe working group 2. Regul Toxicol Pharmacol 124:104984

    Article  CAS  PubMed  Google Scholar 

  17. Song YS, Dai MZ, Zhu CX, Huang YF, Liu J, Zhang CD et al (2021) Validation, optimization, and application of the zebrafish developmental toxicity assay for pharmaceuticals under the ICH S5(R3) guideline. Front Cell Dev Biol 9:721130

    Article  PubMed  PubMed Central  Google Scholar 

  18. Marx U, Akabane T, Andersson TB, Baker E, Beilmann M, Beken S et al (2020) Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development. ALTEX 37(3):365–394

    PubMed  PubMed Central  Google Scholar 

  19. Vidal JD, Colman K, Bhaskaran M, de Rijk E, Fegley D, Halpern W et al (2021) Scientific and Regulatory Policy Committee Best Practices: documentation of sexual maturity by microscopic evaluation in nonclinical safety studies. Toxicol Pathol 49(5):977–989

    Article  PubMed  Google Scholar 

  20. Picut CA, Ziejewski MK, Stanislaus D (2018) Comparative aspects of pre- and postnatal development of the male reproductive system. Birth Defects Res. 110(3):190–227

    Article  CAS  PubMed  Google Scholar 

  21. Picut CA, Remick AK (2017) Impact of age on the male reproductive system from the pathologist’s perspective. Toxicol Pathol 45(1):195–205

    Article  PubMed  Google Scholar 

  22. Marty MS, Sue Marty M, Chapin RE, Parks LG, Thorsrud BA (2003) Development and maturation of the male reproductive system. Birth Defects Res B Dev Reprod Toxicol 68:125–136

    Article  CAS  PubMed  Google Scholar 

  23. Li X, Santos R, Bernal JE, Li DD, Hargaden M, Khan NK (2022) Biology and postnatal development of organ systems of cynomolgus monkeys (Macaca fascicularis). J Med Primatol. https://onlinelibrary.wiley.com/doi/10.1111/jmp.12622

  24. Vidal JD, Whitney KM (2014) Morphologic manifestations of testicular and epididymal toxicity. Spermatogenesis 4(2):e979099

    Article  PubMed  PubMed Central  Google Scholar 

  25. Creasy DM, Chapin RE (2018) Male reproductive system. In: Fundamentals of toxicologic pathology, 3rd edn. Academic Press, London, pp 459–516. https://doi.org/10.1016/b978-0-12-809841-7.00017-4

    Chapter  Google Scholar 

  26. Creasy DM, Chapin RE (2014) Testicular and epididymal toxicity: pathogenesis and potential mechanisms of toxicity. Spermatogenesis 4:e1005511. https://doi.org/10.1080/21565562.2014.1005511

    Article  CAS  PubMed  Google Scholar 

  27. Halpern WG, Ameri M, Bowman CJ, Elwell MR, Mirsky ML, Oliver J et al (2016) Scientific and Regulatory Policy Committee points to consider review: inclusion of reproductive and pathology end points for assessment of reproductive and developmental toxicity in pharmaceutical drug development. Toxicol Pathol 44(6):789–809

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dixon D, Alison R, Bach U, Colman K, Foley GL, Harleman JH et al (2014) Nonproliferative and proliferative lesions of the rat and mouse female reproductive system. J Toxicol Pathol 27(3–4):1S. https://doi.org/10.1293/tox.27.1S

    Article  PubMed  PubMed Central  Google Scholar 

  29. Laffan SB, Posobiec LM, Uhl JE, Vidal JD (2018) Species comparison of postnatal development of the female reproductive system. Birth Defects Res. 110(3):163–189

    Article  CAS  PubMed  Google Scholar 

  30. Woicke J, Al-Haddawi MM, Bienvenu JG, Caverly Rae JM, Chanut FJ, Colman K et al (2021) International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): nonproliferative and proliferative lesions of the dog. Toxicol Pathol 49(1):5–109

    Article  PubMed  Google Scholar 

  31. Brändli-Baiocco A, Balme E, Bruder M, Chandra S, Hellmann J, Hoenerhoff MJ et al (2018) Nonproliferative and proliferative lesions of the rat and mouse endocrine system. J Toxicol Pathol 31(3 suppl):1S–95S

    Article  PubMed  PubMed Central  Google Scholar 

  32. Everds NE, Snyder PW, Bailey KL, Bolon B, Creasy DM, Foley GL et al (2013) Interpreting stress responses during routine toxicity studies: a review of the biology, impact, and assessment. Toxicol Pathol 41(4):560–614

    Article  PubMed  Google Scholar 

  33. Uphouse L (2011) Stress and reproduction in mammals. In: Hormones and reproduction of vertebrates, volume 5 (Mammals). Academic Press, London, pp 117–138. https://doi.org/10.1016/b978-0-12-374928-4.10007-0

    Chapter  Google Scholar 

  34. Chapin RE, Creasy DM (2012) Assessment of circulating hormones in regulatory toxicity studies II. Male reproductive hormones. Toxicol Pathol 40:1063–1078. https://doi.org/10.1177/0192623312443321

    Article  CAS  PubMed  Google Scholar 

  35. Andersson H, Rehm S, Stanislaus D, Wood CE (2013) Scientific and regulatory policy committee (SRPC) paper: assessment of circulating hormones in nonclinical toxicity studies III. Female reproductive hormones. Toxicol Pathol 41(6):921–934

    Article  CAS  PubMed  Google Scholar 

  36. Mitchard T, Jarvis P, Stewart J (2012) Assessment of male rodent fertility in general toxicology 6-month studies. Birth Defects Res B Dev Reprod Toxicol 95(6):410–420

    Article  CAS  PubMed  Google Scholar 

  37. Takakura I, Creasy DM, Yokoi R, Terashima Y, Onozato T, Maruyama Y et al (2014) Effects of male sexual maturity of reproductive endpoints relevant to DART studies in Wistar Hannover rats. J Toxicol Sci 39(2):269–279

    Article  PubMed  Google Scholar 

  38. Working PK (1988) Male reproductive toxicology: comparison of the human to animal models. Environ Health Perspect 77:37–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Scialli AR, Clark RV, Chapin RE (2018) Predictivity of nonclinical male reproductive findings for human effects. Birth Defects Res. 110(1):17–26

    Article  CAS  PubMed  Google Scholar 

  40. Schmidt A, Schmidt A, Markert UR (2021) The road (not) taken – Placental transfer and interspecies differences. Placenta 115:70–77

    Article  PubMed  Google Scholar 

  41. Powles-Glover N, Mitchard T, Stewart J (2015) Time course for onset and recovery from effects of a novel male reproductive toxicant: Implications for apical preclinical study designs. Birth Defects Res B Dev Reprod Toxicol 104(3):91–99

    Article  CAS  PubMed  Google Scholar 

  42. Cora MC, Kooistra L, Travlos G (2015) Vaginal cytology of the laboratory rat and mouse: review and criteria for the staging of the estrous cycle using stained vaginal smears. Toxicol Pathol 43(6):776–793

    Article  CAS  PubMed  Google Scholar 

  43. Byers SL, Wiles MV, Dunn SL, Taft RA (2012) Mouse estrous cycle identification tool and images. PloS One 7(4):e35538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ajayi AF, Akhigbe RE (2020) Staging of the estrous cycle and induction of estrus in experimental rodents: an update. Fertil Res Pract 6:5

    Article  PubMed  PubMed Central  Google Scholar 

  45. Vargesson N (2019) The teratogenic effects of thalidomide on limbs. J Hand Surg Eur 44(1):88–95

    Article  Google Scholar 

  46. Ito T, Handa H (2012) Deciphering the mystery of thalidomide teratogenicity. Congenit Anom 52:1–7. https://doi.org/10.1111/j.1741-4520.2011.00351.x

    Article  CAS  Google Scholar 

  47. Ito T, Handa H (2020) Molecular mechanisms of thalidomide and its derivatives. Proc Jpn Acad Ser B Phys Biol Sci 96(6):189–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim JH, Scialli AR (2011) Thalidomide: the tragedy of birth defects and the effective treatment of disease. Toxicol Sci 122(1):1–6

    Article  CAS  PubMed  Google Scholar 

  49. Lee ST, Welch KD, Panter KE, Gardner DR, Garrossian M, Chang CWT (2014) Cyclopamine: from cyclops lambs to cancer treatment. J Agric Food Chem 62(30):7355–7362

    Article  CAS  PubMed  Google Scholar 

  50. Wang W, Jian Y, Cai B, Wang M, Chen M, Huang H (2017) All-trans retinoic acid-induced craniofacial malformation model: a prenatal and postnatal morphological analysis. Cleft Palate Craniofac J 54(4):391–399

    Article  PubMed  Google Scholar 

  51. Coluccia A, Belfiore D, Bizzoca A, Borracci P, Trerotoli P, Gennarini G et al (2008) Gestational all-trans retinoic acid treatment in the rat: neurofunctional changes and cerebellar phenotype. Neurotoxicol Teratol 30(5):395–403

    Article  CAS  PubMed  Google Scholar 

  52. Yoshitaka H, Kaneki N (1988) How it came about the finding of methyl mercury poisoning in Minamata district: identification of human teratogens. Congenit Anom 28:S59–S69

    Google Scholar 

  53. Léonard A, Jacquet P, Lauwerys RR (1983) Mutagenicity and teratogenicity of mercury compounds. Mutat Res 114(1):1–18

    Article  PubMed  Google Scholar 

  54. Beekhuijzen M (2017) The era of 3Rs implementation in developmental and reproductive toxicity (DART) testing: current overview and future perspectives. Reprod Toxicol 72:86–96

    Article  CAS  PubMed  Google Scholar 

  55. Palermo CM, Foreman JE, Wikoff DS, Lea I (2021) Development of a putative adverse outcome pathway network for male rat reproductive tract abnormalities with specific considerations for the androgen sensitive window of development. Curr Res Toxicol 2:254–271

    Article  PubMed  PubMed Central  Google Scholar 

  56. Barrow P (2023) An assessment of the reliability of 52 enhanced preliminary embryofetal development studies to detect developmental toxicity. Birth Defects Res 115:218. https://doi.org/10.1002/bdr2.2108

    Article  CAS  PubMed  Google Scholar 

  57. Scialli AR, Daston G, Chen C, Coder PS, Euling SY, Foreman J et al (2018) Rethinking developmental toxicity testing: Evolution or revolution? Birth Defects Res. 110(10):840–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yin L, Wang XJ, Chen DX, Liu XN, Wang XJ (2020) Humanized mouse model: a review on preclinical applications for cancer immunotherapy. Am J Cancer Res 10(12):4568–4584

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Morton JJ, Alzofon N, Jimeno A (2020) The humanized mouse: emerging translational potential. Mol Carcinog 59(7):830–838

    Article  CAS  PubMed  Google Scholar 

  60. Barrow P (2022) Review of embryo-fetal developmental toxicity studies performed for pharmaceuticals approved by FDA in 2020 and 2021. Reprod Toxicol 112:100–108

    Article  CAS  PubMed  Google Scholar 

  61. Theunissen PT, Beken S, Beyer BK, Breslin WJ, Cappon GD, Chen CL et al (2016) Comparison of rat and rabbit embryo–fetal developmental toxicity data for 379 pharmaceuticals: on the nature and severity of developmental effects. Crit Rev Toxicol 46(10):900–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Barrow P, Clemann N (2021) Review of embryo-fetal developmental toxicity studies performed for pharmaceuticals approved by FDA in 2018 and 2019. Reprod Toxicol 99:144–151

    Article  CAS  PubMed  Google Scholar 

  63. Barrow P (2018) Review of embryo-fetal developmental toxicity studies performed for pharmaceuticals approved by FDA in 2016 and 2017. Reprod Toxicol 80:117–125

    Article  CAS  PubMed  Google Scholar 

  64. FDA (2022) Nonclinical considerations for mitigating nonhuman primate supply constraints arising from the COVID-19 pandemic. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/nonclinical-considerations-mitigating-nonhuman-primate-supply-constraints-arising-covid-19-pandemic

  65. Andrews PA, Blanset D, Costa PL, Green M, Green ML, Jacobs A et al (2019) Analysis of exposure margins in developmental toxicity studies for detection of human teratogens. Regul Toxicol Pharmacol 105:62–68

    Article  CAS  PubMed  Google Scholar 

  66. Andrews PA, McNerney ME, DeGeorge JJ (2019) Exposure assessments in reproductive and developmental toxicity testing: an IQ-DruSafe industry survey on current practices and experiences in support of exposure-based high dose selection. Regul Toxicol Pharmacol 107:104413

    Article  CAS  PubMed  Google Scholar 

  67. Shroukh WA, Steinke DT, Willis SC (2020) Risk management of teratogenic medicines: a systematic review. Birth Defects Res. 112(20):1755–1786

    Article  CAS  PubMed  Google Scholar 

  68. Scialli AR (2020) Teratogen? Birth Defects Res. 112(15):1103–1104

    Article  CAS  PubMed  Google Scholar 

  69. Janer G, Slob W, Hakkert BC, Vermeire T, Piersma AH (2008) A retrospective analysis of developmental toxicity studies in rat and rabbit: what is the added value of the rabbit as an additional test species? Regul Toxicol Pharmacol 50(2):206–217

    Article  CAS  PubMed  Google Scholar 

  70. Scialli AR (1987) Is stress a developmental toxin? Reprod Toxicol 1(3):163–171

    Article  PubMed  Google Scholar 

  71. Makris SL, Solomon HM, Clark R, Shiota K, Barbellion S, Buschmann J et al (2009) Terminology of developmental abnormalities in common laboratory mammals (version 2). Reprod Toxicol Congenit Anom 28(86):371–434

    Article  CAS  Google Scholar 

  72. Posobiec LM, Laffan SB (2021) Dose range finding approach for rodent preweaning juvenile animal studies. Birth Defects Res. 113(5):409–426

    Article  CAS  PubMed  Google Scholar 

  73. Neal-Kluever A, Fisher J, Grylack L, Kakiuchi-Kiyota S, Halpern W (2019) Physiology of the neonatal gastrointestinal system relevant to the disposition of orally administered medications. Drug Metab Dispos 47:296–313. https://doi.org/10.1124/dmd.118.084418

    Article  CAS  PubMed  Google Scholar 

  74. Downes NJ (2018) Consideration of the development of the gastrointestinal tract in the choice of species for regulatory juvenile studies. Birth Defects Res 110(1):56–62

    Article  CAS  PubMed  Google Scholar 

  75. Schwartz CL, Christiansen S, Hass U, Ramhøj L, Axelstad M, Löbl NM et al (2021) On the use and interpretation of areola/nipple retention as a biomarker for anti-androgenic effects in rat toxicity studies. Front Toxicol 3:730752

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pedersen EB, Christiansen S, Svingen T (2022) AOP key event relationship report: linking androgen receptor antagonism with nipple retention. Curr Res Toxicol 3:100085. https://doi.org/10.1016/j.crtox.2022.100085

    Article  PubMed  PubMed Central  Google Scholar 

  77. Weinbauer GF, Fuchs A, Niehaus M, Luetjens CM (2011) The enhanced pre- and postnatal study for nonhuman primates: update and perspectives. Birth Defects Res C Embryo Today 93(4):324–333

    Article  CAS  PubMed  Google Scholar 

  78. DeSesso JM, Williams AL, Ahuja A, Bowman CJ, Hurtt ME (2012) The placenta, transfer of immunoglobulins, and safety assessment of biopharmaceuticals in pregnancy. Crit Rev Toxicol 42(3):185–210

    Article  CAS  PubMed  Google Scholar 

  79. Luetjens CM, Fuchs A, Baker A, Weinbauer GF (2020) Group size experiences with enhanced pre- and postnatal development studies in the long-tailed macaque (Macaca fascicularis). Primate Biol 7(1):1–4

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rocca M, Morford LL, Blanset DL, Halpern WG, Cavagnaro J, Bowman CJ (2018) Applying a weight of evidence approach to the evaluation of developmental toxicity of biopharmaceuticals. Regul Toxicol Pharmacol 98:69–79

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy Halpern .

Editor information

Editors and Affiliations

Ethics declarations

The author declares no conflict of interest with the content of this chapter. At the time of writing, the author was an employee of Genentech, A Member of the Roche Group.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Halpern, W. (2023). General Design Considerations in Reproductive and Developmental Toxicity Studies. In: Jagadeesh, G., Balakumar, P., Senatore, F. (eds) The Quintessence of Basic and Clinical Research and Scientific Publishing. Springer, Singapore. https://doi.org/10.1007/978-981-99-1284-1_6

Download citation

Publish with us

Policies and ethics