Skip to main content

Physiological Changes in the Local Onco-Sphere: Angiogenesis

  • Chapter
  • First Online:
Tumor Ecosystem
  • 326 Accesses

Abstract

Angiogenesis plays a critical role in the growth of cancer as tumors consistently require ample blood supply, especially during their exponential growth phase. Tumors will activate angiogenesis pathways through secretion of chemokines and cytokines if they are to grow beyond a few millimeters in size. In this chapter, we will focus on the importance of tumor in initiating angiogenesis in the local onco-sphere, and how angiogenesis also encourages cancer metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    Article  CAS  PubMed  Google Scholar 

  2. Cao Y, Arbiser J, D'Amato RJ, D'Amore PA, Ingber DE, Kerbel R et al (2011) Forty-year journey of angiogenesis translational research. Sci Transl Med 3(114):114rv3

    Article  PubMed  PubMed Central  Google Scholar 

  3. Folkman J, Merler E, Abernathy C, Williams G (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133(2):275–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lugano R, Ramachandran M, Dimberg A (2020) Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci 77(9):1745–1770

    Article  CAS  PubMed  Google Scholar 

  5. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364

    Article  CAS  PubMed  Google Scholar 

  6. Hanahan D (1985) Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315(6015):115–122

    Article  CAS  PubMed  Google Scholar 

  7. Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R et al (2018) Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 21(3):425–532

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jakobsson L, Bentley K, Gerhardt H (2009) VEGFRs and notch: a dynamic collaboration in vascular patterning. Biochem Soc Trans 37(Pt 6):1233–1236

    Article  CAS  PubMed  Google Scholar 

  9. Tammela T, Zarkada G, Wallgard E, Murtomäki A, Suchting S, Wirzenius M et al (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454(7204):656–660

    Article  CAS  PubMed  Google Scholar 

  10. Strasser GA, Kaminker JS, Tessier-Lavigne M (2010) Microarray analysis of retinal endothelial tip cells identifies CXCR4 as a mediator of tip cell morphology and branching. Blood 115(24):5102–5110

    Article  CAS  PubMed  Google Scholar 

  11. Shawber CJ, Funahashi Y, Francisco E, Vorontchikhina M, Kitamura Y, Stowell SA et al (2007) Notch alters VEGF responsiveness in human and murine endothelial cells by direct regulation of VEGFR-3 expression. J Clin Invest 117(11):3369–3382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jakobsson L, Franco CA, Bentley K, Collins RT, Ponsioen B, Aspalter IM et al (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12(10):943–953

    Article  CAS  PubMed  Google Scholar 

  13. Hellström M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P et al (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129):776–780

    Article  PubMed  Google Scholar 

  14. Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD et al (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci U S A 104(9):3219–3224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Harrington LS, Sainson RC, Williams CK, Taylor JM, Shi W, Li JL et al (2008) Regulation of multiple angiogenic pathways by Dll4 and notch in human umbilical vein endothelial cells. Microvasc Res 75(2):144–154

    Article  CAS  PubMed  Google Scholar 

  16. Funahashi Y, Shawber CJ, Vorontchikhina M, Sharma A, Outtz HH, Kitajewski J (2010) Notch regulates the angiogenic response via induction of VEGFR-1. J Angiogenes Res 2(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fantin A, Vieira JM, Plein A, Denti L, Fruttiger M, Pollard JW et al (2013) NRP1 acts cell autonomously in endothelium to promote tip cell function during sprouting angiogenesis. Blood 121(12):2352–2362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Segarra M, Ohnuki H, Maric D, Salvucci O, Hou X, Kumar A et al (2012) Semaphorin 6A regulates angiogenesis by modulating VEGF signaling. Blood 120(19):4104–4115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Phng LK, Potente M, Leslie JD, Babbage J, Nyqvist D, Lobov I et al (2009) Nrarp coordinates endothelial notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell 16(1):70–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Patan S, Alvarez MJ, Schittny JC, Burri PH (1992) Intussusceptive microvascular growth: a common alternative to capillary sprouting. Arch Histol Cytol 55(Suppl):65–75

    Article  PubMed  Google Scholar 

  22. Burri PH, Tarek MR (1990) A novel mechanism of capillary growth in the rat pulmonary microcirculation. Anat Rec 228(1):35–45

    Article  CAS  PubMed  Google Scholar 

  23. Hellström M, Kalén M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126(14):3047–3055

    Article  PubMed  Google Scholar 

  24. Wilting J, Birkenhäger R, Eichmann A, Kurz H, Martiny-Baron G, Marmé D et al (1996) VEGF121 induces proliferation of vascular endothelial cells and expression of flk-1 without affecting lymphatic vessels of chorioallantoic membrane. Dev Biol 176(1):76–85

    Article  CAS  PubMed  Google Scholar 

  25. Crivellato E, Nico B, Vacca A, Djonov V, Presta M, Ribatti D (2004) Recombinant human erythropoietin induces intussusceptive microvascular growth in vivo. Leukemia 18(2):331–336

    Article  CAS  PubMed  Google Scholar 

  26. Ribatti D, Nico B, Floris C, Mangieri D, Piras F, Ennas MG et al (2005) Microvascular density, vascular endothelial growth factor immunoreactivity in tumor cells, vessel diameter and intussusceptive microvascular growth in primary melanoma. Oncol Rep 14(1):81–84

    PubMed  Google Scholar 

  27. Nico B, Crivellato E, Guidolin D, Annese T, Longo V, Finato N et al (2010) Intussusceptive microvascular growth in human glioma. Clin Exp Med 10(2):93–98

    Article  CAS  PubMed  Google Scholar 

  28. Patan S, Munn LL, Jain RK (1996) Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: a novel mechanism of tumor angiogenesis. Microvasc Res 51(2):260–272

    Article  CAS  PubMed  Google Scholar 

  29. Djonov V, Högger K, Sedlacek R, Laissue J, Draeger A (2001) MMP-19: cellular localization of a novel metalloproteinase within normal breast tissue and mammary gland tumours. J Pathol 195(2):147–155

    Article  CAS  PubMed  Google Scholar 

  30. Risau W, Sariola H, Zerwes HG, Sasse J, Ekblom P, Kemler R et al (1988) Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 102(3):471–478

    Article  CAS  PubMed  Google Scholar 

  31. Risau W, Lemmon V (1988) Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev Biol 125(2):441–450

    Article  CAS  PubMed  Google Scholar 

  32. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967

    Article  CAS  PubMed  Google Scholar 

  33. Bussolati B, Grange C, Camussi G (2011) Tumor exploits alternative strategies to achieve vascularization. FASEB J 25(9):2874–2882

    Article  CAS  PubMed  Google Scholar 

  34. Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM (2010) Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 120(3):694–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ahn JB, Rha SY, Shin SJ, Jeung HC, Kim TS, Zhang X et al (2010) Circulating endothelial progenitor cells (EPC) for tumor vasculogenesis in gastric cancer patients. Cancer Lett 288(1):124–132

    Article  CAS  PubMed  Google Scholar 

  36. Greenfield JP, Cobb WS, Lyden D (2010) Resisting arrest: a switch from angiogenesis to vasculogenesis in recurrent malignant gliomas. J Clin Invest 120(3):663–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chopra H, Hung MK, Kwong DL, Zhang CF, Pow EHN (2018) Insights into endothelial progenitor cells: origin, classification, potentials, and prospects. Stem Cells Int 2018:9847015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schmidt A, Brixius K, Bloch W (2007) Endothelial precursor cell migration during vasculogenesis. Circ Res 101(2):125–136

    Article  CAS  PubMed  Google Scholar 

  39. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H et al (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18(14):3964–3972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, Tateno M et al (2001) Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 193(9):1005–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kopp HG, Ramos CA, Rafii S (2006) Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue. Curr Opin Hematol 13(3):175–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chang EI, Chang EI, Thangarajah H, Hamou C, Gurtner GC (2007) Hypoxia, hormones, and endothelial progenitor cells in hemangioma. Lymphat Res Biol 5(4):237–243

    Article  CAS  PubMed  Google Scholar 

  43. Spring H, Schüler T, Arnold B, Hämmerling GJ, Ganss R (2005) Chemokines direct endothelial progenitors into tumor neovessels. Proc Natl Acad Sci U S A 102(50):18111–18116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nakamura N, Naruse K, Matsuki T, Hamada Y, Nakashima E, Kamiya H et al (2009) Adiponectin promotes migration activities of endothelial progenitor cells via Cdc42/Rac1. FEBS Lett 583(15):2457–2463

    Article  CAS  PubMed  Google Scholar 

  45. Fausto N (2000) Vasculogenic mimicry in tumors. Fact or artifact? Am J Pathol 156(2):359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Seftor RE, Hess AR, Seftor EA, Kirschmann DA, Hardy KM, Margaryan NV et al (2012) Tumor cell vasculogenic mimicry: from controversy to therapeutic promise. Am J Pathol 181(4):1115–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Folberg R, Maniotis AJ (2004) Vasculogenic mimicry. APMIS: acta pathologica, microbiologica, et immunologica. Scandinavica 112(7–8):508–525

    Google Scholar 

  48. Angara K, Borin TF, Arbab AS (2017) Vascular mimicry: a novel neovascularization mechanism driving anti-Angiogenic therapy (AAT) resistance in glioblastoma. Transl Oncol 10(4):650–660

    Article  PubMed  PubMed Central  Google Scholar 

  49. Valyi-Nagy K, Kormos B, Ali M, Shukla D, Valyi-Nagy T (2012) Stem cell marker CD271 is expressed by vasculogenic mimicry-forming uveal melanoma cells in three-dimensional cultures. Mol Vis 18:588–592

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Comito G, Calvani M, Giannoni E, Bianchini F, Calorini L, Torre E et al (2011) HIF-1α stabilization by mitochondrial ROS promotes met-dependent invasive growth and vasculogenic mimicry in melanoma cells. Free Radic Biol Med 51(4):893–904

    Article  CAS  PubMed  Google Scholar 

  51. Angara K, Rashid MH, Shankar A, Ara R, Iskander A, Borin TF et al (2017) Vascular mimicry in glioblastoma following anti-angiogenic and anti-20-HETE therapies. Histol Histopathol 32(9):917–928

    CAS  PubMed  Google Scholar 

  52. Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T et al (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468(7325):824–828

    Article  CAS  PubMed  Google Scholar 

  53. Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A et al (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468(7325):829–833

    Article  CAS  PubMed  Google Scholar 

  54. Mei X, Chen YS, Chen FR, Xi SY, Chen ZP (2017) Glioblastoma stem cell differentiation into endothelial cells evidenced through live-cell imaging. Neuro-Oncology 19(8):1109–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bussolati B, Grange C, Sapino A, Camussi G (2009) Endothelial cell differentiation of human breast tumour stem/progenitor cells. J Cell Mol Med 13(2):309–319

    Article  CAS  PubMed  Google Scholar 

  56. Alvero AB, Fu HH, Holmberg J, Visintin I, Mor L, Marquina CC et al (2009) Stem-like ovarian cancer cells can serve as tumor vascular progenitors. Stem Cells 27(10):2405–2413

    Article  CAS  PubMed  Google Scholar 

  57. Zhao Y, Dong J, Huang Q, Lou M, Wang A, Lan Q (2010) Endothelial cell transdifferentiation of human glioma stem progenitor cells in vitro. Brain Res Bull 82(5–6):308–312

    Article  CAS  PubMed  Google Scholar 

  58. Kulla A, Burkhardt K, Meyer-Puttlitz B, Teesalu T, Asser T, Wiestler OD et al (2003) Analysis of the TP53 gene in laser-microdissected glioblastoma vasculature. Acta Neuropathol 105(4):328–332

    Article  CAS  PubMed  Google Scholar 

  59. Rodriguez FJ, Orr BA, Ligon KL, Eberhart CG (2012) Neoplastic cells are a rare component in human glioblastoma microvasculature. Oncotarget 3(1):98–106

    Article  PubMed Central  Google Scholar 

  60. Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK et al (2013) Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153(1):139–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kuczynski EA, Vermeulen PB, Pezzella F, Kerbel RS, Reynolds AR (2019) Vessel co-option in cancer. Nat Rev Clin Oncol 16(8):469–493

    Article  CAS  PubMed  Google Scholar 

  62. Latacz E, Caspani E, Barnhill R, Lugassy C, Verhoef C, Grunhagen D et al (2020) Pathological features of vessel co-option versus sprouting angiogenesis. Angiogenesis 23(1):43–54

    Article  CAS  PubMed  Google Scholar 

  63. Matsumoto K, Yoshitomi H, Rossant J, Zaret KS (2001) Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294(5542):559–563

    Article  CAS  PubMed  Google Scholar 

  64. Bentolila LA, Prakash R, Mihic-Probst D, Wadehra M, Kleinman HK, Carmichael TS et al (2016) Imaging of Angiotropism/vascular co-option in a murine model of brain melanoma: implications for melanoma progression along extravascular pathways. Sci Rep 6:23834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Enderling H, Hlatky L, Hahnfeldt P (2009) Migration rules: tumours are conglomerates of self-metastases. Br J Cancer 100(12):1917–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15(1):102–111

    Article  CAS  PubMed  Google Scholar 

  67. McDonald DM, Baluk P (2005) Imaging of angiogenesis in inflamed airways and tumors: newly formed blood vessels are not alike and may be wildly abnormal: Parker B Francis lecture. Chest 128(6 Suppl):602s–608s

    Article  PubMed  Google Scholar 

  68. Kimura H, Braun RD, Ong ET, Hsu R, Secomb TW, Papahadjopoulos D et al (1996) Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res 56(23):5522–5528

    CAS  PubMed  Google Scholar 

  69. Bennewith KL, Durand RE (2004) Quantifying transient hypoxia in human tumor xenografts by flow cytometry. Cancer Res 64(17):6183–6189

    Article  CAS  PubMed  Google Scholar 

  70. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S et al (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156(4):1363–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Padera TP, Stoll BR, Tooredman JB, Capen D, di Tomaso E, Jain RK (2004) Pathology: cancer cells compress intratumour vessels. Nature 427(6976):695

    Article  CAS  PubMed  Google Scholar 

  72. Abramsson A, Berlin O, Papayan H, Paulin D, Shani M, Betsholtz C (2002) Analysis of mural cell recruitment to tumor vessels. Circulation 105(1):112–117

    Article  CAS  PubMed  Google Scholar 

  73. Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160(3):985–1000

    Article  PubMed  PubMed Central  Google Scholar 

  74. Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM (2003) Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol 163(5):1801–1815

    Article  PubMed  PubMed Central  Google Scholar 

  75. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E et al (2000) Genes expressed in human tumor endothelium. Science 289(5482):1197–1202

    Article  CAS  PubMed  Google Scholar 

  76. Zhang L, Yang N, Park JW, Katsaros D, Fracchioli S, Cao G et al (2003) Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res 63(12):3403–3412

    CAS  PubMed  Google Scholar 

  77. Carson-Walter EB, Watkins DN, Nanda A, Vogelstein B, Kinzler KW, St CB (2001) Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res 61(18):6649–6655

    CAS  PubMed  Google Scholar 

  78. Huang X, Bai X, Cao Y, Wu J, Huang M, Tang D et al (2010) Lymphoma endothelium preferentially expresses Tim-3 and facilitates the progression of lymphoma by mediating immune evasion. J Exp Med 207(3):505–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dieterich LC, Mellberg S, Langenkamp E, Zhang L, Zieba A, Salomäki H et al (2012) Transcriptional profiling of human glioblastoma vessels indicates a key role of VEGF-A and TGFβ2 in vascular abnormalization. J Pathol 228(3):378–390

    Article  CAS  PubMed  Google Scholar 

  80. Roudnicky F, Poyet C, Wild P, Krampitz S, Negrini F, Huggenberger R et al (2013) Endocan is upregulated on tumor vessels in invasive bladder cancer where it mediates VEGF-a-induced angiogenesis. Cancer Res 73(3):1097–1106

    Article  CAS  PubMed  Google Scholar 

  81. Zhao Q, Eichten A, Parveen A, Adler C, Huang Y, Wang W et al (2018) Single-cell transcriptome analyses reveal endothelial cell heterogeneity in Tumors and changes following antiangiogenic treatment. Cancer Res 78(9):2370–2382

    Article  CAS  PubMed  Google Scholar 

  82. Buckanovich RJ, Sasaroli D, O'Brien-Jenkins A, Botbyl J, Hammond R, Katsaros D et al (2007) Tumor vascular proteins as biomarkers in ovarian cancer. J Clin Oncol 25(7):852–861

    Article  CAS  PubMed  Google Scholar 

  83. Zhang L, He L, Lugano R, Roodakker K, Bergqvist M, Smits A et al (2018) IDH mutation status is associated with distinct vascular gene expression signatures in lower-grade gliomas. Neuro Oncol 20(11):1505–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Masiero M, Simões FC, Han HD, Snell C, Peterkin T, Bridges E et al (2013) A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis. Cancer Cell 24(2):229–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Langenkamp E, Zhang L, Lugano R, Huang H, Elhassan TE, Georganaki M et al (2015) Elevated expression of the C-type lectin CD93 in the glioblastoma vasculature regulates cytoskeletal rearrangements that enhance vessel function and reduce host survival. Cancer Res 75(21):4504–4516

    Article  CAS  PubMed  Google Scholar 

  86. Viski C, König C, Kijewska M, Mogler C, Isacke CM, Augustin HG (2016) Endosialin-expressing pericytes promote metastatic dissemination. Cancer Res 76(18):5313–5325

    Article  CAS  PubMed  Google Scholar 

  87. Motz GT, Santoro SP, Wang LP, Garrabrant T, Lastra RR, Hagemann IS et al (2014) Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med 20(6):607–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Buckanovich RJ, Facciabene A, Kim S, Benencia F, Sasaroli D, Balint K et al (2008) Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat Med 14(1):28–36

    Article  CAS  PubMed  Google Scholar 

  89. Phoenix TN, Patmore DM, Boop S, Boulos N, Jacus MO, Patel YT et al (2016) Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell 29(4):508–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Apte RS, Chen DS, Ferrara N (2019) VEGF in signaling and disease: beyond discovery and development. Cell 176(6):1248–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Claesson-Welsh L, Welsh M (2013) VEGFA and tumour angiogenesis. J Intern Med 273(2):114–127

    Article  CAS  PubMed  Google Scholar 

  92. Jiang BH, Liu LZ (2009) PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res 102:19–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lamalice L, Le Boeuf F, Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100(6):782–794

    Article  CAS  PubMed  Google Scholar 

  94. van Hinsbergh VW, Koolwijk P (2008) Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res 78(2):203–212

    Article  PubMed  Google Scholar 

  95. Azzi S, Hebda JK, Gavard J (2013) Vascular permeability and drug delivery in cancers. Front Oncol 3:211

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hofer E, Schweighofer B (2007) Signal transduction induced in endothelial cells by growth factor receptors involved in angiogenesis. Thromb Haemost 97(3):355–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Autiero M, Waltenberger J, Communi D, Kranz A, Moons L, Lambrechts D et al (2003) Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 9(7):936–943

    Article  CAS  PubMed  Google Scholar 

  98. Schomber T, Kopfstein L, Djonov V, Albrecht I, Baeriswyl V, Strittmatter K et al (2007) Placental growth factor-1 attenuates vascular endothelial growth factor-A-dependent tumor angiogenesis during beta cell carcinogenesis. Cancer Res 67(22):10840–10848

    Article  CAS  PubMed  Google Scholar 

  99. Franco M, Roswall P, Cortez E, Hanahan D, Pietras K (2011) Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression. Blood 118(10):2906–2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Betsholtz C (2004) Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev 15(4):215–228

    Article  CAS  PubMed  Google Scholar 

  101. Guo P, Hu B, Gu W, Xu L, Wang D, Huang HJ et al (2003) Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am J Pathol 162(4):1083–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10(2):116–129

    Article  CAS  PubMed  Google Scholar 

  103. Yu P, Wilhelm K, Dubrac A, Tung JK, Alves TC, Fang JS et al (2017) FGF-dependent metabolic control of vascular development. Nature 545(7653):224–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Incio J, Ligibel JA, McManus DT, Suboj P, Jung K, Kawaguchi K et al (2018) Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2. Sci Transl Med 10(432):eaag0945

    Article  PubMed  PubMed Central  Google Scholar 

  105. Surawska H, Ma PC, Salgia R (2004) The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev 15(6):419–433

    Article  CAS  PubMed  Google Scholar 

  106. Dodelet VC, Pasquale EB (2000) Eph receptors and ephrin ligands: embryogenesis to tumorigenesis. Oncogene 19(49):5614–5619

    Article  CAS  PubMed  Google Scholar 

  107. Dong Y, Wang J, Sheng Z, Li G, Ma H, Wang X et al (2009) Downregulation of EphA1 in colorectal carcinomas correlates with invasion and metastasis. Mod Pathol 22(1):151–160

    Article  CAS  PubMed  Google Scholar 

  108. Hafner C, Bataille F, Meyer S, Becker B, Roesch A, Landthaler M et al (2003) Loss of EphB6 expression in metastatic melanoma. Int J Oncol 23(6):1553–1559

    CAS  Google Scholar 

  109. Ogawa K, Pasqualini R, Lindberg RA, Kain R, Freeman AL, Pasquale EB (2000) The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene 19(52):6043–6052

    Article  CAS  PubMed  Google Scholar 

  110. Dobrzanski P, Hunter K, Jones-Bolin S, Chang H, Robinson C, Pritchard S et al (2004) Antiangiogenic and antitumor efficacy of EphA2 receptor antagonist. Cancer Res 64(3):910–919

    Article  CAS  PubMed  Google Scholar 

  111. Brantley DM, Cheng N, Thompson EJ, Lin Q, Brekken RA, Thorpe PE et al (2002) Soluble Eph a receptors inhibit tumor angiogenesis and progression in vivo. Oncogene 21(46):7011–7026

    Article  CAS  PubMed  Google Scholar 

  112. Cheng N, Brantley D, Fang WB, Liu H, Fanslow W, Cerretti DP et al (2003) Inhibition of VEGF-dependent multistage carcinogenesis by soluble EphA receptors. Neoplasia 5(5):445–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Noren NK, Lu M, Freeman AL, Koolpe M, Pasquale EB (2004) Interplay between EphB4 on tumor cells and vascular ephrin-B2 regulates tumor growth. Proc Natl Acad Sci U S A 101(15):5583–5588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Uhl C, Markel M, Broggini T, Nieminen M, Kremenetskaia I, Vajkoczy P et al (2018) EphB4 mediates resistance to antiangiogenic therapy in experimental glioma. Angiogenesis 21(4):873–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Krusche B, Ottone C, Clements MP, Johnstone ER, Goetsch K, Lieven H et al (2016) EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells. Elife 5:e14845

    Article  PubMed  PubMed Central  Google Scholar 

  116. Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A et al (2010) Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465(7297):483–486

    Article  CAS  PubMed  Google Scholar 

  117. Sawamiphak S, Seidel S, Essmann CL, Wilkinson GA, Pitulescu ME, Acker T et al (2010) Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465(7297):487–491

    Article  CAS  PubMed  Google Scholar 

  118. Reiss Y, Knedla A, Tal AO, Schmidt MHH, Jugold M, Kiessling F et al (2009) Switching of vascular phenotypes within a murine breast cancer model induced by angiopoietin-2. J Pathol 217(4):571–580

    Article  CAS  PubMed  Google Scholar 

  119. Shim WS, Ho IA, Wong PE (2007) Angiopoietin: a TIE(d) balance in tumor angiogenesis. Mol Cancer Res 5(7):655–665

    Article  CAS  PubMed  Google Scholar 

  120. Fiedler U, Reiss Y, Scharpfenecker M, Grunow V, Koidl S, Thurston G et al (2006) Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 12(2):235–239

    Article  CAS  PubMed  Google Scholar 

  121. Chae SS, Kamoun WS, Farrar CT, Kirkpatrick ND, Niemeyer E, de Graaf AM et al (2010) Angiopoietin-2 interferes with anti-VEGFR2-induced vessel normalization and survival benefit in mice bearing gliomas. Clin Cancer Res 16(14):3618–3627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Peterson TE, Kirkpatrick ND, Huang Y, Farrar CT, Marijt KA, Kloepper J et al (2016) Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proc Natl Acad Sci U S A 113(16):4470–4475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kloepper J, Riedemann L, Amoozgar Z, Seano G, Susek K, Yu V et al (2016) Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc Natl Acad Sci U S A 113(16):4476–4481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wu FT, Man S, Xu P, Chow A, Paez-Ribes M, Lee CR et al (2016) Efficacy of Cotargeting Angiopoietin-2 and the VEGF pathway in the adjuvant postsurgical setting for early breast, colorectal, and renal cancers. Cancer Res 76(23):6988–7000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kälin RE, Kretz MP, Meyer AM, Kispert A, Heppner FL, Brändli AW (2007) Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis. Dev Biol 305(2):599–614

    Article  PubMed  Google Scholar 

  126. Berta J, Kenessey I, Dobos J, Tovari J, Klepetko W, Jan Ankersmit H et al (2010) Apelin expression in human non-small cell lung cancer: role in angiogenesis and prognosis. J Thorac Oncol 5(8):1120–1129

    Article  PubMed  Google Scholar 

  127. Tolkach Y, Ellinger J, Kremer A, Esser L, Müller SC, Stephan C et al (2019) Apelin and apelin receptor expression in renal cell carcinoma. Br J Cancer 120(6):633–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Seaman S, Stevens J, Yang MY, Logsdon D, Graff-Cherry C, St Croix B (2007) Genes that distinguish physiological and pathological angiogenesis. Cancer Cell 11(6):539–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Macaluso NJ, Pitkin SL, Maguire JJ, Davenport AP, Glen RC (2011) Discovery of a competitive apelin receptor (APJ) antagonist. ChemMedChem 6(6):1017–1023

    Article  CAS  PubMed  Google Scholar 

  130. Uribesalgo I, Hoffmann D, Zhang Y, Kavirayani A, Lazovic J, Berta J et al (2019) Apelin inhibition prevents resistance and metastasis associated with anti-angiogenic therapy. EMBO Mol Med 11(8):e9266

    Article  PubMed  PubMed Central  Google Scholar 

  131. Mastrella G, Hou M, Li M, Stoecklein VM, Zdouc N, Volmar MNM et al (2019) Targeting APLN/APLNR improves antiangiogenic efficiency and blunts proinvasive side effects of VEGFA/VEGFR2 blockade in glioblastoma. Cancer Res 79(9):2298–2313

    Article  CAS  PubMed  Google Scholar 

  132. Ijichi H, Chytil A, Gorska AE, Aakre ME, Bierie B, Tada M et al (2011) Inhibiting Cxcr2 disrupts tumor-stromal interactions and improves survival in a mouse model of pancreatic ductal adenocarcinoma. J Clin Invest 121(10):4106–4117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yang G, Rosen DG, Liu G, Yang F, Guo X, Xiao X et al (2010) CXCR2 promotes ovarian cancer growth through dysregulated cell cycle, diminished apoptosis, and enhanced angiogenesis. Clin Cancer Res 16(15):3875–3886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Smith ML, Olson TS, Ley K (2004) CXCR2- and E-selectin-induced neutrophil arrest during inflammation in vivo. J Exp Med 200(7):935–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Xu J, Liang J, Meng YM, Yan J, Yu XJ, Liu CQ et al (2017) Vascular CXCR4 expression promotes vessel sprouting and sensitivity to Sorafenib treatment in hepatocellular carcinoma. Clin Cancer Res 23(15):4482–4492

    Article  CAS  PubMed  Google Scholar 

  136. Martin D, Galisteo R, Gutkind JS (2009) CXCL8/IL8 stimulates vascular endothelial growth factor (VEGF) expression and the autocrine activation of VEGFR2 in endothelial cells by activating NFkappaB through the CBM (Carma3/Bcl10/Malt1) complex. J Biol Chem 284(10):6038–6042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Scapini P, Morini M, Tecchio C, Minghelli S, Di Carlo E, Tanghetti E et al (2004) CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. J Immunol 172(8):5034–5040

    Article  CAS  PubMed  Google Scholar 

  138. Zhao X, Town JR, Li F, Zhang X, Cockcroft DW, Gordon JR (2009) ELR-CXC chemokine receptor antagonism targets inflammatory responses at multiple levels. J Immunol 182(5):3213–3222

    Article  CAS  PubMed  Google Scholar 

  139. Li A, Varney ML, Valasek J, Godfrey M, Dave BJ, Singh RK (2005) Autocrine role of interleukin-8 in induction of endothelial cell proliferation, survival, migration and MMP-2 production and angiogenesis. Angiogenesis 8(1):63–71

    Article  CAS  PubMed  Google Scholar 

  140. Kobayashi Y (2008) The role of chemokines in neutrophil biology. Front Biosci 13:2400–2407

    Article  CAS  PubMed  Google Scholar 

  141. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10(8):858–864

    Article  CAS  PubMed  Google Scholar 

  142. Wolf MJ, Hoos A, Bauer J, Boettcher S, Knust M, Weber A et al (2012) Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway. Cancer Cell 22(1):91–105

    Article  CAS  PubMed  Google Scholar 

  143. Chen X, Wang Y, Nelson D, Tian S, Mulvey E, Patel B et al (2016) CCL2/CCR2 regulates the tumor microenvironment in HER-2/neu-driven mammary carcinomas in mice. PLoS One 11(11):e0165595

    Article  PubMed  PubMed Central  Google Scholar 

  144. Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14(2):163–176

    Article  PubMed  PubMed Central  Google Scholar 

  145. Gupta MK, Qin RY (2003) Mechanism and its regulation of tumor-induced angiogenesis. World J Gastroenterol 9(6):1144–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sainson RC, Johnston DA, Chu HC, Holderfield MT, Nakatsu MN, Crampton SP et al (2008) TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood 111(10):4997–5007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lu KV, Jong KA, Kim GY, Singh J, Dia EQ, Yoshimoto K et al (2005) Differential induction of glioblastoma migration and growth by two forms of pleiotrophin. J Biol Chem 280(29):26953–26964

    Article  CAS  PubMed  Google Scholar 

  148. Chen H, Campbell RA, Chang Y, Li M, Wang CS, Li J et al (2009) Pleiotrophin produced by multiple myeloma induces transdifferentiation of monocytes into vascular endothelial cells: a novel mechanism of tumor-induced vasculogenesis. Blood 113(9):1992–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhang L, Kundu S, Feenstra T, Li X, Jin C, Laaniste L et al (2015) Pleiotrophin promotes vascular abnormalization in gliomas and correlates with poor survival in patients with astrocytomas. Sci Signal 8(406):ra125

    Article  PubMed  Google Scholar 

  150. Acevedo L, Yu J, Erdjument-Bromage H, Miao RQ, Kim JE, Fulton D et al (2004) A new role for Nogo as a regulator of vascular remodeling. Nat Med 10(4):382–388

    Article  CAS  PubMed  Google Scholar 

  151. Zhu B, Chen S, Hu X, Jin X, Le Y, Cao L et al (2017) Knockout of the Nogo-B gene attenuates tumor growth and metastasis in hepatocellular carcinoma. Neoplasia 19(7):583–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cai H, Saiyin H, Liu X, Han D, Ji G, Qin B et al (2018) Nogo-B promotes tumor angiogenesis and provides a potential therapeutic target in hepatocellular carcinoma. Mol Oncol 12(12):2042–2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322

    Article  CAS  PubMed  Google Scholar 

  154. de Visser KE, Coussens LM (2006) The inflammatory tumor microenvironment and its impact on cancer development. Contrib Microbiol 13:118–137

    Article  PubMed  Google Scholar 

  155. Benelli R, Lorusso G, Albini A, Noonan DM (2006) Cytokines and chemokines as regulators of angiogenesis in health and disease. Curr Pharm Des 12(24):3101–3115

    Article  CAS  PubMed  Google Scholar 

  156. Albini A, Bruno A, Noonan DM, Mortara L (2018) Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: implications for immunotherapy. Front Immunol 9:527

    Article  PubMed  PubMed Central  Google Scholar 

  157. Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA et al (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66(23):11238–11246

    Article  CAS  PubMed  Google Scholar 

  158. Zhang W, Zhu XD, Sun HC, Xiong YQ, Zhuang PY, Xu HX et al (2010) Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin Cancer Res 16(13):3420–3430

    Article  CAS  PubMed  Google Scholar 

  159. Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22(2):231–237

    Article  CAS  PubMed  Google Scholar 

  160. Špirić Z, Eri Ž, Erić M (2015) Significance of vascular endothelial growth factor (VEGF)-C and VEGF-D in the progression of cutaneous melanoma. Int J Surg Pathol 23(8):629–637

    Article  PubMed  Google Scholar 

  161. Cejudo-Martín P, Morales-Ruiz M, Ros J, Navasa M, Fernández-Varo G, Fuster J et al (2002) Hypoxia is an inducer of vasodilator agents in peritoneal macrophages of cirrhotic patients. Hepatology 36(5):1172–1179

    Article  PubMed  Google Scholar 

  162. Zhang J, Sud S, Mizutani K, Gyetko MR, Pienta KJ (2011) Activation of urokinase plasminogen activator and its receptor axis is essential for macrophage infiltration in a prostate cancer mouse model. Neoplasia 13(1):23–30

    Article  PubMed  PubMed Central  Google Scholar 

  163. Coffelt SB, Wellenstein MD, de Visser KE (2016) Neutrophils in cancer: neutral no more. Nat Rev Cancer 16(7):431–446

    Article  CAS  PubMed  Google Scholar 

  164. Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37(3):208–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Jacob A, Prekeris R (2015) The regulation of MMP targeting to invadopodia during cancer metastasis. Front Cell Dev Biol 3:4

    Article  PubMed  PubMed Central  Google Scholar 

  166. Horikawa N, Abiko K, Matsumura N, Hamanishi J, Baba T, Yamaguchi K et al (2017) Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells. Clin Cancer Res 23(2):587–599

    Article  CAS  PubMed  Google Scholar 

  167. Karakhanova S, Link J, Heinrich M, Shevchenko I, Yang Y, Hassenpflug M et al (2015) Characterization of myeloid leukocytes and soluble mediators in pancreatic cancer: importance of myeloid-derived suppressor cells. Onco Targets Ther 4(4):e998519

    Google Scholar 

  168. Chun E, Lavoie S, Michaud M, Gallini CA, Kim J, Soucy G et al (2015) CCL2 promotes colorectal carcinogenesis by enhancing Polymorphonuclear myeloid-derived suppressor cell population and function. Cell Rep 12(2):244–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Obermajer N, Muthuswamy R, Odunsi K, Edwards RP, Kalinski P (2011) PGE(2)-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environment. Cancer Res 71(24):7463–7470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J et al (2007) Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450(7171):825–831

    Article  CAS  PubMed  Google Scholar 

  171. van Hooren L, Georganaki M, Huang H, Mangsbo SM, Dimberg A (2016) Sunitinib enhances the antitumor responses of agonistic CD40-antibody by reducing MDSCs and synergistically improving endothelial activation and T-cell recruitment. Oncotarget 7(31):50277–50289

    Article  PubMed  PubMed Central  Google Scholar 

  172. Tecchio C, Scapini P, Pizzolo G, Cassatella MA (2013) On the cytokines produced by human neutrophils in tumors. Semin Cancer Biol 23(3):159–170

    Article  CAS  PubMed  Google Scholar 

  173. Mueller MD, Lebovic DI, Garrett E, Taylor RN (2000) Neutrophils infiltrating the endometrium express vascular endothelial growth factor: potential role in endometrial angiogenesis. Fertil Steril 74(1):107–112

    Article  CAS  PubMed  Google Scholar 

  174. Heryanto B, Girling JE, Rogers PA (2004) Intravascular neutrophils partially mediate the endometrial endothelial cell proliferative response to oestrogen in ovariectomised mice. Reproduction 127(5):613–620

    Article  CAS  PubMed  Google Scholar 

  175. Shaw JP, Chuang N, Yee H, Shamamian P (2003) Polymorphonuclear neutrophils promote rFGF-2-induced angiogenesis in vivo. J Surg Res 109(1):37–42

    Article  CAS  PubMed  Google Scholar 

  176. Benelli R, Morini M, Carrozzino F, Ferrari N, Minghelli S, Santi L et al (2002) Neutrophils as a key cellular target for angiostatin: implications for regulation of angiogenesis and inflammation. FASEB J 16(2):267–269

    Article  CAS  PubMed  Google Scholar 

  177. Shaul ME, Fridlender ZG (2017) Neutrophils as active regulators of the immune system in the tumor microenvironment. J Leukoc Biol 102(2):343–349

    Article  CAS  PubMed  Google Scholar 

  178. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L et al (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16(3):183–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Nozawa H, Chiu C, Hanahan D (2006) Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A 103(33):12493–12498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Ardi VC, Kupriyanova TA, Deryugina EI, Quigley JP (2007) Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc Natl Acad Sci U S A 104(51):20262–20267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Blotnick S, Peoples GE, Freeman MR, Eberlein TJ, Klagsbrun M (1994) T lymphocytes synthesize and export heparin-binding epidermal growth factor-like growth factor and basic fibroblast growth factor, mitogens for vascular cells and fibroblasts: differential production and release by CD4+ and CD8+ T cells. Proc Natl Acad Sci U S A 91(8):2890–2894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Fathallah-Shaykh HM, Zhao LJ, Kafrouni AI, Smith GM, Forman J (2000) Gene transfer of IFN-gamma into established brain tumors represses growth by antiangiogenesis. J Immunol 164(1):217–222

    Article  CAS  PubMed  Google Scholar 

  183. Friesel R, Komoriya A, Maciag T (1987) Inhibition of endothelial cell proliferation by gamma-interferon. J Cell Biol 104(3):689–696

    Article  CAS  PubMed  Google Scholar 

  184. Madri JA, Pratt BM, Tucker AM (1988) Phenotypic modulation of endothelial cells by transforming growth factor-beta depends upon the composition and organization of the extracellular matrix. J Cell Biol 106(4):1375–1384

    Article  CAS  PubMed  Google Scholar 

  185. Sato N, Nariuchi H, Tsuruoka N, Nishihara T, Beitz JG, Calabresi P et al (1990) Actions of TNF and IFN-gamma on angiogenesis in vitro. J Invest Dermatol 95(6 Suppl):85s–89s

    Article  CAS  PubMed  Google Scholar 

  186. Maheshwari RK, Srikantan V, Bhartiya D, Kleinman HK, Grant DS (1991) Differential effects of interferon gamma and alpha on in vitro model of angiogenesis. J Cell Physiol 146(1):164–169

    Article  CAS  PubMed  Google Scholar 

  187. Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12(4):298–306

    Article  CAS  PubMed  Google Scholar 

  188. Strieter RM, Burdick MD, Gomperts BN, Belperio JA, Keane MP (2005) CXC chemokines in angiogenesis. Cytokine Growth Factor Rev 16(6):593–609

    Article  CAS  PubMed  Google Scholar 

  189. Burdick MD, Murray LA, Keane MP, Xue YY, Zisman DA, Belperio JA et al (2005) CXCL11 attenuates bleomycin-induced pulmonary fibrosis via inhibition of vascular remodeling. Am J Respir Crit Care Med 171(3):261–268

    Article  PubMed  Google Scholar 

  190. Lasagni L, Francalanci M, Annunziato F, Lazzeri E, Giannini S, Cosmi L et al (2003) An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 197(11):1537–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Yang C, Lee H, Pal S, Jove V, Deng J, Zhang W et al (2013) B cells promote tumor progression via STAT3 regulated-angiogenesis. PLoS One 8(5):e64159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Andreu P, Johansson M, Affara NI, Pucci F, Tan T, Junankar S et al (2010) FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 17(2):121–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S et al (2006) Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 12(9):1065–1074

    Article  CAS  PubMed  Google Scholar 

  194. Blois SM, Klapp BF, Barrientos G (2011) Decidualization and angiogenesis in early pregnancy: unravelling the functions of DC and NK cells. J Reprod Immunol 88(2):86–92

    Article  CAS  PubMed  Google Scholar 

  195. Keskin DB, Allan DS, Rybalov B, Andzelm MM, Stern JN, Kopcow HD et al (2007) TGFbeta promotes conversion of CD16+ peripheral blood NK cells into CD16- NK cells with similarities to decidual NK cells. Proc Natl Acad Sci U S A 104(9):3378–3383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Bruno A, Focaccetti C, Pagani A, Imperatori AS, Spagnoletti M, Rotolo N et al (2013) The proangiogenic phenotype of natural killer cells in patients with non-small cell lung cancer. Neoplasia 15(2):133–142

    Article  CAS  PubMed  Google Scholar 

  197. Gao Y, Souza-Fonseca-Guimaraes F, Bald T, Ng SS, Young A, Ngiow SF et al (2017) Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat Immunol 18(9):1004–1015

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwei Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saw, P.E., Song, E. (2023). Physiological Changes in the Local Onco-Sphere: Angiogenesis. In: Song, E. (eds) Tumor Ecosystem. Springer, Singapore. https://doi.org/10.1007/978-981-99-1183-7_6

Download citation

Publish with us

Policies and ethics