
Chapter 7 
Application: Compressible Multi-fluid 
Flows 

Multi-fluid flows involving shock-accelerated inhomogeneities and shock-induced 
instability play essential roles in a wide variety of problems including, but not 
limited to, supersonic combustion [1], inertial confinement fusion [2], and super-
nova explosion [3]. Numerical simulations of these complex flows prove to be chal-
lenging in the presence of moving and deformable material interfaces, especially for 
fluids with large differences in their densities or thermodynamic properties. There-
fore, a discontinuity-capturing, mass-conserving, and positivity-preserving scheme 
is desirable for compressible multi-fluid simulations. 

Qamar et al. [4] implemented the CESE method of Chang [5] and Zhang et al. [6] 
for solving the one- and two-dimensional compressible two-fluid models of Kreeft 
and Koren [7]. Numerical simulations were performed for gas–liquid Riemann prob-
lems and interactions of air shock waves with inhomogeneities containing lighter 
and heavier gases. In comparison with the non-oscillatory central scheme [5] and 
the kinetic flux-vector splitting scheme [8], the CESE scheme gives better resolution 
of discontinuities. Because of its outstanding ability for discontinuity capturing, the 
studies on Richtmyer–Meshkov instability (RMI) [9, 10] and Rayleigh–Taylor insta-
bility (RTI) [11, 12] have greatly benefited from the development of this method. 
Those numerical results not only eliminated disturbing factors in experiments (e.g., 
dimensional effect, boundary effect, liquid mist scattering), but also provided more 
ideal working conditions (that cannot be easily realized in experiment) and more 
flow details (that cannot be timely recorded by camera). 

Recently, the upwind time–space CESE method was used extensively in studies of 
shock-accelerated inhomogeneous flows [13–15] and RMI [16–18]. The compress-
ible two-fluid flows are described by a volume-fraction-based five-equation model 
[19] coupled with the stiffened gas equation of state [20]. Extensive numerical simula-
tions were carried out using the maximum-principle-satisfying upwind CESE scheme 
[13], which is an improved version of the upwind CESE scheme presented in Chap. 4. 
The maximum-principle satisfying property is achieved by adopting a very simple 
limiter proposed by [21]. Furthermore, the ability to capture contact discontinuities
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(material interfaces) can be enhanced by employing the HLLC Riemann solver in the 
upwind procedure. As a result, challenging numerical simulations of the gas–gas and 
gas–liquid Riemann problems were successfully performed, in which the mass of 
each fluid component is conserved and the positivity of volume fractions is preserved 
[13]. 

In this chapter, we use extensive numerical examples to indicate that the CESE 
method captures shocks and contact discontinuities sharply without spurious oscilla-
tions and proves to be a robust and accurate numerical tool for studies of compressible 
multi-fluid flows. 

7.1 Richtmyer–Meshkov Instability 

The Richtmyer–Meshkov instability occurs when an initially perturbed interface 
separating two different fluids is impulsively accelerated. This impulsive acceler-
ation, in RMI studies especially, is provided by shock waves mostly. Two basic 
mechanisms dominate the RMI development, are the baroclinic vorticity and the 
pressure disturbance. For the baroclinic vorticity, the extent of the misalignment of 
the pressure gradient across the shock with the density gradient across the mate-
rial interface makes contribution to the perturbation growth. While for the pressure 
disturbance, the wave system plays an important role. 

As the inertial confinement fusion (ICF) cares more about the interaction of a 
converging shock with a disturbed interface, the converging RMI has become an 
imperative [22, 23]. The nature of geometrical convergence in converging RMI, 
however, makes the perturbation development more complicated because of the 
coupling of the Bell–Plesset (BP) effect [24, 25], Rayleigh–Taylor (RT) effect [26, 
27], and the multiple shock impacts therein. 

In perfect agreement with their experimental images [28], Zhai et al. [17] used the  
upwind CESE method to make further discussion about the converging RMI issues. 
Figure 7.1 shows the shock behaviors and interface morphologies after a converging 
shock interacting with perturbed interface. The inner test gas is SF6 and the interface 
initial amplitude is 1 mm. The comparison clearly approved the applicability of the 
method used in simulating converging shock waves and converging RMI issues.

The Rayleigh–Taylor effect on the phase inversion (RTPI) was the major concern 
in Zhai’s work [17], which is supposed to be helpful in finding a freezing state 
interface in ICF physics. In this work, the influence of the initial amplitude on the 
RTPI was firstly investigated. Figure 7.2 depicts three converging RMI cases with 
different initial amplitudes (Cases I1, I2 and I3 with a0 = 1.0, 1.65, and 2.0 mm, 
respectively), according to which, Fig. 7.3 records the time-variation of the interface 
amplitudes. It was found that the amplitude histories can be roughly segmented into 
three stages after the initial shock compression. At the first stage, the amplitude of 
the perturbed interface increases because of the RMI, while during the second stage 
before re-shock, the amplitude reduces owing to the RT stabilization effect which 
is caused by the stronger adverse pressure gradient near the geometry origin. Based
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Fig. 7.1 The evolution of a single-mode interface with initial amplitude 1 mm. upper: experimental 
schlieren image; lower: numerical schlieren image at the same instants. (IS = incident shock, II = 
initial interface, RS = reflected shock, TS = transmitted shock, SI = shocked interface, RTS = 
reflected transmitted shock, STS = secondary transmitted shock). Courtesy of Z. G. Zhai [17]

on the amplitude histories, they concluded that whether a normal phase inversion 
occurs or not depends on the competition between the RT stabilization effect and 
RM instability caused by the re-shock. Especially, for a special initial amplitude, 
there is a critical state with a zero-amplitude of the interface at the re-shock.

Furthermore, a parametric study was performed to evaluate the influences of 
Atwood number, shock Mach number, and initial radius of the interface on the vari-
ation of critical amplitude with the azimuthal mode number. Their thorough inves-
tigation well explained the reason why this sensitive RTPI phenomenon was not 
observed in previous converging RMI studies. 

The even more complicated converging RMI at a dual-mode interface was numer-
ically studied by Zhou et al. [18] using the same upwind CESE methodology. It is 
not surprising that the dual-mode or multi-mode interface is far more complicated 
than the single-mode converging counterpart due to the existence of mode interfer-
ences such as harmonic generation and bubble merger. By comparing the detailed 
processes of the interface deformation and wave propagation for different dual-mode 
cases together with the development of a referencing single-mode interface, signif-
icant influence of the phase difference between two basic waves on the instability 
development can be clearly distinguished. While after the re-shock, the discrepancy 
becomes much smaller due to the weak dependence of the re-shocked RMI on the 
pre-re-shock state.
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Fig. 7.2 Schlieren images 
showing the evolution of the 
single-mode interface. (PI = 
phase inversion, RTPI = 
Rayleigh–Taylor phase 
inversion). Courtesy of Z. G. 
Zhai [17]

The study on dynamics of the dual-mode converging RMI clearly reveals the mode 
coupling effect, in which the growth of the first mode was found to be inhibited, 
promoted, or not influenced, depending upon the first mode amplitude as well as 
the phase difference between the two basic waves. These findings, including all the 
other parametric studies in their work [18], were considered to be of great help for 
designing an optimal structure of the ICF capsule.
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Fig. 7.3 Time-variation of interface amplitude in three perturbed cases. (PI = phase inversion, 
RTPI = Rayleigh–Taylor phase inversion). Courtesy of Z. G. Zhai [17]

7.2 Rayleigh–Taylor Instability 

Other than the shock-induced interface instability, the rarefaction-induced insta-
bility was performed by [29] using the upwind space–time CESE method. Some 
of their numerical schlieren images of the SF6/air interface instabilities induced by 
the rarefaction waves are presented in Fig. 7.4, in which the rarefaction waves were 
generated by simulating a diaphragm burst in a SF6 shock tube. The influence of 
rarefaction wave acting time was demonstrated by varying the distance between the 
initial diaphragm and the gas interface (shown in cases SA1, SA3, and SA5); while 
the influence of the rarefaction wave strength was demonstrated by setting different 
pressure ratios between the two sides of the initial diaphragm (shown in SA3, SA7, 
and SA9).

Generally, after the rarefaction wave sweeps the SF6/air interface from the down-
side, RTI is triggered and the perturbation on the interface gradually grows. Different 
from the classical RMI where an impulsive action is exerted, and also different from 
the classical RTI where a continuous body force exists, the rarefaction wave imposes 
acceleration to the interface within a limited time. When the rarefaction wave leaves 
the interface, the baroclinic vorticity dominates the later interface evolution and KHI 
occurs on the interface as the further stretching of spikes and bubbles. 

Based on the numerical results provided by the upwind CESE method, theoretical 
models were modified in Liang’s work [29] considering the time-varying acceleration 
and the growth rate transition from RTI to RMI. It was also found that the interface 
perturbation can be more unstable under the rarefaction wave condition than under
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Fig. 7.4 Schlieren images of the SF6/air interface evolution induced by rarefaction waves in cases 
a SA1, b SA3, c SA5, d SA7, and e SA9. Numbers represent the time in µs. f schlieren images 
of the interface evolution in cases SA1 (left), SA3 (middle) and SA5 (right) at dimensionless time 
10.3. (RWH = rarefaction wave head, RWT = rarefaction wave tail). Courtesy of Y. Liang [29]

the shock wave condition due to the larger amount of vorticity deposited by the 
continuous pressure gradient. 

7.3 Shock Refraction 

The upwind space–time CESE method has also been used in simulating the 
shock refraction phenomenon at an inclined air/helium interface in the cylindrical 
converging shock scenario [16]. Figure 7.5 presents the experimental and numer-
ical schlieren images of the shock refraction, in which good agreement between 
the two was achieved. Moreover, the numerical results apparently provide much 
cleaner images than their experimental counterparts (especially the region behind 
the deformed gas interface).

It is observed that, during the incident shock wave converging, when the shock 
velocity increases and the incident angle (with respect to the gas interface) decreases,
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Fig. 7.5 Sequences of experimental (lower) and numerical (upper) schlieren frames showing the 
evolution of a converging shock wave refracting at a 45° tilted interface. (i = incident shock, m = 
material interface, t = transmitted shock). Courtesy of Z. G. Zhai [16]

the wave pattern is found to transit from one to another. In the work of Zhai et al. 
[16], two interfaces with 45° and 60° initial incident angles were examined. For the 
45° case, the shock pattern was found to transit from free precursor refraction (FPR) 
to bound precursor refraction (BPR), and then to regular refraction with reflected 
shock (RRR); while for the 60° case, it was found to be from twin von Neumann 
refraction (TNR), to twin regular refraction (TRR), to free precursor von Neumann 
refraction (FNR), and finally to FPR. These clearly depicted transition sequences 
that never occur in the planar shock scenarios, greatly enriched the shock refraction 
classification. 

7.4 Shock–Gas-Bubble Interaction 

Here, we review the numerical studies of shock-accelerated inhomogeneous flows 
conducted by Shen et al. [13], Fan et al. [15], and Guan et al. [14] first. Figure 7.6 
shows a general schematic of the computational setting of a shock-accelerated inho-
mogeneity. The homogeneity can be gas bubble [13], water column [13] or droplet 
[14], and the shape of the initial homogeneity can be circular, square, rectangular, 
and even triangular [15].
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Fig. 7.6 Schematic of the initial setup for the interaction of an incident shock wave and a gas/water 
inhomogeneity 

In the shock–helium-cylinder case [13], a planar shock propagates from left to 
right at Mach 1.22 and impacts the helium cylinder with a radius of 25 mm. The 
cylinder morphology after shock impact is shown in Fig. 7.7, in which the gas inter-
face is sharply captured. The vortices, deposited due to baroclinicity, are clearly seen 
developing on the interface. As is shown, a salient feature of the helium cylinder 
morphology is the piercing of a middle air jet that finally separates the whole cylinder 
into two symmetric lobes.

A quantitative validation of the CESE method in simulating the shock–helium-
cylinder interaction was performed by comparing the trajectories of the upstream 
point, the jet point, and the downstream point of the helium cylinder with the ones 
obtained by the level set method [30]. Good agreement of the results was achieved 
between the two methods, as depicted in Fig. 7.8.

The maximum-principle-satisfying upwind CESE scheme was applied by Fan 
et al. [15] to present a comprehensive study of jet-formation phenomenon in the 
interaction of a planar shock with a variety of heavy gas inhomogeneities. Comparing 
with the above light helium cylinder scenario, the heavy R22 cylinder experiences 
an obvious different deformation pattern. Figure 7.9 shows the cylinder morphology 
of the R22 cylinder with a radius of 25 mm impacted by a planar incident shock with 
Mach number 1.22 (to numerically reproduce the experiment conducted by Haas 
and Sturtevant [31]). The shocks that transmitted into this heavy cylinder were found 
converging at the downstream pole. The ensuing shock pattern and pressure gradient 
leads to a jet at the downstream cylinder surface.

Fan et al. [15] summarized that the heavy gas jet forms not only in the scenario 
of circular cylinder, but also in a series of differently shaped heavy gas cylinders, 
including square, rectangle, and triangle. Fan’s square case reproduced the experi-
ment performed by Luo et al. [32] where the shock Mach was 1.17 in air and the side 
length of the SF6 square was 56.6 mm. To reveal more details of the shock converging 
patterns in a small region, a slightly over-fined mesh was used in their simulation, 
which greatly reduced the numerical viscosity, making the secondary vortices at the 
late stage more pronounced than its corresponding experimental images. Other than 
that, numerical results shown in the lower halves of Fig. 7.10 agree quite well with 
the upper halves’ experimental images, including the gas interface morphology, the 
shock patterns, and the consequent jet formation at the middle leeward surface of
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Fig. 7.7 Deformation history of a helium bubble impacted by a Mach 1.22 shock. Courtesy of H. 
Shen [13]
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Fig. 7.8 Position history of the upstream point, the jet point, and the downstream point of the 
helium bubble. Courtesy of H. Shen [13]

Fig. 7.9 Shadowgraphs of the evolution of an R22 circular cylinder under the impact of an incident 
shock with Mach number 1.22. (is = incident shock; dts = direct transmitted shock; rs = reflected 
shock; rts = reversed transmitted shock; sl = slip line.) Courtesy of E. Fan [15]

the square. Based on the detailed information provided by the CESE simulation, 
the mechanism of jet formation was revealed. It was found that for all the cases 
they simulated, the key factor in forming a downstream jet is the formation of type II 
shock-shock interaction [33]. According to this, a geometrical criterion was proposed 
to determine whether a jet will be formed [15].

7.5 Shock–Water-Droplet Interaction 

The ability of the upwind CESE method to handle gas–liquid interfaces was initially 
demonstrated in Shen’s work [13]. The setup of this problem resembles that of 
the shock–bubble interaction (see Fig. 7.6). Due to the high-density ratio and large 
difference between the thermodynamic properties of air and water, more challenges
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Fig. 7.10 Comparison of experimental images (upper) by Luo et al. [32] and the numerical results 
(lower) of the planar incident shock impact on a square cylinder using CESE method. (is = incident 
shock, rs = refracted shock, ts = transmitted shock, ms = Mach stem, gi = gas interface, dts = 
direct transmitted shock, lts = lateral transmitted shock, ds = diffracted shock, uvr = upstream 
vortex pair, dvr = downstream vortex pair). Courtesy of E. Fan [15]

are there in simulating the shock–water-column interaction. In this case, the radius of 
the water column was 2.4 mm and a shock wave with Mach number 1.47 was launched 
to sweep over the column from left to right. Upon the interaction of a shock with water 
column (or water droplet), two essential issues are extensively discussed. One issue 
concerns the immediate interaction of the shock wave (or rarefaction wave) with the 
water column (or droplet). It covers an extremely short period of time compared to 
the whole water column breakup, in spite of its vital role in the following interface 
deformation. The other issue concerns the long-period water column deformation, 
which covers from the initial protrusion growth on the water column surface to the 
later large interface distortion and mass loss of the bulk of the column. At the early 
stage, as shown in Fig. 7.11, the shock propagates through the water column as 
though passing over a rigid cylinder, nearly no interface deformation is detected. 
However, the shock waves as well as rarefaction waves bounce back and forth inside 
the water column, making the internal pressure change dramatically and becomes 
highly heterogeneous. After the incident shock has passed, as shown in Fig. 7.12, 
atomized water is gradually stripped away by the high-speed post-shocked flow. The 
water column develops into a crescent shape and the downstream was covered up by 
the transversely spreading atomized water. Note that the instabilities were captured 
in detail in this CESE simulation. The history of drag coefficient of the water column 
was also derived from the numerical results, as shown in Fig. 7.13. Again, good 
agreement was obtained in comparison with numerical simulations of Chen [34] and 
experimental data of Igra and Takayama [35].
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(a) time = 1.85 μs        (b) time = 3.69 μs 

(c) time = 6.15 μs        (d) time = 8.61 

(e) time = 11.1 μs        (f) time = 16.0 

μs 

μs        

Fig. 7.11 Sequences of pressure contours (unit: Pa) in the early stage of a shock–water-column 
interaction. Courtesy of H. Shen [13]
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(a) time = 50.4 μs            (b) time = 100.1 μs           (c) time = 200.3 μs 

(d) time = 300.6 μs     (e) time = 400.4 μs       (f) time = 450.0 μs 

(g) time = 500.2 μs        (h) time = 550.1 μs          (i) time = 600.5 μs 

Fig. 7.12 Evolution of the numerical schlieren plot during the stripping breakup of the water 
column. Courtesy of H. Shen [13]

The case of a spherical water droplet deformation under planar shock impact was 
studied by Guan et al. [14] using axisymmetric simulation. As shown in Fig. 7.14, the  
initial protrusions emerging on the droplet surface were clearly captured by the CESE 
methodology. The internal flow pattern of the droplet was visualized numerically in 
this study. It is seen in Fig. 7.15 that the internal flow pattern of the droplet is 
established soon after the impact by the incident shock and is held steady for a long



90 7 Application: Compressible Multi-fluid Flows

Fig. 7.13 Drag coefficient Cd history of a water column impacted by a shock versus dimensionless 
time t*. Courtesy of H. Shen [13]

Fig. 7.14 Comparison of the numerical (lower part) and experimental (upper part) results at 
different instants. (EQ = equator; WS = windward stagnation; LS = leeward stagnation; C = 
corrugation; KHI = Kelvin–Helmholtz instability, AT = atomization). Courtesy of B. Guan [14]

time. For the first time, a saddle point was observed in this internal flow pattern. 
Further, a simple theory was proposed to correlate the stationary position of the 
saddle point with the Mach number of the incident shock. 
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Fig. 7.15 Morphologies and internal flow patterns of a water droplet under shock impact with 
different shock Mach numbers Ms. Contours show the density of air with units kg/m3. Courtesy of 
B. Guan [14] 
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