Skip to main content

Morbid Cell Status and Donor Age Significantly Alter Mesenchymal Stem Cell Functionality and Reparability

  • Living reference work entry
  • First Online:
Handbook of Stem Cell Applications

Abstract

Bone marrow (BM)-derived mesenchymal stem cells (MSCs) differentiate into specialized tissues, including cardiomyocytes, endothelial cells, and smooth muscle cells. Indeed, their demonstrated multi-lineage differentiation potential, lower immunoreactivity, paracrine activity, and availability from the autologous source make these cells superior candidates for myocardial repair and regeneration. Currently, BM-derived MSCs are being used in Phase-III pivotal trials in larger groups of patients to assess their myocardial reparability. However, these studies have reported less-than-optimal outcomes than preclinical and translational results. While reasoning out the modest clinical outcome, we hypothesized that autologous cells from elderly donors with comorbidities may be less efficacious than allogeneic cells from young, healthy donors due to chronological aging and disease-induced cellular stress and morbidity. This chapter primarily aims to provide an overview of the published data to highlight the factors responsible for the modest outcome observed in clinical settings, especially concerning the donors’ age and morbid health status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ALL:

Acute lymphoblastic leukemia

AML:

Acute myelogenous leukemia

BM:

Bone marrow

BME:

Bone marrow edema

BMP:

Bone morphogenic protein

BT:

Beta thalassemia

CML:

Chronic myelocytic leukemia

CYT:

Cytarabine

DAU:

Daunorubicin

DM:

Diabetes mellitus

ECM:

Extracellular matrix

FAK:

Focal adhesion protein kinase

FGF:

Fibroblast growth factor

HIF:

Hypoxia-inducible growth factor

HO:

Heme oxygenase

HSCs:

Hematopoietic stem cell

IGF:

Insulin-like growth factor

IHD:

Ischemic heart disease

LVEF:

Left ventricular ejection fraction

MDS:

Myelodysplastic syndrome

MI:

Myocardial infarction

MSCs:

Mesenchymal stem cells

NPY:

Neuropeptide-Y

NPY5R:

Neuropeptide-Y5 receptor

OA:

Osteoarthritis

SASP:

Senescence-associated secretory phenotype

SCD:

Sickle cell disease

SDF:

Stromal Cell-Derived Factor

SKMs:

Skeletal myoblasts

SMCs:

Smooth muscle cells

TLR:

Toll-like receptor

UPR:

Unfolded protein response

VEGF:

Vascular endothelial growth factor

Vin:

Vincristine

References

  • Aggoune D, Sorel N, Bonnet ML, Goujon JM, Tarte K, Hérault O, Domenech J, Réa D, Legros L, Johnson-Ansa H, Rousselot P, Cayssials E, Guerci-Bresler A, Bennaceur-Griscelli A, Chomel JC, Turhan AG (2017) Bone marrow mesenchymal stromal cell (MSC) gene profiling in chronic myeloid leukemia (CML) patients at diagnosis and in deep molecular response induced by tyrosine kinase inhibitors (TKIs). Leuk Res 60:94–102. https://doi.org/10.1016/j.leukres.2017.07.007. Epub 2017 Jul 26. PMID: 28772207

  • Aksoy C, Guliyev A, Kilic E, Uckan D, Severcan F (2012) Bone marrow mesenchymal stem cells in patients with Beta thalassemia major: molecular analysis with attenuated total reflection-fourier transform infrared spectroscopy study as a novel method. Stem Cells Dev 21(11):2000–2011. https://doi.org/10.1089/scd.2011.0444

  • Alessio N, Acar MB, Demirsoy IH, Squillaro T, Siniscalco D, Bernardo GD, Peluso G et al (2020) Obesity is associated with senescence of mesenchymal stromal cells derived from bone marrow, subcutaneous and visceral fat of young mice. Aging (Albany NY) 12(13):12609–12621. https://doi.org/10.18632/aging.103606

    Article  CAS  PubMed  Google Scholar 

  • Al-Khani AM, Khalifa MA, Haider KH (2022) Mesenchymal stem cells: how close we are to their routine clinical use? In: Haider KH (ed) Handbook of stem cell therapy. Springer, Singapore. https://doi.org/10.1007/978-981-16-6016-0_11-1

    Chapter  Google Scholar 

  • Al-Khani AM, Kalou Y, Haider KhH (2023) Bone marrow mesenchymal stem cells for heart failure treatment: a systematic review and meta-analysis. J Heart Lung Circ

    Google Scholar 

  • Alnasser MS, AL-Rasheedi, Alreshidi MA, Alqifari SF, Haider KH (2022) Augmenting mesenchymal stem cell-based therapy of the infarcted myocardium with statins. In: Haider KH (ed) Handbook of stem cell therapy. Springer, Singapore. https://doi.org/10.1007/978-981-16-6016-0_20-1

    Chapter  Google Scholar 

  • Alt EU, Senst C, Murthy SN, Slakey DP, Dupin CL, Chaffin AE, Kadowitz PJ, Izadpanah R (2012) Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res 8(2):215–225. https://doi.org/10.1016/j.scr.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Viejo M, Haider KH (2022) Mesenchymal stem cells. In: Haider KH (ed) Handbook of stem cell therapy. Springer, Singapore. https://doi.org/10.1007/978-981-16-6016-0_6-1

    Chapter  Google Scholar 

  • Ambrosi TH, Scialdone A, Graja A, Gohlke S, Jank AM, Bocian C, Woelk L et al (2017) Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell 20(6):771–784.e6. https://doi.org/10.1016/j.stem.2017.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ammar HA, Shamseldeen AM, Shoukry HS, Ashour H, Kamar SS, Rashed LA, Fadel M et al (2021) Metformin impairs homing ability and efficacy of mesenchymal stem cells for cardiac repair in streptozotocin-induced diabetic cardiomyopathy in rats. Am J Physiol-Heart Circ Physiol 320(4):H1290–H1302

    Article  CAS  PubMed  Google Scholar 

  • Angelos MG, Kutala VK, Torres CA, He G, Stoner JD, Mohammad M et al (2006) Hypoxic reperfusion of the ischemic heart and oxygen radical generation. Am J Phys Heart Circ Phys 290(1):H341–H347

    CAS  Google Scholar 

  • Astudillo P, Ríos S, Pastenes L, Pino AM, Rodríguez JP (2008) Increased adipogenesis of osteoporotic human-mesenchymal stem cells (MSCs) characterizes by impaired leptin action. J Cell Biochem 103(4):1054–65. https://doi.org/10.1002/jcb.21516. PMID: 17973271

  • Asumda FZ, Chase PB (2011) Age-related changes in rat bone-marrow mesenchymal stem cell plasticity. BMC Cell Biol 12(1):44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azadniv M, Myers JR, McMurray HR, Guo N, Rock P, Coppage ML et al (2020) Bone marrow mesenchymal stromal cells from acute myelogenous leukemia patients demonstrate adipogenic differentiation propensity with implications for leukemia cell support. Leukemia 34(2):391–403

    Article  CAS  PubMed  Google Scholar 

  • Barreto-Durán E, Mejía-Cruz CC, Leal-García E, Pérez-Núñez R, Rodríguez-Pardo VM (2018) Impact of donor characteristics on the quality of bone marrow as a source of mesenchymal stromal cells. Am J Stem Cells 7(5):114–120

    PubMed  PubMed Central  Google Scholar 

  • Block TJ, Marinkovic M, Tran ON, Gonzalez AO, Marshall A, Dean DD et al (2017) Restoring the quantity and quality of elderly human mesenchymal stem cells for autologous cell-based therapies. Stem Cell Res Ther 8(1):239

    Article  PubMed  PubMed Central  Google Scholar 

  • Bock O, Höftmann J, Theophile K, Hussein K, Wiese B, Schlué J et al (2008) Bone morphogenetic proteins are overexpressed in the bone marrow of primary myelofibrosis and are apparently induced by fibrogenic cytokines. Am J Pathol 172(4):951–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell TM, Churchman SM, Gomez A, McGonagle D, Conaghan PG, Ponchel F et al (2016) Mesenchymal stem cell alterations in bone marrow lesions in patients with hip osteoarthritis. Arthritis Rheumatol 68(7):1648–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caplan AI (1991) Mesenchymal stem cells. J Orthopaedic Res 9(5):641–650

    Article  CAS  Google Scholar 

  • Carbone LD, Bůžková P, Fink HA, Robbins JA, Bethel M, Hamrick MW et al (2017) Association of plasma SDF-1 with bone mineral density, body composition, and hip fractures in older adults: the cardiovascular health study. Calcif Tissue Int 100(6):599–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Nayan M, Duong M, Asenjo JF, Ge Y, Chiu RCJ et al (2010) Marrow stromal cells for cell-based therapy: the role of antiinflammatory cytokines in cellular cardiomyoplasty. Ann Thorac Surg 90(1):190–197

    Article  PubMed  Google Scholar 

  • Chen Q, Yuan Y, Chen T (2014) Morphology, differentiation and adhesion molecule expression changes of bone marrow mesenchymal stem cells from acute myeloid leukemia patients. Mol Med Rep 9(1):293–298

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Liu O, Chen S, Zhou Y (2022) Aging and mesenchymal stem cells: therapeutic opportunities and challenges in the older group. Gerontology 68(3):339–352

    Article  CAS  PubMed  Google Scholar 

  • Chennamadhavuni A, Lyengar V, Mukkamalla SKR, Shimanovsky A (2022) Leukemia. StatPearls Publishing, Treasure Island

    Google Scholar 

  • Childs BG, Durik M, Baker DJ, van Deursen JM (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21(12):1424–1435. https://doi.org/10.1038/nm.4000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choumerianou DM, Martimianaki G, Stiakaki E, Kalmanti L, Kalmanti M, Dimitriou H (2010) Comparative study of stemness characteristics of mesenchymal cells from the bone marrow of children and adults. Cytotherapy 12(7):881–887

    Article  PubMed  Google Scholar 

  • Coipeau P, Rosset P, Langonné A, Gaillard J, Delorme B, Rico A et al (2009) Impaired differentiation potential of human trabecular bone mesenchymal stromal cells from elderly patients. Cytotherapy 11(5):584–594

    Article  CAS  PubMed  Google Scholar 

  • Conforti A, Biagini S, Del Bufalo F, Sirleto P, Angioni A, Starc N et al (2013) Biological, functional and genetic characterization of bone marrow-derived mesenchymal stromal cells from pediatric patients affected by acute lymphoblastic leukemia. PLoS One 8(11):e76989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corradi G, Baldazzi C, Očadlíková D, Marconi G, Parisi S, Testoni N et al (2018) Mesenchymal stromal cells from myelodysplastic and acute myeloid leukemia patients display vitro reduced proliferative potential and similar capacity to support leukemia cell survival. Stem Cell Res Ther 9(1):271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crane GM, Jeffery E, Morrison SJ (2017) Adult hematopoietic stem cell niches. Nat Rev Immunol 17(9):573–590

    Article  CAS  PubMed  Google Scholar 

  • Crippa S, Rossella V, Aprile A, Silvestri L, Rivis S, Scaramuzza S et al (2019) Bone marrow stromal cells from β-thalassemia patients have impaired hematopoietic supportive capacity. J Clin Invest 129(4):1566–1580

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuollo L, Antonangeli F, Santoni A, Soriani A (2020) The senescence-associated secretory phenotype (SASP) in the challenging future of cancer therapy and age-related diseases. Biology (Basel) 9(12):485. https://doi.org/10.3390/biology9120485

    Article  CAS  PubMed  Google Scholar 

  • Da Silva SV, Renovato-Martins M, Ribeiro-Pereira C, Citelli M, Barja-Fidalgo C (2016) Obesity modifies bone marrow microenvironment and directs bone marrow mesenchymal cells to adipogenesis. Obesity 24(12):2522–2532

    Article  PubMed  Google Scholar 

  • Daltro GC, Fortuna V, de Souza ES et al (2015) Efficacy of autologous stem cell-based therapy for osteonecrosis of the femoral head in sickle cell disease: a five-year follow-up study. Stem Cell Res Ther 6:110. https://doi.org/10.1186/s13287-015-0105-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dazzi F, Ramasamy R, Glennie S, Jones SP, Roberts I (2006) The role of mesenchymal stem cells in hemopoiesis. Blood Rev 20(3):161–171

    Article  CAS  PubMed  Google Scholar 

  • Dimitriou H, Linardakis E, Martimianaki G, Stiakaki E, Perdikogianni CH, Charbord P et al (2008) Properties and potential of bone marrow mesenchymal stromal cells from children with hematologic diseases. Cytotherapy 10(2):125–133

    Article  CAS  PubMed  Google Scholar 

  • Fadini GP, Ferraro F, Quaini F, Asahara T, Madeddu P (2014) Concise review: diabetes, the bone marrow niche, and impaired vascular regeneration. Stem Cells Transl Med 3(8):949–957. https://doi.org/10.5966/sctm.2014-0052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fastova EA, Magomedova AU, Petinati NA, Sats NV, Kapranov NM, Davydova YO et al (2019) Bone marrow multipotent mesenchymal stromal cells in patients with diffuse large B-cell lymphoma. Bull Exp Biol Med 167(1):150–153

    Article  CAS  PubMed  Google Scholar 

  • Flores-Figueroa E, Arana-Trejo RM, Gutiérrez-Espíndola G, Pérez-Cabrera A, Mayani H (2005) Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization. Leuk Res 29(2):215–224

    Article  CAS  PubMed  Google Scholar 

  • Flores-Figueroa E, Montesinos JJ, Flores-Guzmán P, Gutiérrez-Espíndola G, Arana-Trejo RM, Castillo-Medina S et al (2008) Functional analysis of myelodysplastic syndromes-derived mesenchymal stem cells. Leuk Res 32(9):1407–1416

    Article  CAS  PubMed  Google Scholar 

  • Galanello R, Origa R (2010) Beta-thalassemia. Orphanet J Rare Dis 5:11. https://doi.org/10.1186/1750-1172-5-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Geyh S, Rodríguez-Paredes M, Jäger P, Khandanpour C, Cadeddu RP, Gutekunst J et al (2016) Functional inhibition of mesenchymal stromal cells in acute myeloid leukemia. Leukemia 30(3):683–691

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Meljem JM, Apps JR, Fraser HC, Martinez-Barbera JP (2018) Paracrine roles of cellular senescence in promoting tumorigenesis. Br J Cancer 118(10):1283–1288. https://doi.org/10.1038/s41416-018-0066-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C et al (2019) Cellular senescence: defining a path forward. Cell 179(4):813–827

    Article  CAS  PubMed  Google Scholar 

  • Haider KH (2018) Bone marrow cell therapy and cardiac reparability: better cell characterization will enhance clinical success. Regen Med 13(4):457–475

    Article  CAS  PubMed  Google Scholar 

  • Haider KH, Ashraf M (2012) Preconditioning approach in stem cell therapy for treating infarcted heart. Prog Mol Biol Transl Sci 111:323–356. https://doi.org/10.1016/B978-0-12-398459-3.00015-0

    Article  CAS  PubMed  Google Scholar 

  • Haider K, Aslam M (2018) Cell-free therapy with stem cell secretions: protection, repair, and regeneration of the injured myocardium. In: Husnain Haider K, Aziz S (eds) Stem cells: from hype to real hope, Medicine & life sciences, DE GRUYTER, Geithner Straße13-10785, Berlin

    Google Scholar 

  • Haider KH, Aziz S (2017) Paracrine hypothesis, and cardiac repair. Int J Stem Cell Res Transplant 5(1):265–267

    Google Scholar 

  • Haider KH, Lee Y-J, Jiang S, Ahmad RPH, Ahn MR, Ashraf M (2010) Phosphodiesterase inhibition with tadalafil provides longer and sustained protection of stem cells. Am J Physiol Heart Lung Physiol 299:H1395–HH404

    Article  CAS  Google Scholar 

  • Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP et al (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (Prochymal) after acute myocardial infarction. J Am Coll Cardiol 54(24):2277–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseini SM, Sani M, Haider KH, Dorvash MR, Ziaee SM, Karimi A (2018) Concomitant use of mesenchymal stem cells and neural stem cells for the treatment of spinal cord injury: a combo cell therapy approach. Neurosci Lett 668:138–146

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Qian J, Ma J, Huang Z, Shen Y, Chen X, Sun A, Ge J, Chen H (2014) Myocardial transfection of hypoxia-inducible factor-1α and co-transplantation of mesenchymal stem cells enhance cardiac repair in rats with experimental myocardial infarction. Stem Cell Res Ther 5:1–6

    Article  Google Scholar 

  • Igura K, Haider KH, Ahmed RPH, Sheriff S, Ashraf M (2011) Neuropeptide-Y (NPY) and NPY Y5 receptor (Y5R) interaction restores impaired growth potential of aging bone marrow stromal cells. Rejuven Res 14(4):393–403

    Article  CAS  Google Scholar 

  • James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, Abbastabar H et al (2018) Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392(10159):1789–1858

    Article  Google Scholar 

  • Jiang S, Kh Haider H, Ahmed RPH, Idris NM, Salim A, Ashraf M (2008) Transcriptional profiling of young and old mesenchymal stem cells in response to oxygen deprivation and reparability of the infarcted myocardium. J Mol Cell Cardiol 44(3):582–596

    Article  CAS  PubMed  Google Scholar 

  • Jiang SS, Chen C-H, Tseng K-Y et al (2011) Gene expression profiling suggests a pathological role of human bone marrow-derived mesenchymal stem cells in aging-related skeletal diseases. Aging 3(7):672–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin P, Zhang X, Wu Y, Li L, Yin Q, Zheng L, Zhang H et al (2010) Streptozotocin-induced diabetic rat–derived bone marrow mesenchymal stem cells have impaired abilities in proliferation, paracrine, antiapoptosis, and myogenic differentiation. Transplant Proc 42(7):2745–2752

    Article  CAS  PubMed  Google Scholar 

  • Jones E, English A, Churchman SM, Kouroupis D, Boxall SA, Kinsey S, Giannoudis PG, Emery P, McGonagle D (2010) Large-scale extraction and characterization of CD271+ multipotential stromal cells from the trabecular bone in health and osteoarthritis: implications for bone regeneration strategies based on uncultured or minimally cultured multipotential stromal cells. Arthritis Rheum 62(7):1944–1954. https://doi.org/10.1002/art.27451

    Article  CAS  PubMed  Google Scholar 

  • Kalou MNK, AlKhani M, Haider KH (2023) The effect of time of cell delivery on post-MI cardiac regeneration: a review of preclinical and clinical studies. In: Haider KH (ed) Cardiovascular applications of stem cells. https://doi.org/10.1007/978-981-99-0722-9_13

    Chapter  Google Scholar 

  • Kamal M, Kassem D, Haider KH (2022) Sources and therapeutic strategies of mesenchymal stem cells in regenerative medicine. In: Haider KH (ed) Handbook of stem cell therapy. Springer, Singapore. https://doi.org/10.1007/978-981-16-6016-0_2-1

    Chapter  Google Scholar 

  • Kastrinaki MC, Pontikoglou C, Klaus M, Stavroulaki E, Pavlaki K, Papadaki HA (2011) Biologic characteristics of bone marrow mesenchymal stem cells in myelodysplastic syndromes. Curr Stem Cell Res Ther 6(2):122–130

    Article  CAS  PubMed  Google Scholar 

  • Kato GJ (2019) Sickle cell vasculopathy: vascular phenotype on fire! J Physiol 597(4):993–994

    Article  CAS  PubMed  Google Scholar 

  • Katz AJ, Chia VM, Schoonen WM, Kelsh MA (2015) Acute lymphoblastic leukemia: an international incidence, survival, and disease burden assessment. Cancer Causes Control 26(11):1627–1642

    Article  PubMed  Google Scholar 

  • Kemp K, Morse R, Wexler S, Cox C, Mallam E, Hows J et al (2010) Chemotherapy-induced mesenchymal stem cell damage in patients with hematological malignancy. Ann Hematol 89(7):701–713

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Mohsin S, Khan SN, Riazuddin S (2011) Repair of senescent myocardium by mesenchymal stem cells depends on donor mice’s age. J Cell Mol Med 15(7):1515–1527

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Hashim MJ, Mustafa H, Baniyas MY, Al Suwaidi SKBM, Al Katheeri R et al (2020) Global epidemiology of ischemic heart disease: results from the Global Burden of Disease Study. Cureus

    Google Scholar 

  • Khosla S, Farr JN, Tchkonia T, Kirkland JL (2020) The role of cellular senescence in aging and endocrine disease. Nat Rev Endocrinol 16(5):263–275

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Han JW, Lee JY, Choi YJ, Sohn YD, Song M et al (2015) Diabetic mesenchymal stem cells are ineffective in improving limb ischemia due to their impaired angiogenic capability. Cell Transplant 24(8):1571–1584

    Article  PubMed  Google Scholar 

  • Klaus M, Stavroulaki E, Kastrinaki MC, Fragioudaki P, Giannikou K, Psyllaki M et al (2010) Reserves, functional, immunoregulatory, and cytogenetic properties of bone marrow mesenchymal stem cells in patients with myelodysplastic syndromes. Stem Cells Dev 19(7):1043–1054

    Article  CAS  PubMed  Google Scholar 

  • Kretlow JD, Jin YQ, Liu W, Zhang WJ, Hong TH, Zhou G, Baggett LS, Mikos AG, Cao Y (2008) Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biol 9:60. https://doi.org/10.1186/1471-2121-9-60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Law HKW, Lau YL, Chan GCF (2004) Differential damage and recovery of human mesenchymal stem cells after exposure to chemotherapeutic agents. Br J Haematol 127(3):326–334

    Article  CAS  PubMed  Google Scholar 

  • Li L, Haider KH, Wang L, Lu G, Ashraf M (2012) Adenoviral short hairpin RNA therapy targeting PDE5a relieves cardiac remodeling and dysfunction following myocardial infarction. Am J Physiol Heart Circ Physiol 302:H2112–H2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Guo Y, Zhai H, Yin Y, Zhang J, Chen H et al (2014) Aging increases the susceptivity of MSCs to reactive oxygen species and impairs their therapeutic potency for myocardial infarction. PLoS One. 9(11):e111850

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin YH, Kang L, Feng WH, Cheng TL, Tsai WC, Huang HT, Lee HC et al (2020) Effects of lipids and lipoproteins on mesenchymal stem cells used in cardiac tissue regeneration. Int J Mol Sci 21(13):4770. https://doi.org/10.3390/ijms21134770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez Perez R, Münz F, Vidoni D, Rühle A, Trinh T, Sisombath S et al (2019) Mesenchymal stem cells preserve their stem cell traits after exposure to antimetabolite chemotherapy. Stem Cell Res 40:101536

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Villar O, Garcia JL, Sanchez-Guijo FM, Robledo C, Villaron EM, Hernández-Campo P et al (2009) Both expanded and uncultured mesenchymal stem cells from MDS patients are genomically abnormal, showing a specific genetic profile for the 5q− syndrome. Leukemia 23(4):664–672

    Article  CAS  PubMed  Google Scholar 

  • Lu G, Haider KH, Jiang S, Ashraf M (2009) Sca-1+ stem cell survival and engraftment in the infarcted heart: dual role for preconditioning-induced Connexin-43. Circulation 119(19):2587–2296

    Article  PubMed  PubMed Central  Google Scholar 

  • Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J et al (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Investig 103(5):697–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manara M, Varenna M (2014) A clinical overview of bone marrow edema. Rheumatism 66(2):184–196

    CAS  Google Scholar 

  • Marketou ME, Parthenakis FI, Kalyva A, Pontikoglou C, Maragkoudakis S, Kontaraki JE, Zacharis EA et al (2014) Increased mobilization of mesenchymal stem cells in patients with essential hypertension: the effect of left ventricular hypertrophy. J Clin Hypertens (Greenwich) 16(12):883–888. https://doi.org/10.1111/jch.12426

    Article  CAS  PubMed  Google Scholar 

  • Matsushita K, Dzau VJ (2017) Mesenchymal stem cells in obesity: insights for translational applications. Lab Invests 97(10):1158–1166

    Article  Google Scholar 

  • Miettinen JA, Salonen RJ, Ylitalo K, Niemelä M, Kervinen K, Säily M et al (2012) The effect of bone marrow microenvironment on the functional properties of the therapeutic bone marrow-derived cells in patients with acute myocardial infarction. J Transl Med 10(1):66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musleh AR, Al-Kasssas W, KhH H (2018) fatty acid escape hypothesis: the pathway to type-II diabetes. Acta Endocrinol:2018

    Google Scholar 

  • Naftali-Shani N, Levin-Kotler LP, Palevski D, Amit U, Kain D, Landa N, Hochhauser E, Leor J (2017) Left ventricular dysfunction switches mesenchymal stromal cells toward an inflammatory phenotype and impairs their reparative properties via toll-like receptor-4. Circulation 135(23):2271–2287. https://doi.org/10.1161/CIRCULATIONAHA.116.023527

    Article  CAS  PubMed  Google Scholar 

  • Nayan M, Paul A, Chen G, Chiu RCJ, Prakash S, Shum-Tim D 2011 Superior therapeutic potential of young bone marrow mesenchymal stem cells by direct Intramyocardial delivery in aged recipients with acute myocardial infarction: in vitro and in vivo investigation. J Tissue Eng

    Google Scholar 

  • Neybecker P, Henrionnet C, Pape E, Mainard D, Galois L, Loeuille D, Gillet P et al (2018) In vitro and in vivo potentialities for cartilage repair from human advanced knee osteoarthritis synovial fluid-derived mesenchymal stem cells. Stem Cell Res Ther 9(1):329. https://doi.org/10.1186/s13287-018-1071-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neybecker P, Henrionnet C, Pape E, Grossin L, Mainard D, Galois L, Loeuille D et al (2020) Respective stemness and chondrogenic potential of mesenchymal stem cells isolated from human bone marrow, synovial membrane, and synovial fluid. Stem Cell Res Ther 11(1):316. https://doi.org/10.1186/s13287-020-01786-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen VT, Nassar D, Batteux F, Raymond K, Tharaux PL, Aractingi S (2016) Delayed healing of sickle cell ulcers is due to impaired angiogenesis and CXCL12 secretion in skin wounds. J Investig Dermatol 136(2):497–506

    Article  CAS  PubMed  Google Scholar 

  • Nguyen LT, Hoang DM, Nguyen KT, Bui DM, Nguyen HT, Le HTA, Hoang VT et al (2021) Type 2 diabetes mellitus duration and obesity alter the efficacy of autologously transplanted bone marrow-derived mesenchymal stem/stromal cells. Stem Cells Transl Med 10(9):1266–1278. https://doi.org/10.1002/sctm.20-0506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okwan-Duodu D, Hansen L, Joseph G, Lyle AN, Weiss D, Archer DR et al (2018) Impaired collateral vessel formation in sickle cell disease. Arterioscler Thromb Vasc Biol 38(5):1125–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olokoba AB, Obateru OA, Olokoba LB (2012) Type 2 diabetes mellitus: a review of current trends. Oman Med J 27(4):269–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410(6829):701–705

    Article  CAS  PubMed  Google Scholar 

  • Ottensmeier C (2001) The classification of lymphomas and leukemias. Chem Biol Interact 135–136:653–664

    Article  PubMed  Google Scholar 

  • Petinati NA, Bigildeev AE, Karpenko DS, Sats NV, Kapranov NM, Davydova YO et al (2021) Humoral effect of a B-cell tumor on the bone marrow multipotent mesenchymal stromal cells. Biochem Mosc 86(2):207–216

    Article  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science (1979) 284(5411):143–147

    CAS  Google Scholar 

  • Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI (2019) Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med 4(1):22

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajab A, Haider KH (2018) Hyperglycemia and RBCs: too sweet to survive. Int J Diabetes Dev Countries 38(4):357–365

    Article  Google Scholar 

  • Rajab AM, Rahman S, Rajab TM, Haider KH (2018) Morphology and chromic status of RBCs is significantly influenced by gestational diabetes. J Hematol 7(4):140–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rando TA (2006) Stem cells, aging, and the quest for immortality. Nature 441(7097):1080–1086

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro TO, Silveira BM, Meira MC, Carreira ACO, Sogayar MC, Meyer R et al (2019) Investigating the potential of the secretome of mesenchymal stem cells derived from sickle cell disease patients. PLoS One 14(10):e0222093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro TO, Daltro PB, Daltro GC, Freire SM, Meyer R, Fortuna V (2020) Quantification and comprehensive analysis of mesenchymal stromal cells in bone marrow samples from sickle cell disease patients with osteonecrosis. Stem Cells Int 2020:1–12

    Article  Google Scholar 

  • Rodriguez JP, Garat S, Gajardo H, Pino AM, Seitz G (1999) Abnormal osteogenesis in osteoporotic patients is reflected by altered mesenchymal stem cells dynamics. J Cell Biochem 75:414–423

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez JP, Montecinos L, Ríos S, Reyes P, Martínez J (2000) Mesenchymal stem cells from osteoporotic patients produce a type I collagen-deficient extracellular matrix favoring adipogenic differentiation. J Cell Biochem 79(4):557–565. https://doi.org/10.1002/1097-4644(20001215)79:4<557::aid-jcb40>3.0.co;2-h

    Article  PubMed  Google Scholar 

  • Satani N, Giridhar K, Cai C, Wewior N, Norris DD, Aronowski J, Savitz SI (2020) Medications for hypertension change the secretome profile from marrow stromal cells and peripheral blood monocytes. Stem Cells Int 2020:28, Article ID 8894168. https://doi.org/10.1155/2020/8894168

  • Schepers K, Pietras EM, Reynaud D, Flach J, Binnewies M, Garg T et al (2013) Myeloproliferative neoplasia remodels the Endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13(3):285–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedrak A, Kondamudi NP (2022 Aug 29) Sickle cell disease. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island, 2023

    Google Scholar 

  • Sekiya I, Katano H, Ozeki N (2021) Characteristics of MSCs in synovial fluid and mode of action of intra-articular injections of synovial MSCs in knee osteoarthritis. Int J Mol Sci 22(6):2838. https://doi.org/10.3390/ijms22062838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shariatzadeh M, Song J, Wilson S (2019) The efficacy of different sources of mesenchymal stem cells for the treatment of knee osteoarthritis. Cell Tissue Res 378:399–410. https://doi.org/10.1007/s00441-019-03069-9

    Article  PubMed  Google Scholar 

  • Sheriff S, Ali M, Yahya A, Haider KH, Balasubramaniam A, Amlal H (2010) Neuropeptide Y Y5 receptor promotes cell growth through extracellular signal-regulated kinase signaling and cyclic AMP inhibition in a human breast cancer cell line. Mol Cancer Res 8(4):604–614

    Article  CAS  PubMed  Google Scholar 

  • Siegel G, Schäfer R, Dazzi F (2009) The immunosuppressive properties of mesenchymal stem cells. Transplantation 87(9S):S45–S49

    Article  PubMed  Google Scholar 

  • Somaiah C, Kumar A, Sharma R, Sharma A, Anand T, Bhattacharyya J et al (2018) Mesenchymal stem cells show functional defects and decreased anti-cancer effects after exposure to chemotherapeutic drugs. J Biomed Sci 25(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  • Song H, Cha MJ, Song BW, Kim IK, Chang W, Lim S et al (2010) Reactive oxygen species inhibit the adhesion of mesenchymal stem cells implanted into ischemic myocardium via interference of focal adhesion complex. Stem Cells 28(3):555–563

    Article  CAS  PubMed  Google Scholar 

  • Stenger EO, Chinnadurai R, Yuan S, Garcia M, Arafat D, Gibson G, Krishnamurti L, Galipeau J (2017) Bone marrow–derived mesenchymal stromal cells from patients with sickle cell disease display intact functionality. Biol Blood Marrow Transplant 23(5):736–745. https://doi.org/10.1016/j.bbmt.2017.01.081. Epub 2017 Jan 26. PMID: 28132869; PMCID: PMC5390328

  • Stolzinga A, Jonesb T, McGonagleb D, Scutta A (2008) Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev 129(3):163–173

    Article  Google Scholar 

  • Tang A, Strat AN, Rahman M, Zhang H, Bao W, Liu Y, Shi D et al (2021) Murine bone marrow mesenchymal stromal cells have reduced hematopoietic maintenance ability in sickle cell disease. Blood 138(24):2570–2582. https://doi.org/10.1182/blood.2021012663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tencerova M, Figeac F, Ditzel N, Taipaleenmäki H, Nielsen TK, Kassem M (2018) High-fat diet–induced obesity promotes expansion of bone marrow adipose tissue and impairs skeletal stem cell functions in mice. J Bone Miner Res 33(6):1154–1165

    Article  CAS  PubMed  Google Scholar 

  • Terlecki-Zaniewicz L, Lämmermann I, Latreille J, Bobbili MR, Pils V, Schosserer M et al (2018) Small extracellular vesicles and their miRNA cargo are anti-apoptotic members of the senescence-associated secretory phenotype. Aging 10(5):1103–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong L, Yu H, Huang X et al (2022) Current understanding of osteoarthritis pathogenesis and relevant new approaches. Bone Res 10:60. https://doi.org/10.1038/s41413-022-00226-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedi A, Miyazawa B, Gibb S et al (2019) Bone marrow donor selection and characterization of MSCs is critical for pre-clinical and clinical cell dose production. J Transl Med 17:128. https://doi.org/10.1186/s12967-019-1877-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsai CC, Su PF, Huang YF, Yew TL, Hung SC (2012) Oct4 and Nanog directly regulate Dnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells. Mol Cell 47(2):169–182

    Article  CAS  PubMed  Google Scholar 

  • Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Alfred E, Buxton AE et al (2022) Heart disease and stroke statistics – 2022 update: a report from the American Heart Association. Circulation 145:e153–e639. https://doi.org/10.1161/CIR.0000000000001052

  • Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18(12):1417–1426

    Article  CAS  PubMed  Google Scholar 

  • Weng Z, Wang Y, Ouchi T, Liu H, Qiao X, Wu C, Zhao Z et al (2022) Mesenchymal stem/stromal cell senescence: hallmarks, mechanisms, and combating strategies. Stem Cells Transl Med 11(4):356–371. https://doi.org/10.1093/stcltm/szac004

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61(4):364–370

    Article  CAS  PubMed  Google Scholar 

  • Wu CL, Diekman BO, Jain D, Guilak F (2013) Diet-induced obesity alters the differentiation potential of stem cells isolated from bone marrow, adipose tissue and infrapatellar fat pad: the effects of free fatty acids. Int J Obes 37(8):1079–1087

    Article  CAS  Google Scholar 

  • Xia B, Chen D, Zhang J, Hu S, Jin H, Tong P (2014) Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif Tissue Int 95(6):495–505. https://doi.org/10.1007/s00223-014-9917-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Zuo C (2021) The fate status of stem cells in diabetes and its role in the occurrence of diabetic complications. Front Mol Biosci 8:745035. https://doi.org/10.3389/fmolb.2021.745035.2021.745035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye L, Haider HK, Tan R, Su L, Law PK, Zhang W, Sim EK (2008) Angiomyogenesis using liposome-based vascular endothelial growth factor-165 transfection with skeletal myoblast for cardiac repair. Biomaterials 29(13):2125–2137

    Article  CAS  PubMed  Google Scholar 

  • Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJ, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL (2013) American College of Cardiology Foundation; American Heart Association Task Force on Practice Guidelines. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 62(16):e147–239. https://doi.org/10.1016/j.jacc.2013.05.019. Epub 2013 Jun 5. PMID: 23747642

  • You L, Pan L, Chen L, Gu W, Chen J (2016) MiR-27a is essential for the shift from osteogenic differentiation to adipogenic differentiation of mesenchymal stem cells in postmenopausal osteoporosis. Cell Physiol Biochem 39(1):253–265. https://doi.org/10.1159/000445621

    Article  CAS  PubMed  Google Scholar 

  • Zanetti SR, Romecin PA, Vinyoles M, Juan M, Fuster JL, Cámos M et al (2020) Bone marrow MSC from pediatric patients with B-ALL highly immunosuppresses T-cell responses but does not compromise CD19-CAR T-cell activity. J Immunother Cancer 8(2):e001419

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Fazel S, Tian H, Mickle DA, Weisel RD, Fujii T, Li RK (2005) Increasing donor age adversely impacts beneficial effects of bone marrow but not smooth muscle myocardial cell therapy. Am J Physiol Heart Circ Physiol 289(5):H2089–H2096. https://doi.org/10.1152/ajpheart.00019.2005

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhou S, Mei Z, Zhang M (2017) Inhibition of p38MAPK potentiates mesenchymal stem cell therapy against myocardial infarction injury in rats. Mol Med Rep 16(3):3489–3493

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhao Q, Cang H, Wang Z, Hu X, Pan R et al (2022) Acute myeloid leukemia cells educate mesenchymal stromal cells toward an Adipogenic differentiation propensity with leukemia promotion capabilities. Advanced Science 9(16):2105811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Tang X, You Y, Li W, Liu F, Zou P (2006) Assessment of bone marrow mesenchymal stem cell biological characteristics and support hematopoiesis function in patients with chronic myeloid leukemia. Leuk Res 30(8):993–1003

    Article  CAS  PubMed  Google Scholar 

  • Zhi-Gang Z, Wei-Ming L, Zhi-Chao C, Yong Y, Ping Z (2008) Immunosuppressive properties of mesenchymal stem cells derived from the bone marrow of a patient with malignant hematological diseases. Leuk Lymphoma 49(11):2187–2195

    Article  PubMed  Google Scholar 

  • Zhou S, Greenberger JS, Epperly MW, Goff JP, Adler C, LeBoff MS et al (2008) Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 7(3):335–343

    Article  CAS  PubMed  Google Scholar 

  • Zong Q, Bundkirchen K, Neunaber C, Noack S (2023) Are the properties of bone marrow-derived mesenchymal stem cells influenced by overweight and obesity? Int J Mol Sci 24(5):4831. https://doi.org/10.3390/ijms24054831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khawaja Husnain Haider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Safwan, M., Bourgleh, M.S., Alshakaki, H., Molhem, A., Haider, K.H. (2023). Morbid Cell Status and Donor Age Significantly Alter Mesenchymal Stem Cell Functionality and Reparability. In: Haider, K.H. (eds) Handbook of Stem Cell Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-0846-2_62-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0846-2_62-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0846-2

  • Online ISBN: 978-981-99-0846-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics