Skip to main content

Use of Neuroglial Antigen 2 (NG2)-expressing Mesenchymal Stem-Like Cells for Liver Fibrosis/Cirrhosis: A New Scene

  • Living reference work entry
  • First Online:
Handbook of Stem Cell Applications

Abstract

End-stage liver disease (ESLD) and liver failure are major health problems worldwide, leading to high mortality, morbidity, and healthcare costs. Currently, orthotropic liver transplantation (LTx) is the only effective treatment for the disease. However, a shortage of donors limits treatment for patients with ESLD. Stem cell therapy has provided a valuable adjunct to LTx and has immense potential in the management of ESLD. Among immense therapies using stem cells, for example, bone marrow-derived mesenchymal stem cells (BmMSCs), they have emerged in the field either as a direct contribution to functional hepatic differentiation or as seed cells in acellular three-dimensional (3D) liver scaffolds (3D-DLSs) for functional liver tissue construction. BmMSC infusion in cirrhotic patients has improved liver parameters and could form a viable bridge to LTx. Despite prominent advantages, the BmMSCs have encountered frustrating challenges, a heterogeneity problem, which has been the central dilemma impairing their clinical application. The present chapter provides a comprehensive outlook on how this drawback could led to current challenges in the field and demonstrates several potentially viable options to address these challenges. Herein, we introduced a novel proliferated subpopulation in of BmMSCs that express neuron-glial antigen 2 (NG2), a classical stem cell marker in the central nervous system (CNS) that can be isolated using a unique protocol, the Percoll-plate-wait procedure. This chapter also provides a detailed protocol for obtaining NG2-expressing cells (NG2+ cells) from heterogenous BmMSC cultures (namely, NG2+/BmMSCs), liver-derived NG2+ cells (namely MLpvNG2+ cells), and comparisons of NG2+/BmMSCs with MLpvNG2+ cells and parental BmMSCs. Reviewing relevant studies in the field and combined with our recent experimental analysis, this chapter summarizes the basic characteristics of NG2+/BmMSCs biology relevant to advances over BmMSCs regarding the possibility of using stem cells for ESLD by enhancing efficacy and reconstructing biliary tree and hepatic blood sinusoidal anatomical structures for transplantable large-scale liver tissues to replace failed liver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmed RPH, Haider KH, Buccini S, Shujia J, Ashraf M (2011) Reprogramming of skeletal myoblasts for induction of pluripotency for tumor-free cardiomyogenesis in the infarcted heart. Circ Res 109:60–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aimaiti Y, Jin X, Shao Y, Wang W, Li D (2019) Hepatic stellate cells regulate hepatic progenitor cells differentiation via the TGF-β1/Jagged1 signaling axis. J Cell Physiol 234(6):9283–9296

    Article  CAS  PubMed  Google Scholar 

  • Akasaka Y (2022) The role of mesenchymal stromal cells in tissue repair and fibrosis. Adv Wound Care 11(11):561–574

    Article  Google Scholar 

  • Al-Khani AM, Khalifa MA, Haider KH (2022) Mesenchymal stem cells: how close we are to their routine clinical use? In: Haider KH (ed) Handbook of stem cell therapy. Springer, Singapore. https://doi.org/10.1007/978-981-16-6016-0_11-1

    Chapter  Google Scholar 

  • Al-Khani AM, Kalou Y, Haider KhH (2023) Bone marrow mesenchymal stem cells for heart failure treatment: a systematic review and meta-analysis. J Heart Lung Circ 32(7):870–880

    Google Scholar 

  • Almeida JI, Tenreiro MF, Martinez-Santamaria L, Guerrero-Aspizua S, Gisbert JP, Alves PM, Serra M, Baptista PM (2022) Hallmarks of the human intestinal microbiome on liver maturation and function. J Hepatol 76(3):694–725

    Article  PubMed  Google Scholar 

  • Al-Omar MT, Alnajjar MT, Ahmed ZT, Salaas FMI, Alrefaei TSM, Haider KH (2022) Endothelial progenitor cell-derived small extracellular vesicles for myocardial angiogenesis and revascularization. J Clin Transl Res 8(6):1–12

    Google Scholar 

  • Alvarez-Viejo M, Haider KH (2022) Mesenchymal stem cells. In: Haider KH (ed) Handbook of stem cell therapy. Springer, Singapore. https://doi.org/10.1007/978-981-16-6016-0_6-1

    Chapter  Google Scholar 

  • Azoulay D, Feray C, Lim C, Salloum C, Conticchio M, Cherqui D, Sa Cunha A, Adam R, Vibert E, Samuel D, Allard MA, Golse N (2022) A systematic review of auxiliary liver transplantation of small-for-size grafts in patients with chronic liver disease. JHEP Rep 4(4):100447

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai L, Hecker J, Kerstetter A, Miller RH (2013) Myelin repair and functional recovery mediated by neural cell transplantation in a mouse model of multiple sclerosis. Neurosci Bull 29(2):239–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blakolmer K, Jaskiewicz K, Dunsford HA, Robson SC (1995) Hematopoietic stem cell markers are expressed by ductal plate and bile duct cells in developing human liver. Hepatology. (Baltimore, MD.) 21(6):1510–1516

    Article  CAS  PubMed  Google Scholar 

  • Blanco-Elices C, Chato-Astrain J, Oyonarte S, Bermejo-Casares F, España-López A, Fernández-Valadés R, Sánchez-Quevedo M (2021) Generation of a novel model of bioengineered human oral mucosa with increased vascularization potential. J Periodontal Res 56(6):1116–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, Redl H, Rubin JP, Yoshimura K, Gimble JM (2013) Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15(6):641–648

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyer JL (2013) Bile formation and secretion. Compr Physiol 3(3):1035–1078

    Article  PubMed  PubMed Central  Google Scholar 

  • Buccini S, Haider KH, Ahmed RPH, Jiang S, Ashraf M (2012) Cardiac progenitors derived from reprogrammed mesenchymal stem cells contribute to angiomyogenic repair of the infarcted heart. Basic Res Cardiol 107(6):301–314

    Article  PubMed  PubMed Central  Google Scholar 

  • Busch SA, Horn KP, Cuascut FX, Hawthorne AL, Bai L, Miller RH, Silver J (2010) Adult NG2+ cells are permissive to neurite outgrowth and stabilize sensory axons during macrophage-induced axonal dieback after spinal cord injury. J Neurosci 30(1):255–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caldwell-Kenkel JC, Currin RT, Tanaka Y, Thurman RG, Lemasters JJ (1989) Reperfusion injury to endothelial cells following cold ischemic storage of rat livers. Hepatology (Baltimore, MD) 10(3):292–299

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain J, Yamagami T, Colletti E, Theise ND, Desai J, Frias A, Pixley J, Zanjani ED et al (2007) Efficient generation of human hepatocytes by the intrahepatic delivery of clonal human mesenchymal stem cells in fetal sheep. Hepatology. (Baltimore, MD) 46(6):1935–1945

    Article  CAS  PubMed  Google Scholar 

  • Chavarría M, de Lorenzo V (2018) The imbroglio of the physiological Cra effector clarified at last. Mol Microbiol 109(3):273–277

    Article  PubMed  Google Scholar 

  • Chen A, Li X, Zhao J, Zhou J, Xie C, Chen H, Wang Q, Wang R, Miao D, Li J, Jin J (2022) Chronic alcohol reduces bone mass through inhibiting proliferation and promoting aging of endothelial cells in type-H vessels. Stem Cells Dev 31(17–18):541–554

    Article  CAS  PubMed  Google Scholar 

  • Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313

    Article  CAS  PubMed  Google Scholar 

  • Crosby HA, Hubscher S, Fabris L, Joplin R, Sell S, Kelly D, Strain AJ (1998) Immunolocalization of putative human liver progenitor cells in livers from patients with end-stage primary biliary cirrhosis and sclerosing cholangitis using the monoclonal antibody OV-6. Am J Pathol 152(3):771–779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corr M, Zvaifler NJ (2002) Mesenchymal precursor cells. Ann Rheum Dispinion Mol 61(1):3–5

    Google Scholar 

  • DeLeve LD (1996) Cellular target of cyclophosphamide toxicity in the murine liver: role of glutathione and site of metabolic activation. Hepatology. (Baltimore, MD) 24(4):830–837

    Article  CAS  PubMed  Google Scholar 

  • DeLeve LD, Wang X, Hu L, McCuskey MK, McCuskey RS (2004) Rat liver sinusoidal endothelial cell phenotype is maintained by paracrine and autocrine regulation. Am J Physiol Gastrointest Liver Physiol 287(4):G757–G763

    Article  CAS  PubMed  Google Scholar 

  • Edgar L, Pu T, Porter B, Aziz JM, La Pointe C, Asthana A, Orlando G (2020) Regenerative medicine, organ bioengineering and transplantation. Br J Surg 107(7):793–800

    Article  CAS  PubMed  Google Scholar 

  • Eom YW, Kim G, Baik SK (2015) Mesenchymal stem cell therapy for cirrhosis: present and future perspectives. World J Gastroenterol 21(36):10253–10261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fakoya AOJ, Omole AE, Satyadev N, Haider HK (2022) Induced pluripotent stem cells: Progress towards clinical translation from bench to bedside. In: Haider KH (ed) Handbook of stem cell therapy. Springer, Singapore. https://doi.org/10.1007/978-981-16-6016-0_31-1

    Chapter  Google Scholar 

  • Farooqui N, Elhence A, Shalimar (2022) A current understanding of bile acids in chronic liver disease. J Clin Exp Hepatol 12(1):155–173

    Article  CAS  PubMed  Google Scholar 

  • Filali-Mouncef Y, Hunter C, Roccio F, Zagkou S, Dupont N, Primard C, Proikas-Cezanne T, Reggiori F (2022) The ménage à trois of autophagy, lipid droplets and liver disease. Autophagy 18(1):50–72

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Ju Y, Zhao S (2023) Cav1.2 regulated odontogenic differentiation of NG2+ pericytes during pulp injury. Odontology 111(1):57–67

    Google Scholar 

  • Gambini E, Pompilio G, Biondi A, Alamanni F, Capogrossi MC, Agrifoglio M, Pesce M (2011) C-kit+ cardiac progenitors exhibit mesenchymal markers and preferential cardiovascular commitment. Cardiovasc Res 89(2):362–373

    Article  CAS  PubMed  Google Scholar 

  • Ganesan M, Eikenberry A, Poluektova LY, Kharbanda KK, Osna NA (2020) Role of alcohol in the pathogenesis of hepatitis B virus infection. World J Gastroenterol 26(9):883–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebhardt R, Marti U (1992) Heterogeneous distribution of the epidermal growth factor receptor in rat liver parenchyma. Prog Histochem Cytochem 26(1–4):164–168

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Salinero JM, Izzo F, Lin Y, Houghton S, Itkin T, Geng F, Bram Y (2022) Specification of fetal liver endothelial progenitors to functional zonated adult sinusoids requires c-Maf induction. Cell Stem Cell 29(4):593–609.e7

    Article  PubMed  PubMed Central  Google Scholar 

  • Haider KH, Aramini B (2020) “Mircrining” the injured heart with stem cell-derived exosomes: an emerging strategy of cell-free therapy. Stem Cell Res Ther 11.: Article 23:1–12

    Article  Google Scholar 

  • Haider KH, Aziz S (2017) Paracrine hypothesis, and cardiac repair. Int J Stem Cell Res Trans 5(1):265–267

    Google Scholar 

  • Haider KH, Najimi H (2022) Exosome-based cell-free therapy in regenerative medicine for myocardial repair. In: Haider KH (ed) Handbook of stem cell therapy. Springer, Singapore. https://doi.org/10.1007/978-981-16-6016-0_9-1

    Chapter  Google Scholar 

  • Haider KH, Lei Y, Ashraf M (2008) Myocell: a cell-based autologous skeletal myoblasts therapy for treating cardiovascular diseases. Curr Opin Mol Ther 10(6):611–612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haider KH, Aziz S, AlRashedi MA (2017) Endothelial progenitor cells for cellular angiogenesis and repair: lessons learned from experimental animal models. Regen Med 12(18):969–982

    Article  CAS  PubMed  Google Scholar 

  • Ho AD, Wagner W, Franke W (2008) Heterogeneity of mesenchymal stromal cell preparations. Cytotherapy 10(4):320–330

    Article  CAS  PubMed  Google Scholar 

  • Honda H, Kiku Y, Mikami O, Ishikawa Y, Kadota K (2020) Combined hepatocellular-cholangiocarcinoma in a cow. J Vet Med Sci 82(1):84–88

    Article  PubMed  Google Scholar 

  • Hosseini SM, Sani M, Haider KH, Dorvash MR, Ziaee SM, Karimi A (2018) Concomitant use of mesenchymal stem cells and neural stem cells for treating spinal cord injury: a combo cell therapy approach. Neurosci Lett 668:138–146

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim AY, Mehdi Q, Abbas AO, Alashkar A, Haider KH (2016) Induced pluripotent stem cells: next generation cells for tissue regeneration. J Biomed Sci Eng 9(4):226–244

    Article  CAS  Google Scholar 

  • Ikhapoh IA, Pelham CJ, Agrawal DK (2015) Synergistic effect of angiotensin II on vascular endothelial growth factor-A-mediated differentiation of bone marrow-derived mesenchymal stem cells into endothelial cells. Stem Cell Res Ther 6(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang S, Haider KH, Niagara MI, Salim A, Ashraf M (2006) Supportive interaction between cell survival signaling and angio-competent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair. Circ Res 99:776–784

    Article  CAS  PubMed  Google Scholar 

  • Jindal A, Jagdish RK, Kumar A (2022) Hepatic regeneration in cirrhosis. J Clin Exp Hepatol 12(2):603–616

    Article  CAS  PubMed  Google Scholar 

  • Kamal M, Kassem D, Haider KH (2022) Sources and therapeutic strategies of mesenchymal stem cells in regenerative medicine. In: Haider KH (ed) Handbook of stem cell therapy. Springer, Singapore. https://doi.org/10.1007/978-981-16-6016-0_2-1

    Chapter  Google Scholar 

  • Kamiya A, Chikada H (2015) Human pluripotent stem cell-derived cholangiocytes: current status and future applications. Curr Opin Gastroenterol 31(3):233–238

    Article  PubMed  Google Scholar 

  • Kassem M, Kristiansen M, Abdallah BM (2004) Mesenchymal stem cells: cell biology and potential use in therapy. Basic Clin Pharmacol Toxicol 95(5):209–214

    Article  CAS  PubMed  Google Scholar 

  • Kisseleva T, Gigante E, Brenner DA (2010) Recent advances in liver stem cell therapy. Curr Opin Gastroenterol 26(4):395–402

    Article  PubMed  Google Scholar 

  • Kumar S, Curran JE, Williams-Blangero S, Blangero J (2022) Efficient generation of functional hepatocytes from human induced pluripotent stem cells for disease modeling and disease gene discovery. Methods Mol Biol. (Clifton, N.J.) 2549:85–101

    Article  CAS  PubMed  Google Scholar 

  • Lai J, Jiang S, Shuai L, Zhang Y, Xia R, Chen Q, Bai L (2021) Comparison of the biological and functional characteristics of mesenchymal stem cells from intrahepatic and identical bone marrow. Stem Cell Res 55:102477

    Article  CAS  PubMed  Google Scholar 

  • Lakota J, Dubrovcakova M, Haider KH (2022) Human mesenchymal stem cells – the art to use them in treating previously untreatable. In: Haider KH (ed) Handbook of stem cell therapy. Springer, Singapore. https://doi.org/10.1007/978-981-16-6016-0_1-1

    Chapter  Google Scholar 

  • Lange C, Bassler P, Lioznov MV, Bruns H, Kluth D, Zander AR, Fiegel HC (2005) Liver-specific gene expression in mesenchymal stem cells is induced by liver cells. World J Gastroenterol 11(29):4497–4504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee RH, Hsu SC, Munoz J, Jung JS, Lee NR, Pochampally R, Prockop DJ (2006) A subset of human rapidly self-renewing marrow stromal cells preferentially engraft in mice. Blood 107(5):2153–2161

    Article  CAS  PubMed  Google Scholar 

  • Lévesque JP, Winkler IG, Larsen SR, Rasko JE (2007) Mobilization of bone marrow-derived progenitors. Handb Exp Pharmacol 180:3–36

    Article  Google Scholar 

  • Li M, Ikehara S (2013) Bone-marrow-derived mesenchymal stem cells for organ repair. Stem Cells Int 2013:132642

    Article  PubMed  PubMed Central  Google Scholar 

  • Li K, Tharwat M, Larson EL, Felgendreff P, Hosseiniasl SM, Rmilah AA et al (2022a) Re-endothelialization of decellularized liver scaffolds: a step for bioengineered liver transplantation. Front Bioeng Biotechnol 10:833163

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, Chang N, Li L (2022b) Heterogeneity and function of Kupffer cells in liver injury. Front Immunol 13:940867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodi D, Iannitti T, Palmieri B (2011) Stem cells in clinical practice: applications and warnings. J Exp Clin Cancer Res 30(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng F, DeMorrow S, Venter J, Frampton G, Han Y, Francis H, Standeford H et al (2014) Overexpression of membrane metalloendopeptidase inhibits substance P stimulation of cholangiocarcinoma growth. American journal of physiology. Gastrointest Liver Physiol 306(9):G759–G768

    Article  CAS  Google Scholar 

  • Messner CJ, Babrak L, Titolo G, Caj M, Miho E, Suter-Dick L (2021) Single cell gene expression analysis in a 3D microtissue liver model reveals cell type-specific responses to pro-fibrotic TGF-β1 stimulation. Int J Mol Sci 22(9):4372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalik M, Wieczorek P, Czekaj P (2022) In vitro differentiation of human amniotic epithelial cells into hepatocyte-like cells. Cell 11(14):2138

    Article  CAS  Google Scholar 

  • Mooli R, Ramakrishnan SK (2022) Emerging role of hepatic ketogenesis in fatty liver disease. Front Physiol 13:946474

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller AM, Hermanns MI, Skrzynski C, Nesslinger M, Müller KM, Kirkpatrick CJ (2002) Expression of the endothelial markers PECAM-1, vWf, and CD34 in vivo and in vitro. Exp Mol Pathol 72(3):221–229

    Article  PubMed  Google Scholar 

  • Najimi M, Haider KH (2022) Extracellular vesicles-based cell-free therapy in for liver regeneration. In: Haider KH (ed) Handbook of stem cell therapy. Springer, Singapore. https://doi.org/10.1007/978-981-16-6016-0_9-1

    Chapter  Google Scholar 

  • Nicolosi PA, Dallatomasina A, Perris R (2015) Theranostic impact of NG2/CSPG4 proteoglycan in cancer. Theranostics 5(5):530–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikokiraki C, Psaraki A, Roubelakis MG (2022) The potential clinical use of stem/progenitor cells and organoids in liver diseases. Cell 11(9):1410

    Article  CAS  Google Scholar 

  • Obiorah IE, Chahine J, Ko K, Park BU, deGuzman J, Kallakury B (2019) Prognostic implications of arginase and cytokeratin 19 expression in hepatocellular carcinoma after curative hepatectomy: correlation with recurrence-free survival. Gastroenterology Res 12(2):78–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa M, Ogawa S, Bear CE, Ahmadi S, Chin S, Li B, Grompe M et al (2015) Directed differentiation of cholangiocytes from human pluripotent stem cells. Nat Biotechnol 33(8):853–861

    Article  CAS  PubMed  Google Scholar 

  • Oh SH, Witek RP, Bae SH, Zheng D, Jung Y, Piscaglia AC, Petersen BE (2007) Bone marrow-derived hepatic oval cells differentiate into hepatocytes in 2-acetylaminofluorene/partial hepatectomy-induced liver regeneration. Gastroenterology 132(3):1077–1087

    Article  CAS  PubMed  Google Scholar 

  • Park Y, Subramanian K, Verfaillie CM, Hu WS (2010) Expansion and hepatic differentiation of rat multipotent adult progenitor cells in microcarrier suspension culture. J Biotechnol 150(1):131–139

    Article  CAS  PubMed  Google Scholar 

  • Pasha Z, Haider KH, Ashraf M (2011) VEGF signaling enhances endothelial differentiation of induced pluripotent stem cells: in vitro and in vivo characterization. Circulation. Nov. 2011-SS-A-14006-AHA

    Google Scholar 

  • Petters O, Schmidt C, Henkelmann R, Pieroh P, Hütter G, Marquass B, Aust G et al (2018) Single-Stage Preparation of Human Cartilage Grafts Generated from Bone Marrow-Derived CD271+ Mononuclear Cells. Stem Cells Dev 27(8):545–555

    Article  CAS  PubMed  Google Scholar 

  • Pevsner-Fischer M, Levin S, Zipori D (2011) The origins of mesenchymal stromal cell heterogeneity. Stem Cell Rev Rep 7(3):560–568

    Article  CAS  PubMed  Google Scholar 

  • Phinney DG (2012) Functional heterogeneity of mesenchymal stem cells: implications for cell therapy. J Cell Biochem 113(9):2806–2812

    Article  CAS  PubMed  Google Scholar 

  • Poisson J, Lemoinne S, Boulanger C, Durand F, Moreau R, Valla D, Rautou PE (2017) Liver sinusoidal endothelial cells: physiology and role in liver diseases. J Hepatol 66(1):212–227

    Article  CAS  PubMed  Google Scholar 

  • Porada CD, Zanjani ED, Almeida-Porad G (2006) Adult mesenchymal stem cells: a pluripotent population with multiple applications. Curr Stem Cell Res Ther 1(3):365–369

    Article  CAS  PubMed  Google Scholar 

  • Prestigiacomo V, Weston A, Suter-Dick L (2020) Rat multicellular 3D liver microtissues to explore TGF-β1 induced effects. J Pharmacol Toxicol Methods 101:106650

    Article  CAS  PubMed  Google Scholar 

  • Puetzer JL, Petitte JN, Loboa EG (2010) Comparative review of growth factors for induction of three-dimensional in vitro chondrogenesis in human mesenchymal stem cells isolated from bone marrow and adipose tissue. Tissue Eng Part B Rev 16(4):435–444

    Article  CAS  PubMed  Google Scholar 

  • Pusztaszeri MP, Seelentag W, Bosman FT (2006) Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J Histochem Cytochem 54(4):385–395

    Article  CAS  PubMed  Google Scholar 

  • Qi Z, He Z, Chen J, Ma M, Deng M, Zhang Y, Ma T (2022) Protection of toll-like receptor 9 against lipopolysaccharide-induced inflammation and oxidative stress of pulmonary epithelial cells via MyD88-mediated pathways. Physiol Res 71(2):259–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rufaihah AJ, Haider KH, Heng BC, Tian XF, Lei Y, Ge R, Cao T (2007) Sim EKW (2007) Directing endothelial differentiation of human embryonic stem cells via transduction with an adenoviral vector expressing VEGF165 gene. J Gene Med 9(6):452–461

    Article  CAS  PubMed  Google Scholar 

  • Rufaihah AJ, Haider KH, Heng BC, Ye L, Tan RS, Toh WS, Tian XF, Sim EK, Cao T (2010) Therapeutic angiogenesis by transplantation of human embryonic stem cell-derived CD133+ endothelial progenitor cells for cardiac repair. Regen Med 5:231–244

    Article  CAS  PubMed  Google Scholar 

  • Russell KC, Tucker HA, Bunnell BA, Andreeff M, Schober W, Gaynor AS, Strickler KL et al (2013) Cell-surface expression of neuron-glial antigen 2 (NG2) and melanoma cell adhesion molecule (CD146) in heterogeneous cultures of marrow-derived mesenchymal stem cells. Tissue Eng Part A 19(19–20):2253–2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampaziotis F, de Brito MC, Madrigal P, Bertero A, Saeb-Parsy K, Soares F, Schrumpf E et al (2015) Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation. Nat Biotechnol 33(8):845–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt BM, Laschke MW, Rössler OG, Huang W, Scheller A, Menger MD, Ampofo E (2018) Nerve/glial antigen (NG) 2 is a crucial regulator of intercellular adhesion molecule (ICAM)-1 expression. Biochimica et biophysica acta. Mol Cell Res 1865(1):57–66

    CAS  Google Scholar 

  • Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T et al (2002) Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest 109(10):1291–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu W, Yang M, Yang J, Lin S, Wei X, Xu X (2022) Cellular crosstalk during liver regeneration: unity in diversity. Cell Commun Signal 20(1):117

    Article  PubMed  PubMed Central  Google Scholar 

  • Siapati EK, Roubelakis MG, Vassilopoulos G (2022) Liver regeneration by hematopoietic stem cells: have we reached the end of the road? Cell 11(15):2312

    Article  CAS  Google Scholar 

  • Stegmüller J, Schneider S, Hellwig A, Garwood J, Trotter J (2002) AN2, the mouse homolog of NG2, is a surface antigen on glial precursor cells implicated in the control of cell migration. J Neurocytol 31(6–7):497–505

    Article  PubMed  Google Scholar 

  • Surrati AI, Haider KH, Sottile V (2020) Non-destructive metabolomics characterization of mesenchymal stem cell differentiations. In: Haider K H (ed) Stem cells: From hype to hope. World Scientific, Singapore

    Google Scholar 

  • Svendsen A, Verhoeff JJ, Immervoll H, Brøgger JC, Kmiecik J, Poli A, Netland IA, Prestegarden L et al (2011) Expression of the progenitor marker NG2/CSPG4 predicts poor survival and resistance to ionising radiation in glioblastoma. Acta Neuropathol 122(4):495–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tam P, Wong K, Atala A, Giobbe GG, Booth C, Gruber PJ, Monone M et al (2022) Regenerative medicine: postnatal approaches. Lancet Child Adolesc Health 6(9):654–666

    Article  CAS  PubMed  Google Scholar 

  • Thallmair M, Ray J, Stallcup WB, Gage FH (2006) Functional and morphological effects of NG2 proteoglycan deletion on hippocampal neurogenesis. Exp Neurol 202(1):167–178

    Article  CAS  PubMed  Google Scholar 

  • Vazirzadeh M, Azarpira N, Davoodi P, Vosough M, Ghaedi K (2022) Natural scaffolds used for liver regeneration: a narrative update. Stem Cell Rev Rep 18(7):2262–2278

    Article  PubMed  Google Scholar 

  • Vessey CJ, de la Hall PM (2001) Hepatic stem cells: a review. Pathology 33(2):130–141

    Article  CAS  PubMed  Google Scholar 

  • Vyas D, Baptista PM, Brovold M, Moran E, Gaston B, Booth C, Samuel M, Atala A, Soker S (2018) Self-assembled liver organoids recapitulate hepatobiliary organogenesis in vitro. 67(2):750–761

    Google Scholar 

  • Wallace SJ, Tacke F, Schwabe RF, Henderson NC (2022) Understanding the cellular interactome of non-alcoholic fatty liver disease. JHEP Rep 4(8):100524

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang X, Xie G, Wang L, Hill CK, DeLeve LD (2012) Liver sinusoidal endothelial cell progenitor cells promote liver regeneration in rats. J Clin Invest 122(4):1567–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward MR, Abadeh A, Connelly KA (2018) Concise review: rational use of mesenchymal stem cells in the treatment of ischemic heart disease. Stem Cells Transl Med 7(7):543–550

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe H, Hata M, Terada N, Ueda H, Yamada N, Yamanegi K, Ohyama H et al (2008) Transdifferentiation into biliary ductular cells of hepatocytes transplanted into the spleen. Pathology 40(3):272–276

    Article  CAS  PubMed  Google Scholar 

  • Xie G, Wang L, Wang X, Wang L, DeLeve LD (2010) Isolation of periportal, mid-lobular, and centrilobular rat liver sinusoidal endothelial cells enables the study of zonated drug toxicity. Am J Physiol Gastrointest Liver Physiol 299(5):G1204–G1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Chen Q, Xia R, Zhang Y, Shuai L, Lai J, You X et al (2018a) Decellularized liver scaffold for liver regeneration. Methods Mol Biol. (Clifton, N.J.) 1577:11–23

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Chen Q, Xia R, Zhang Y, Shuai L, Lai J, You X, Jiang Y, Bie P, Zhang L, Zhang H, Bai L (2018b) A novel bioscaffold with naturally-occurring extracellular matrix promotes hepatocyte survival and vessel patency in mouse models of heterologous transplantation. Biomaterials 177:52–66

    Article  CAS  PubMed  Google Scholar 

  • Yuan SM, Chen RL, Shen WM, Chen HN, Zhou XJ (2012) Mesenchymal stem cells in infantile hemangioma reside in the perivascular region. Pediatr Dev Pathol 15(1):5–12

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Ge J, Sun A, Xu D, Qian J, Lin J, Zhao Y et al (2006) Comparison of various kinds of bone marrow stem cells for the repair of infarcted myocardium: single clonally purified non-hematopoietic mesenchymal stem cells serve as a superior source. J Cell Biochem 99(4):1132–1147

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhang X, Bie P, Miller RH, Bai L (2013) Adult NG2-expressing cells in multiple organs: a novel progenitor in regenerative medicine. J Genet Syndr Gene Ther 2013:S3

    Google Scholar 

  • Zhang H, Zhang Y, Ma F, Bie P, Bai L (2015) Orthotopic transplantation of decellularized liver scaffold in mice. Int J Clin Exp Med 8(1):598–606

    PubMed  PubMed Central  Google Scholar 

  • Zhang H, Siegel CT, Shuai L, Lai J, Zeng L, Zhang Y, Lai X, Bie P, Bai L (2016) Repair of liver mediated by adult mouse liver neuro-glia antigen 2-positive progenitor cell transplantation in a mouse model of cirrhosis. Sci Rep 6:21783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Siegel CT, Li J, Lai J, Shuai L, Lai X, Zhang Y et al (2018) Functional liver tissue engineering by an adult mouse liver-derived neuro-glia antigen 2-expressing stem/progenitor population. J Tissue Eng Regen Med 12(1):e190–e202

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wu Z, Hu D, Yan M, Sun J, Lai J, Bai L (2022) Immunotherapeutic targeting of NG2/CSPG4 in solid organ cancers. Vaccine 10(7):1023

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81873586), awarded to L.H.B.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhang, H. et al. (2023). Use of Neuroglial Antigen 2 (NG2)-expressing Mesenchymal Stem-Like Cells for Liver Fibrosis/Cirrhosis: A New Scene. In: Haider, K.H. (eds) Handbook of Stem Cell Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-0846-2_58-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0846-2_58-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0846-2

  • Online ISBN: 978-981-99-0846-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics