Skip to main content

Application of Single-Cell Sequencing on Stem Cell Research

  • Living reference work entry
  • First Online:
Handbook of Stem Cell Applications

Abstract

The variation and heterogeneity within cells are the fundamental features of stem cells. Each tissue has a resident stem cell niche compartmentalized to perform destined physiology and maintenance of tissue homeostasis. The stem cell niche is populated with tissue-specific pluripotent and multipotent cell types amid differentiated and intermediate progenitor cell types, thus forming a heterogeneous milieu. Therefore, identifying the stem cell population with high clonal propagation and potency for human application remains a significant challenge for researchers globally. With recent advancements in the high throughput sequencing platform, single-cell transcriptomic sequencing technology provides in-depth analysis of the expression profile of a genome at a single-cell level. This versatile technology would be a transformative approach to biomedical research as it can efficiently analyze cellular heterogeneity and identify minor subset populations of clinical importance. Single-cell sequencing technology has developed rapidly in recent years with the advent and advancement of cell sorting and nucleic acid extraction methods. Further, applying single-cell sequencing in different types of stem cells, including pluripotent stem cells, tissue-specific resident stem cells, and cancer stem cells, would lead to several exciting discoveries in stem cell research. The current chapter will lucidly narrate the basic and advanced levels of single-cell genomics and its interpretation and applications in the thematic area of stem cell biology. This chapter will also provide a glimpse of the application of single-cell sequencing technology in tissue engineering and organoid culture to a great extent. In summary, we will apprehend the latest progress and future perspectives of single-cell sequencing in stem cell biology in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

scRNA-seq:

Single-cell RNA-sequencing

mRNA:

Messenger RNA

GWAS:

Genome-wide association studies

SNP:

Single-nucleotide polymorphisms

NGS:

Next-generation sequencing

CITE-seq:

Cellular indexing of transcriptomes and epitopes sequencing

PCR:

Polymerase chain reaction

FACS:

Fluorescence-activated cell sorting

MACS:

Magnetic-activated cell sorting

WGA:

Whole-genome amplification

MDA:

Multiple displacement amplification

Id2 :

Inhibitor of DNA binding 2

ICM:

Inner cell mass

ESCs:

Embryonic stem cells

lncRNAs:

Long noncoding RNAs

AT2:

Alveolar type 2

NSC:

Neural stem cell

HSC:

Hematopoietic stem cell

HSPC:

Hematopoietic stem and progenitor cells

CSC:

Cancer stem cells

TME:

Tumor microenvironment

ALDH:

Aldehyde dehydrogenase

GEO:

Gene Expression Omnibus

CancerSEA:

Cancer Single-cell State Atlas

CancerSCEM:

Cancer Single-cell Expression Map

BCSCdb:

Biomarkers of Cancer Stem Cells Database

TISCH:

Tumor Immune Single-cell Hub

CNV:

Copy number variation

EMT:

Epithelial-mesenchymal transition

EOC:

Epithelial ovarian cancer

HCC:

Hepatocellular carcinoma

ESR1:

Estrogen receptor 1

References

  • Albini A, Bruno A, Gallo C, Pajardi G, Noonan DM, Dallaglio K (2015) Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity. Connect Tissue Res 56(5):414–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aldape K, Brindle KM, Chesler L, Chopra R, Gajjar A, Gilbert MR, Gottardo N, Gutmann DH, Hargrave D, Holland EC (2019) Challenges to curing primary brain tumors. Nat Rev Clin Oncol 16(8):509–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aliya S, Lee H, Alhammadi M, Umapathi R, Huh YS (2022) An overview on single-cell technology for hepatocellular carcinoma diagnosis. Int J Mol Sci 23(3):1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Khani AM, Khalifa MA, Haider KH (2022) Mesenchymal stem cells: how close we are to their routine clinical use? In: Haider KH (ed) Handbook of stem cell therapy. Springer, Singapore. https://doi.org/10.1007/978-981-16-6016-0_11-1

    Chapter  Google Scholar 

  • Al-Khani AM, Kalou Y, Haider KhH (2023) Bone marrow mesenchymal stem cells for heart failure treatment: a systematic review and meta-analysis. J Heart Lung Circ

    Google Scholar 

  • Alvarez-Viejo M, Haider KH (2022) Mesenchymal stem cells. In: Haider KH (ed) Handbook of stem cell therapy. Springer, Singapore. https://doi.org/10.1007/978-981-16-6016-0_6-1

    Chapter  Google Scholar 

  • Anaparthy N, Ho Y-J, Martelotto L, Hammell M, Hicks J (2019) Single-cell applications of next-generation sequencing. Cold Spring Harb Perspect Med 9(10):a026898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aramini B, Masciale V, Grisendi V, Banchelli F, D’Amico R, Dominici M, Haider KH (2021) Targeting cancer stem cells: new perspectives for a cure to cancer? In: Haider KH (ed) Stem cells: from potential to promise. Springer, Singapore. https://doi.org/10.1007/978-981-16-0301-45_5

    Chapter  Google Scholar 

  • Aramini B, Masciale V, Grisendi G, Bertolini F, Mauer M, Guaitoli G, Chrystel I et al (2022) Dissecting tumor growth: the role of cancer stem cells in drug resistance and recurrence. Cancers. 14:976. https://doi.org/10.3390/cancers14040976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT (2021) Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 20(3):200–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger MF, Mardis ER (2018) The emerging clinical relevance of genomics in cancer medicine. Nat Rev Clin Oncol 15(6):353–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blakeley P, Fogarty NM, Del Valle I, Wamaitha SE, Hu TX, Elder K, Snell P, Christie L, Robson P, Niakan KK (2015) Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 142(18):3151–3165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bocci F, Zhou P, Nie Q (2021) Single-cell RNA-seq analysis reveals the acquisition of cancer stem cell traits and increased cell–cell signaling during EMT progression. Cancers 13(22):5726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buermans H, Den Dunnen J (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta Mol Basis Dis 1842(10):1932–1941

    Article  CAS  Google Scholar 

  • Camp JG, Wollny D, Treutlein B (2018) Single-cell genomics to guide human stem cell and tissue engineering. Nat Methods 15(9):661–667

    Article  CAS  PubMed  Google Scholar 

  • Casado-Pelaez M, Bueno-Costa A, Esteller M (2022) Single cell cancer epigenetics. Trends Cancer

    Google Scholar 

  • Chen Q, Liu Y (2020) Heterogeneous groups of alveolar type II cells in lung homeostasis and repair. Am J Phys Cell Phys 319(6):C991–C996

    CAS  Google Scholar 

  • Chen T, Li J, Jia Y, Wang J, Sang R, Zhang Y, Rong R (2020) Single-cell sequencing in the field of stem cells. Curr Genomics 21(8):576–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cianciosi D, Ansary J, Forbes-Hernandez TY, Regolo L, Quinzi D, Gracia Villar S, Garcia Villena E, Tutusaus Pifarre K, Alvarez-Suarez JM, Battino M (2021) The molecular basis of different approaches for the study of cancer stem cells and the advantages and disadvantages of a three-dimensional culture. Molecules 26(9):2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cianflone E, Cappetta D, Mancuso T, Sabatino J, Marino F, Scalise M, Albanese M, Salatino A, Parrotta EI, Cuda G (2020) Statins stimulate new myocyte formation after myocardial infarction by activating growth and differentiation of the endogenous cardiac stem cells. Int J Mol Sci 21(21):7927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark SJ, Smallwood SA, Lee HJ, Krueger F, Reik W, Kelsey G (2017) Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat Protoc 12(3):534–547

    Article  CAS  PubMed  Google Scholar 

  • Collin J, Queen R, Zerti D, Dorgau B, Hussain R, Coxhead J, Cockell S, Lako M (2019) Deconstructing retinal organoids: single-cell RNA-Seq reveals the cellular components of human pluripotent stem cell-derived retina. Stem Cells 37(5):593–598

    Article  CAS  PubMed  Google Scholar 

  • Cowan CS, Renner M, De Gennaro M, Gross-Scherf B, Goldblum D, Hou Y, Munz M, Rodrigues TM, Krol J, Szikra T (2020) Cell types of the human retina and its organoids at single-cell resolution. Cell 182(6):1623–1640. e1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darnell M, O’Neil A, Mao A, Gu L, Rubin LL, Mooney DJ (2018) Material microenvironmental properties couple to induce distinct transcriptional programs in mammalian stem cells. Proc Natl Acad Sci 115(36):E8368–E8377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Q, Ramsköld D, Reinius B, Sandberg R (2014) Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343(6167):193–196

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh AP, Vasaikar SV, Tomczak K, Tripathi S, Den Hollander P, Arslan E, Chakraborty P, Soundararajan R, Jolly MK, Rai K (2021) Identification of EMT signaling cross-talk and gene regulatory networks by single-cell RNA sequencing. Proc Natl Acad Sci 118(19):e2102050118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eldar A, Elowitz MB (2010) Functional roles for noise in genetic circuits. Nature 467(7312):167–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eun K, Ham SW, Kim H (2017) Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting. BMB Rep 50(3):117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Firdous S, Ghosh A, Saha S (2022) BCSCdb: a database of biomarkers of cancer stem cells. Database:2022

    Google Scholar 

  • Frank NY, Schatton T, Frank MH (2010) The therapeutic promise of the cancer stem cell concept. J Clin Invest 120(1):41–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia G Jr, Paul S, Beshara S, Ramanujan VK, Ramaiah A, Nielsen-Saines K, Li MM, French SW, Morizono K, Kumar A (2020) Hippo signaling pathway has a critical role in Zika virus replication and the pathogenesis of neuroinflammation. Am J Pathol 190(4):844–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gawad C, Koh W, Quake SR (2016) Single-cell genome sequencing: current state of the science. Nat Rev Genet 17(3):175–188

    Article  CAS  PubMed  Google Scholar 

  • Gröger CJ, Grubinger M, Waldhör T, Vierlinger K, Mikulits W (2012) Meta-analysis of gene expression signatures defining the epithelial to mesenchymal transition during cancer progression. PLoS One 7(12):e51136

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo G, Huss M, Tong GQ, Wang C, Sun LL, Clarke ND, Robson P (2010) Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell 18(4):675–685

    Article  CAS  PubMed  Google Scholar 

  • Gupta RK, Kuznicki J (2020) Biological and medical importance of cellular heterogeneity deciphered by single-cell RNA sequencing. Cell 9(8):1751

    Article  CAS  Google Scholar 

  • Guruprasad P, Lee YG, Kim KH, Ruella M (2020) The current landscape of single-cell transcriptomics for cancer immunotherapy. J Exp Med 218(1):e20201574

    Article  PubMed Central  Google Scholar 

  • Gutierrez G, Sun P, Han Y, Dai X (2022) Defining mammary basal cell transcriptional states using single-cell RNA-sequencing. Sci Rep 12(1):4893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, Burgin G, Delorey TM, Howitt MR, Katz Y (2017) A single-cell survey of the small intestinal epithelium. Nature 551(7680):333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haque A, Engel J, Teichmann SA, Lönnberg T (2017) A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med 9(1):1–12

    Article  Google Scholar 

  • He X, Qin C, Zhao Y, Zou L, Zhao H, Cheng C (2020) Gene signatures associated with genomic aberrations predict prognosis in neuroblastoma. Cancer Commun 40(2–3):105–118

    Article  Google Scholar 

  • Huynh NC-N, Huang T-T, Nguyen CT-K, Lin F-K (2022) Comprehensive integrated single-cell whole transcriptome analysis revealed the p-EMT tumor cells – CAFs communication in Oral squamous cell carcinoma. Int J Mol Sci 23(12):6470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang B, Lee JH, Bang D (2018) Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med 50(8):1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim AY, Mehdi Q, Abbas AO, Alashkar A, Haider KH (2016) Induced pluripotent stem cells: next-generation cells for tissue regeneration. J Biomed Sci Eng 9(4):226–244

    Article  CAS  Google Scholar 

  • Ikada Y (2006) Challenges in tissue engineering. J R Soc Interface 3(10):589–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Q, Chu H, Jin Z, Long H, Zhu B (2022) High-throughput single-сell sequencing in cancer research. Signal Transduct Target Ther 7(1):145

    Article  PubMed  PubMed Central  Google Scholar 

  • Johansson E, Ueno H (2021) Characterization of normal and cancer stem-like cell populations in murine lingual epithelial organoids using single-cell RNA sequencing. Sci Rep 11(1):22329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y (2022) Single-cell RNA sequencing technologies and applications: a brief overview. Clin Transl Med 12(3):e694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kan T, Zhang S, Zhou S, Zhang Y, Zhao Y, Gao Y, Zhang T, Gao F, Wang X, Zhao L (2022) Single-cell RNA-seq recognized the initiator of epithelial ovarian cancer recurrence. Oncogene 41(6):895–906

    Article  CAS  PubMed  Google Scholar 

  • Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5):1187–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krieger T, Simons BD (2015) Dynamic stem cell heterogeneity. Development 142(8):1396–1406

    Article  CAS  PubMed  Google Scholar 

  • Krieger TG, Tirier SM, Park J, Jechow K, Eisemann T, Peterziel H, Angel P, Eils R, Conrad C (2020) Modeling glioblastoma invasion using human brain organoids and single-cell transcriptomics. Neuro-Oncology 22(8):1138–1149

    Article  PubMed  PubMed Central  Google Scholar 

  • La H, Yoo H, Lee EJ, Thang NX, Choi HJ, Oh J, Park JH, Hong K (2021) Insights from the applications of single-cell transcriptomic analysis in germ cell development and reproductive medicine. Int J Mol Sci 22(2):823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langer R, Vacanti J (1993) engenharia do Tecido. Ciência 260:920–926

    CAS  Google Scholar 

  • Lei B, Zhang X-y, Zhou J-p, Mu G-n, Li Y-w, Zhang Y-x, Pang D (2016) Transcriptome sequencing of HER2-positive breast cancer stem cells identifies potential prognostic marker. Tumor Biol 37:14757–14764

    Article  CAS  Google Scholar 

  • Li G-W, Xie XS (2011) Central dogma at the single-molecule level in living cells. Nature 475(7356):308–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Lei B, Zou J, Wang W, Chen A, Zhang J, Fu Y, Li Z (2019) High expression of carbonic anhydrase 12 (CA12) is associated with good prognosis in breast cancer. Neoplasma 66(3):420–426

    Article  CAS  PubMed  Google Scholar 

  • Li L, Xiong F, Wang Y, Zhang S, Gong Z, Li X, He Y, Shi L, Wang F, Liao Q (2021) What are the applications of single-cell RNA sequencing in cancer research: a systematic review. J Exp Clin Cancer Res 40(1):1–12

    Google Scholar 

  • Li Q, Zhang X, Ke R (2022) Spatial transcriptomics for tumor heterogeneity analysis. Front Genet:13

    Google Scholar 

  • Liu T, Liu C, Yan M, Zhang L, Zhang J, Xiao M, Li Z, Wei X, Zhang H (2022) Single-cell profiling of primary and paired metastatic lymph node tumors in breast cancer patients. Nat Commun 13(1):6823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A (2015) Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell 17(3):329–340

    Article  CAS  PubMed  Google Scholar 

  • Loh KM, Chen A, Koh PW, Deng TZ, Sinha R, Tsai JM, Barkal AA, Shen KY, Jain R, Morganti RM (2016) Mapping the pairwise choices leading from pluripotency to human bone, heart, and other mesoderm cell types. Cell 166(2):451–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Yang A, Quan C, Pan Y, Zhang H, Li Y, Gao C, Lu H, Wang X, Cao P (2022) A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma. Nat Commun 13(1):4594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marinov GK, Williams BA, McCue K, Schroth GP, Gertz J, Myers RM, Wold BJ (2014) From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res 24(3):496–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masciale V, Grisendi G, Banchelli F, D’Amico R, Morandi U, Dominici M, Haider KH, Aramini B (2020) Cancer stem cells and their microenvironment. In: Haider KH (ed) Stem cells: from hype to hope. World Scientific, Singapore

    Google Scholar 

  • Maynard A, McCoach CE, Rotow JK, Harris L, Haderk F, Kerr DL, Elizabeth AY, Schenk EL, Tan W, Zee A (2020) Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing. Cell 182(5):1232–1251. e1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirhaidari GJ, Barker JC, Breuer CK, Reinhardt JW (2023) Implanted tissue-engineered vascular graft cell isolation with single-cell RNA sequencing analysis. Tissue Eng Part C Methods 29(2):72–84

    Article  CAS  PubMed  Google Scholar 

  • Moghbeli M, Moghbeli F, Forghanifard MM, Abbaszadegan MR (2014) Cancer stem cell detection and isolation. Med Oncol 31:1–7

    Article  CAS  Google Scholar 

  • Műzes G, Sipos F (2016) Heterogeneity of stem cells: a brief overview. Stem Cell Heterogen Methods Protocols:1–12

    Google Scholar 

  • Olsen TK, Baryawno N (2018) Introduction to single-cell RNA sequencing. Curr Protoc Mol Biol 122(1):e57

    Article  PubMed  Google Scholar 

  • Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12(2):87–98

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Heckmann L-H, Sørensen JG, Holmstrup M, Arumugaperumal A, Sivasubramaniam S (2018) Transcriptome sequencing, de novo assembly and annotation of the freeze tolerant earthworm, Dendrobaena octaedra. Gene Rep 13:180–191

    Article  Google Scholar 

  • Paul S, Balakrishnan S, Arumugaperumal A, Lathakumari S, Syamala SS, Arumugaswami V, Sivasubramaniam S (2021) The transcriptome of anterior regeneration in earthworm Eudrilus eugeniae. Mol Biol Rep 48:259–283

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Balakrishnan S, Arumugaperumal A, Lathakumari S, Syamala SS, Vijayan V, Durairaj SCJ, Arumugaswami V, Sivasubramaniam S (2022a) Importance of clitellar tissue in the regeneration ability of earthworm Eudrilus eugeniae. Funct Integr Genomics 22(4):1–32

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Dinesh Kumar SM, Syamala SS, Balakrishnan S, Vijayan V, Arumugaswami V, Sudhakar S (2022b) Identification, tissue-specific expression analysis and functional characterization of arrestin gene (ARRDC) in the earthworm Eudrilus eugeniae: a molecular hypothesis behind worm photoreception. Mol Biol Rep 49(6):4225–4236

    Article  CAS  PubMed  Google Scholar 

  • Pellin D, Loperfido M, Baricordi C, Wolock SL, Montepeloso A, Weinberg OK, Biffi A, Klein AM, Biasco L (2019) A comprehensive cell single-cell transcriptional landscape of human hematopoietic progenitors. Nat Commun 10(1):2395

    Article  PubMed  PubMed Central  Google Scholar 

  • Picelli S (2017) Single-cell RNA-sequencing: the future of genome biology is now. RNA Biol 14(5):637–650

    Article  PubMed  Google Scholar 

  • Ponesakki V, Paul S, Mani DKS, Rajendiran V, Kanniah P, Sivasubramaniam S (2017) Annotation of nerve cord transcriptome in earthworm Eisenia fetida. Genom Data 14:91–105

    Article  PubMed  PubMed Central  Google Scholar 

  • Potter SS (2018) Single-cell RNA sequencing for the study of development, physiology, and disease. Nat Rev Nephrol 14(8):479–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prager BC, Xie Q, Bao S, Rich JN (2019) Cancer stem cells: the architects of the tumor ecosystem. Cell Stem Cell 24(1):41–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prieto González EA, Haider KH (2021) Genomic instability in stem Cells: the basic issues. In: Haider KH (ed) Stem cells: from potential to promise. Springer, Singapore. https://doi.org/10.1007/978-981-16-0301-3_5

    Chapter  Google Scholar 

  • Rana I, Kataria S, Tan TL, Hajam EY, Kashyap DK, Saha D, Ajnabi J, Paul S, Jayappa S, Ananthan AS (2022) Mindin (SPONDIN-2) is essential for cutaneous fibrogenesis in a mouse model of systemic sclerosis. J Investig Dermatol

    Google Scholar 

  • Rossant J, Mummery C (2012) Mature cells can be rejuvenated. Nature 492(7427):56–56

    Article  CAS  PubMed  Google Scholar 

  • Saber J, Lin AY, Rudnicki MA (2020) Single-cell analyses uncover granularity of muscle stem cells. F1000Research 9

    Google Scholar 

  • Sallam K, Thomas D, Gaddam S, Lopez N, Beck A, Beach L, Rogers AJ, Zhang H, Chen IY, Ameen M (2022) Modeling effects of immunosuppressive drugs on human hearts using induced pluripotent stem cell–derived cardiac organoids and single-cell RNA sequencing. Circulation 145(17):1367–1369

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah AA, Khan FA (2021) Types and classification of stem cells. Adv Appl Stem Cells From Bench Clinics:25–49

    Google Scholar 

  • Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci 95(23):13726–13731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro E, Biezuner T, Linnarsson S (2013) Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14(9):618–630

    Article  CAS  PubMed  Google Scholar 

  • Singer ZS, Yong J, Tischler J, Hackett JA, Altinok A, Surani MA, Cai L, Elowitz MB (2014) Dynamic heterogeneity and DNA methylation in embryonic stem cells. Mol Cell 55(2):319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sriramkumar S, Metcalfe TX, Lai T, Zong X, Fang F, O’Hagan HM, Nephew KP (2022) Single-cell analysis of a high-grade serous ovarian cancer cell line reveals transcriptomic changes and cell subpopulations sensitive to epigenetic combination treatment. PLoS One 17(8):e0271584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun G, Li Z, Rong D, Zhang H, Shi X, Yang W, Zheng W, Sun G, Wu F, Cao H (2021) Single-cell RNA sequencing in cancer: applications, advances, and emerging challenges. Mol Ther-Oncolytics 21:183–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surrati AI, Haider KH, Sottile V (2020) Non-destructive metabolomics characterization of mesenchymal stem cell differentiation. In: Haider KH (ed) Stem cells: from hype to hope. World Scientific, Singapore

    Google Scholar 

  • Tang DG (2012) Understanding cancer stem cell heterogeneity and plasticity. Cell Res 22(3):457–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382

    Article  CAS  PubMed  Google Scholar 

  • Tang F, Barbacioru C, Bao S, Lee C, Nordman E, Wang X, Lao K, Surani MA (2010) Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell 6(5):468–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang F, Barbacioru C, Nordman E, Bao S, Lee C, Wang X, Tuch BB, Heard E, Lao K, Surani MA (2011) Deterministic and stochastic allele specific gene expression in single mouse blastomeres. PLoS One 6(6):e21208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, Desai TJ, Krasnow MA, Quake SR (2014) Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509(7500):371–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vermesh U, Vermesh O, Wang J, Kwong GA, Ma C, Hwang K, Heath JR (2011) High-density, multiplexed patterning of cells at single-cell resolution for tissue engineering and other applications. Angew Chem Int Ed Engl 50(32):7378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Gong P, Chen T, et al (2021) Colorectal Cancer Stem Cell States Uncovered by Simultaneous Single-Cell Analysis of Transcriptome and Telomeres. Adv Sci 8 (8):2004320. https://doi.org/10.1002/advs.202004320

  • Wang Y, Li H, Ma J, Fang T, Li X, Liu J, Afewerky HK, Li X, Gao Q (2019) Integrated bioinformatics data analysis reveals the prognostic significance of SIDT1 in triple-negative breast cancer. Onco Targets Ther 12:8401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Drummond ML, Guerrero-Juarez CF, Tarapore E, MacLean AL, Stabell AR, Wu SC, Gutierrez G, That BT, Benavente CA (2020) Single cell transcriptomics of human epidermis identifies basal stem cell transition states. Nat Commun 11(1):4239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, He J, Zhu M, Han Y, Yang R, Liu H, Xu X, Chen X (2022a) Cellular heterogeneity and plasticity of skin epithelial cells in wound healing and tumorigenesis. Stem Cell Rev Rep 18(6):1912–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Mao Y, Wang W, Zhou X, Wang W, Gao S, Li J, Wen L, Fu W, Tang F (2022b) Systematic evaluation of colorectal cancer organoid system by single-cell RNA-Seq analysis. Genome Biol 23(1):106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen L, Tang F (2016) Single-cell sequencing in stem cell biology. Genome Biol 17(1):1–12

    Article  Google Scholar 

  • Wu H, Uchimura K, Donnelly EL, Kirita Y, Morris SA, Humphreys BD (2018) Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell 23(6):869–881. e868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Zhang H, Fouladdel S, et al (2020) Cellular, transcriptomic and isoform heterogeneity of breast cancer cell line revealed by full-length single-cell RNA sequencing. Comput Struct Biotechnol J 18676–685. https://doi.org/10.1016/j.csbj.2020.03.005

  • Wu S, Yu Y, Liu C, Zhang X, Zhu P, Peng Y, Yan X, Li Y, Hua P, Li Q (2022) Single-cell transcriptomics reveals lineage trajectory of the human scalp hair follicle and informs mechanisms of hair graying. Cell Discov 8(1):49

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaji M, Ueda J, Hayashi K, Ohta H, Yabuta Y, Kurimoto K, Nakato R, Yamada Y, Shirahige K, Saitou M (2013) PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells. Cell Stem Cell 12(3):368–382

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Yang M, Guo H, Yang L, Wu J, Li R, Liu P, Lian Y, Zheng X, Yan J (2013) Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 20(9):1131–1139

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zhang M, Wang Y (2022) The roles of histone modifications in tumorigenesis and associated inhibitors in cancer therapy. J Natl Cancer Center

    Google Scholar 

  • Yao F, Zhan Y, Li C, Lu Y, Chen J, Deng J, Wu Z, Li Q, Ya S, Chen B (2022) Single-cell RNA sequencing reveals the role of phosphorylation-related genes in hepatocellular carcinoma stem Cells. Front Cell Dev Biol 9:3715

    Article  Google Scholar 

  • Yuan H, Yan M, Zhang G, Liu W, Deng C, Liao G, Xu L, Luo T, Yan H, Long Z (2019) CancerSEA: a cancer single-cell state atlas. Nucleic Acids Res 47(D1):D900–D908

    Article  CAS  PubMed  Google Scholar 

  • Zeng J, Zhang Y, Shang Y, Mai J, Shi S, Lu M, Bu C, Zhang Z, Zhang Z, Li Y (2022) CancerSCEM: a database of single-cell expression map across various human cancers. Nucleic Acids Res 50(D1):D1147–D1155

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Liu L (2019) Applications of cell single-cell RNA sequencing to the research of stem cells. World J Stem Cells 11(10):722

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Li Z, Skrzypczynska KM, et al (2020) Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell 181 (2):442–459

    Google Scholar 

  • Zhang Y, Wang D, Peng M, Tang L, Ouyang J, Xiong F, Guo C, Tang Y, Zhou Y, Liao Q (2021) Single-cell RNA sequencing in cancer research. J Exp Clin Cancer Res 40:1–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Carter R, Natarajan S, Varn FS, Compton DA, Gawad C, Cheng C, Godek KM (2019) Single-cell RNA sequencing reveals the impact of chromosomal instability on glioblastoma cancer stem cells. BMC Med Genet 12(1):1–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayan Paul .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Paul, S. et al. (2023). Application of Single-Cell Sequencing on Stem Cell Research. In: Haider, K.H. (eds) Handbook of Stem Cell Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-0846-2_43-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0846-2_43-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0846-2

  • Online ISBN: 978-981-99-0846-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics