Skip to main content

Genetic Cell Therapy in Anti-Aging Regenerative Cosmetology

  • Living reference work entry
  • First Online:
Handbook of Stem Cell Applications

Abstract

Anti-Aging Regenerative Cosmetology (AARC) is a patented technology for beautifying and strengthening the human body using live cells to enhance the appearance and function of various body parts to provide health and aestheticism to the individual throughout life. It is a combined cosmetic and preventive medicine to intervene with and correct the undesirable phenotypic expression of aging. The intrinsic properties of myoblasts and foreskin fibroblasts in development and regeneration are harnessed to formulate a genetic cell therapy program that is safe and efficacious, as previously tested in FDA Phase III clinical trials. Myoblasts are selected for strength development and foreskin fibroblasts for tenacity and smooth-to-the-touch. Both cell types are highly mitotic and non-carcinogenic. In addition to providing large quantities of nuclei as regenerative gene medicine and mitochondria as energy generators, myoblasts secret tumor necrosis factor-alpha (TNF-α) for skin whitening and melanoma prevention. Myoblasts, because of their small size, spindle shape, and resilience, grow readily on collagen and laminin within wrinkles of skin surfaces, thus enhancing the color, luster, and texture of the skin “plated” with them. Alternatively, they can be injected subcutaneously as cell fillers to reduce wrinkles. Intramuscular injection of myoblasts can augment muscle groups’ size, shape, consistency, tone, and strength, improving the lines, contours, and vitality to sculpt a youthful appearance. By improving cell genetics and organ functions, the program promises to sustain the human subject in good health and appearance, with a good quality of life and prolonged life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BMP:

Bone morphogenic proteins

DMD:

Duchenne muscular dystrophy

FDA :

Food and Drug Administration

LGMD:

Limb-girdle muscular dystrophy

MTT:

Myoblast transfer therapy

SUI:

Stressed urinary incontinence

TNF:

Tumor necrosis factor-alpha

VEGF:

Vascular endothelial growth factor

References

  • Ahmed RPH, Haider KH, Buccini S, Shujia J, Ashraf M (2011) Reprogramming of skeletal myoblasts for induction of pluripotency for tumor free cardiomyogenesis in the infarcted hear. Circ Res 109:60–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E (2019) From discoveries in aging research to therapeutics for healthy aging. Nature 571:182–192

    Article  Google Scholar 

  • Chen B, Wang B, Zhang WJ, Zhou G, Cao Y (2012) In vivo tendon engineering with skeletal muscle-derived cells in a mouse model. Biomaterials 33:6086–6097

    Article  CAS  PubMed  Google Scholar 

  • Cheng W, Law P, Kwan H, Cheng R (2014) Stimulation therapies and the relevance of fractal dynamics to treating diseases. Open J Regen Med 3:73–94. https://doi.org/10.4236/ojrm.2014.34009

    Article  Google Scholar 

  • Crowley JS, Liu A, Dobke M (2021) Regenerative and stem cell-based techniques for facial rejuvenation. Exp Biol Med 246:1829–1837. https://doi.org/10.1177/15353702211020701

    Article  CAS  Google Scholar 

  • Di Donna S, Mamchaoui K, Cooper RN, Seigneurin-Venin S,Mouly V (2003) Telomerase can extend the proliferative capacity of human myoblasts but does not lead to their immortalization. Mol Cancer Res 1, 643–653

    PubMed  Google Scholar 

  • Durrani S, Konoplyannikov M, Ashraf M, Haider KH (2010) Skeletal myoblasts for cardiac repair (mini-review). Regen Med 5(6):919–932

    Article  PubMed  Google Scholar 

  • Elmadbouh I, Haider KH, Ashraf M, Juan-Carlos Chachques J-C (2011) Preconditioning of human skeletal myoblast with stromal cell-derived factor-1α promotes cytoprotective effects against oxidative and anoxic stress. Int J Stem Cells 4:50–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giri S, Machens H-G, Bader A (2019) Therapeutic potential of endogenous stem cells and cellular factors for scar-free skin regeneration. Drug Discov Today 24(1):69–84

    Article  CAS  PubMed  Google Scholar 

  • Godic A (2019) The role of stem cells in anti-aging medicine. Clin Dermatol 37:320–325

    Article  PubMed  Google Scholar 

  • Haider KH, Jiang S, Lei Y, Law PK, Sim EKW (2003) Myoblast transplantation for cardiac repair using transient immunosuppression. Basic Appl Myol 13:45–52

    Google Scholar 

  • Haider KH, Lei Y, Jiang S, Law PK, EKW S (2004a) Immunosuppression and xenotransplantation of cells for cardiac repair. Ann Thoracic Surg 77:1133–1134

    Article  Google Scholar 

  • Haider KH, Jiang SJ, Aziz S, Lei Y, Law PK, Sim EKW (2004b) Effectiveness of transient immunosuppression using cyclosporine for xenomyoblast transplantation for cardiac repair. Transplant Proceed 36:232–235

    Article  CAS  Google Scholar 

  • Haider KH, Tan T, Aziz S, Chachques JC, Sim EKW (2004c) Myoblast transplantation for cardiac repair: a clinical perspective. Mol Ther 9:14–23

    Article  CAS  PubMed  Google Scholar 

  • Haider HKH, Ye L, Jiang S, Ge R, Law PK, Chua T, Wong P et al (2004d) Angiomyogenesis for cardiac repair using human myoblasts as carriers of human vascular endothelial growth factor. J Mol Med 82:539–549

    Article  PubMed  Google Scholar 

  • Haider KH, Lei Y, Ashraf M (2007) Skeletal muscle-derived stem cells for myocardial repair. Recent Patents Cardiovasc Drug Discov 2(3):205–213

    Article  CAS  Google Scholar 

  • Katagiri T, Yamaguchi A, Komaki M, Abe E, Suda T (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblast into the osteoblast lineage. J Cell Biol 127:1755–1766

    Article  CAS  PubMed  Google Scholar 

  • Law PK (1994) Myoblast transfer: gene therapy for muscular dystrophy. RG Landes Co, Austin

    Google Scholar 

  • Law PK (1995) Methods for human myoblast culture and transplantation. In: Recordi C (ed) Methods in cell transplantation. RG Landes Co., Austin. Sec H5, pp 707–730

    Google Scholar 

  • Law PK (2002) Concomitant angiogenesis/myogenesis in the regenerative heart. Business Briefing: Future Drug Discovery, Genomics: 64–67, October

    Google Scholar 

  • Law P, Law D (2011) Human myoblast genome therapies and devices in regenerative medicine. Recent Patents Regen Med 1:88–117. Bentham Science, Oak Park

    Google Scholar 

  • Law PK (2016) Disease prevention and alleviation by human myoblast transplantation. Open J Regen Med 5:25–43

    CAS  Google Scholar 

  • Law PK (2017) Crime against humanity. Open J Regen Med 6:35–645. https://doi.org/10.4236/ojrm.2017.64004

    Article  Google Scholar 

  • Law PK. Biologic skin repair and enhancement. WO2004017972A1; WO2004017972A8; AU2003263906A1; AU2003263906B2; CA2496434A1; CN100482228C; CN1700915A; CN03819963.7; CN E038199637XS; EP1587515A1; EP1587515A4; SI110581; US2006057119A1

    Google Scholar 

  • Law PK. Myoblast therapy for cosmetic treatment. WO9618303A1 US7341719B1; AU4597696A; CA2183167A1; CN03101588.3; CN1127343C; CN1146712A; CN1477190A; EP0743820A1; EP0743820A4; EP1407788A2; SG74036A1; SG99279A1; SG99846A1; US7341719 B1

    Google Scholar 

  • Law PK, Motsenbocker MA. Bioactive implants. WO2004030706A2; WO2004030706A3; AU2003272805A1; AU2003272805A8

    Google Scholar 

  • Law PK, Saito A, Fleischer S (1983) Ultrastructural changes in muscle and motor endplate of the dystrophic mouse. Exp Neurol 80:361–382

    Article  CAS  PubMed  Google Scholar 

  • Law PK, Goodwin TG, Wang MG (1988) Normal myoblast injections provide genetic treatment for murine dystrophy. Muscle Nerve 11:525–533

    Article  CAS  PubMed  Google Scholar 

  • Law PK, Goodwin TG, Fang Q, Vastagh G, Jordan T, Jackson T, Kenny S et al (1998) Myoblast transfer as a platform technology of gene therapy. Gene Ther Mol Biol 1:345–363

    Google Scholar 

  • Law PK, Bertorini T, Goodwin TG, Chen M, Fang Q, Li HJ, Kirby D, et al (1990) Dystrophin production induced by myoblast transfer therapy in Duchenne muscular dystrophy. Lancet 336: 114–115

    Article  CAS  PubMed  Google Scholar 

  • Law PK, Haider K, Fang G, Jiang S, Chua F, Lim YT, Sim E (2004a) Human VEGF165-myoblasts produce concomitant angiogenesis/myogenesis in the regenerative heart. Mol Cell Biochem 263:173–178

    Article  CAS  PubMed  Google Scholar 

  • Law PK, Sim EKW, Haider KH, Fang G, Chua F, Kakuchaya T, Repin VS et al (2004b) Myoblast genome therapy and the regenerative heart. In: Kipshidze NN, Serruys PW (eds) Handbook of cardiovascular cell transplantation. Martin Dunitz, UK, pp 241–258

    Google Scholar 

  • Law PK, Law DM, Lu P, Guo J, Lu Y, Xue YF, Li X (2004c) The world’s first myoblast study of Type II diabetic patients. Business Briefing: North American Pharmacotherapy No. 2

    Google Scholar 

  • Law PK, Law DL, Lu P, Sim EKW, Haider KH, Lei Y, Li X et al (2006) Human myoblast genome therapy. J Geriat Cardiol 3:135–151

    Google Scholar 

  • Law PK, Lei Y, Haider KH, Li P, Law DM, Sim EKW (2012) Therapeutic angiomyogenesis using human non-viral transduced VEGF165-myoblasts. Open J Regen Med 1(1):1–9

    CAS  Google Scholar 

  • Law PK, Law DM, Ye L, Haider KH, Song SJ, Lu P, Ma J-H et al (2019) Myoblasts provide safe and effective treatments for hereditary muscular dystrophies, cardiomyopathies, type 2 diabetes, solid tumors, and aging. In: Haider KH, Aziz S (eds) Stem cells—from hype to real hope. Walter de Gruyter GmbH, Berlin, pp 71–97

    Google Scholar 

  • Law PK, Li W, Song Q, Song SJ, Ren J, Yao M et al (2021) Chapter 23. Myoblast therapies constitute a safe and efficacious platform technology of regenerative medicine for the human health industry. In: Haider KH, Aziz S (eds) Stem cells latest advances. Springer Nature GmbH, Berlin

    Google Scholar 

  • Ma JH, Su LP, Zhu J, Law PK, Lee K-O, Ye L, Wang Z-Z (2013) Skeletal myoblast transplantation on gene expression profiles of insulin signaling pathway and mitochondrial biogenesis and function in skeletal muscle. Diabetes Res Clin Pract 102:43–52

    Article  CAS  PubMed  Google Scholar 

  • Marks P, Gottlieb S (2018) Balancing safety and innovation for cell-based regenerative medicine. New Eng J Med 378(10):954–959

    Article  PubMed  Google Scholar 

  • Mimeault M, Batra SK (2009) Recent insights into the molecular mechanisms involved in aging, the malignant transformation of adult stem/progenitor cells, and their therapeutic implications. Ageing Res Rev 8:94–112

    Article  CAS  PubMed  Google Scholar 

  • Niagara MI, Haider KH, Goh WK, Sim EKW (2004a) Therapeutic angiogenesis for treating peripheral vascular disease. Growth Factors 22(4):269–279

    Article  Google Scholar 

  • Niagara MI, Haider KH, Lei Y, Koh VSW, Lim YT, Poh KK, Ge R et al (2004b) Autologous skeletal myoblasts transduced with a new adenoviral bicistronic vector for treatment of hind limb ischemia. J Vasc Surg 40:774–785

    Article  PubMed  Google Scholar 

  • Peng Y, Xuan M, Leung VYL, Cheng B (2015) Stem cells and aberrant signaling of molecular systems in skin aging. Ageing Res Rev 19:8–21

    Article  CAS  PubMed  Google Scholar 

  • Rigotti G, Charles-de-Sá L, Gontijo-de-Amorim NF, Takiya CM, Amable PR, Borojevic R et al (2016) Expanded stem cells, stromal-vascular fraction, and platelet-rich plasma enriched fat: comparing results of different facial rejuvenation approaches in a clinical trial. Aesthet Surg J 36:261–270. https://doi.org/10.1093/asj/sjv231www.aestheticsurgeryjournal.com

    Article  PubMed  PubMed Central  Google Scholar 

  • Sullivan D (2021) “Whole-body mitochondrial transfusion” start-up lands funding. Longevity Technol 28:2021

    Google Scholar 

  • Xiong M, Zhang Q, Hu W, Zhao C, Lv W, Yi Y et al (2021) The novel mechanisms and applications of exosomes in dermatology and cutaneous medical aesthetics. Pharmacol Res 166:105490

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Haider HK, Jiang S, Ge R, Law PK, Sim EK (2003) High-efficiency transduction of human VEGF165 into human skeletal myoblasts: in vitro studies. Exp Mol Med 35:412–420

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Husnain HK, Jiang S, Eugene S (2004) Therapeutic angiogenesis. Basic Res Cardiol 99:121–132

    Article  Google Scholar 

  • Ye L, Haider HK, Jiang S, Ge R, Law PK, Sim EK (2005) In vitro functional assessment of human skeletal myoblasts after transduction with an adenoviral bi-cistronic vector carrying human VEGF165 and angiopoietin-1. J Heart Lung Transplant 24:1393–1402

    Article  PubMed  Google Scholar 

  • Ye L, Haider HK, Tan RS, Toh WC, Law PK, Tan WB et al (2007) Transplantation of nanoparticle transfected skeletal myoblasts overexpressing vascular endothelial growth factor-165 for cardiac repair. Circulation 116:I-113–120

    Article  Google Scholar 

  • Ye L, Haider HK, Tan R, Su LP, Law PK, Wei Z et al (2008) Angiomyogenesis using liposome-based vascular endothelial growth factor-165 transfection with skeletal myoblast for cardiac repair. Biomaterials 29:2125–2137

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Lee KO, Su LP, Toh WC, Haider HK, Law PK et al (2009) Skeletal myoblast transplantation for attenuation of hyperglycemia, hyperinsulinemia, and glucose intolerance in a mouse model of type 2 diabetes mellitus. Diabetologia 52:1925–1934

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Cell Therapy Institute (China) Endowment Fund. Professor Peter K. Law is a Distinguished Scientist in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter K. Law .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Law, P.K. et al. (2023). Genetic Cell Therapy in Anti-Aging Regenerative Cosmetology. In: Haider, K.H. (eds) Handbook of Stem Cell Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-0846-2_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0846-2_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0846-2

  • Online ISBN: 978-981-99-0846-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics