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Autonomous Descent Guidance
via Sequential Pseudospectral Convex
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5.1 Introduction

The last ten years have been disruptive for rocket technology. We are witnessing a
paradigm shift which has its focus on reusability, a dreampursued since the beginning
of the Space Shuttle program [8], but that only nowwe are able to fully see as weekly-
based, operative technology. This ismainly the result of SpaceXefforts. The company
led by Elon Musk paved the way for a deep reshaping of the conception of rockets,
mainly with their Falcon 9 program, able, at the moment that this chapter is getting
written, to successfully complete its 100th landing [25]. The concurrent development
of the even more ambitious Starship program [26], together with the efforts of other
players, such as Rocket Labwith its Neutron [9] and Blue Origin with the NewGlenn
rocket [16] confirms that the disruption we are experiencing is irreversible, and needs
to be embraced rather than feared. With this spirit agencies and intergovernmental
institutions are updating their plans to keep the pace of the private sector.

In this complex scenario the German Aerospace Center (DLR), the Japan
Aerospace Exploration Agency (JAXA), and the French National Centre for Space
Studies (CNES) decided to join their resources and know-how in a trilateral agree-
ment aiming at developing and demonstrating the technologies that will be needed
for future reusable launch vehicles. The agreement led to the CALLISTO project
(Cooperative Action Leading to Launcher Innovation in Stage Toss back Operations)
[7], whose demonstrator is currently in development. Its objective is to develop and
improve all the critical technologies that are required for making reusable launch
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systems operative at industrial level in the next decade. The CALLISTO project will
culminate in a series of flights that will performed from the Kourou Space Center
(KSC), in French Guiana.

To maximize the know-how return of each partner it was decided to have two
parallel lines of development for the Guidance and Control (G&C) subsystem. One
will be developed by CNES, whereas DLR and JAXA decided to strengthen their
efforts and develop a unique, fully integrated G&C solution [23]. Since the focus
is to demonstrate reusability technologies for an end-to-end scenario the mission
profile consists of multiple flight phases, corresponding to different aerodynamic
configurations of the vehicle and different actuation capabilities. Specifically, we
identify four main phases of flight, which correspond to different G&C strategies:
the ascent phase, the boostback maneuver, the aerodynamic phase, and the powered
descent and landing phase. Consequently, several algorithms are required to cope
with each of the phases to be able to successfully and autonomously complete such
an ambitious mission.

This chapter focuses on the guidance strategy applicable to the last two phases,
namely the aerodynamic descent phase and the powered landing phase. As a matter
of fact it is well-known that the non-powered, aerodynamically guided phase is
critical for the error management in terms of position and velocity [3]. Moreover,
large uncertainties due to both the atmosphere and the aerodynamic properties of
the vehicle affect the resulting trajectory. Lastly, there will be errors coming from
previous segments of flight that the G&C subsystem has to compensate for. All these
aspects make the aerodynamic guidance a challenging problem, which requires the
capability to generate valid solutions rapidly, in reliable way, and in case significant
off-nominal conditions are experienced during the mission, these need be taken into
account. On the other hand the powered landing phase requires high accuracy and
a perfect coordination of thrust, position, velocity and attitude to meet the strict
requirements allowing for a safe and accurate touchdown, the so-called pinpoint
landing [4].

Given the aforementioned reasons, the problem of generating valid guidance solu-
tions in the frame of Entry, Descent, and Landing (EDL) has gained great attention,
and multiple research groups and companies have worked on the subject. In many
different solutions the key technology is represented by the use of Convex Optimiza-
tion [6], a sub-branch of Numerical Optimization characterized by several intriguing
properties, including the guarantee to find a solution if there exists one, a limited
dependency on initial guesses, and the computation rapidness, due to state-of-the-art
interior point primal-dual solvers [2]. In the specific frame of EDL large attention
was dedicated to the application of Second-Order Conic Programming (SOCP), a
specific subset of convex optimization, in which all the inequality constraints are
formulated in linear or conic form.

Among the proposed methodologies a break-through was represented by the for-
mulation of the entry problem in the energy domain [11]. In this case the non-convex
constraints were transformed into upper and lower bounds on the altitude, by express-
ing the speed as a function of the energy. Moreover, to overcome the non-convexity
intrinsically associated with the bank angle σ , two new controls, defined as the sine
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and the cosine of the bank angle, were adopted. The substitution was then made
valid by ensuring that the identity sin σ 2 + cos σ 2 = 1 was satisfied. Moreover, this
formulation overcomes the difficulties of having free-final time, since the final value
of energy is automatically obtained by the corresponding final altitude and speed.
With the idea of retrieving the benefits of the Space Shuttle Entry Guidance, and
generalizing it through the use of convex-optimization technologies, a drag-energy
approach based on the application of pseudospectral methods was proposed [22]. In
this case a valid drag-energy profile was computed by reformulating the problem in
terms of inverse of drag acceleration, and the solution was mapped against longi-
tudinal states to obtain a complete guidance solution. An interesting approach was
also formulated by Wang and Grant by exploiting second-order conic programming
[29]. In this case the problem was directly transcribed in the time domain by using
a direct linearization approach of the nonlinear equations underlying the problem.
Wang and Lu further improved the method [30] by means of line-search and trust
region techniques that were introduced to speed up the convergence process. The
previous approaches were mainly applied to VTHL (Vertical Take-off, Horizontal
Landing) vehicles.

For what regards VTVL (Vertical Take-off, Vertical Landing) rockets, the landing
phase was extensively treated in the last years, starting from the seminal work of
Acikmese et al. [1], and this research area is still very active now, with multiple
applications of Convex Optimization [4], Successive Convex Optimization [27, 28],
and Pseudospectral Convex Optimization in its standard and generalized forms [18,
20, 21].Moreover, a first, successful attempt to combine aerodynamic and propulsive
control was also proposed by Xinfu Liu [10], where the problem was reduced to two
dimensions, and a new set of variables, needed to convexify the subproblem, was
introduced. Yang and Liu also proposed to use altitude as independent variable to
be able to deal with free-final time powered descent problems [31], through the
corresponding manipulation of the equations of motion.

As pointed out by the authors in this last work themethods to dealwith non-convex
approach through convex techniques can be mainly divided intoDirect Linearization
Approach andNonlinearity-Kept andLinearizationApproach. In the former the equa-
tions of motion, as well as the constraints and the cost function are directly obtained
by linearizing the problem around the solution found at the previous iteration. The
validity of the approach is ensured by an ad-hoc choice of the static trust regions radii.
For this class of methods a drawback can be a slow convergence, and further strate-
gies might be needed to improve the quality of the process [30]. Note that in these
approaches the authors introduce some variable transformations aiming at convexi-
fying the problem while keeping nonlinear features of the original formulation. The
difficulties in this case arise because of the peculiarity of the transformations needed
(which strongly depend on the nature of the problem), the assumptions required to
ensure that some simplifications and transformations are valid, and the difficulty to
generalize the method (for example it can be hard to extend to the 3-D case the
transformations obtained for the in-plane scenario).

In thisworkwepropose a third approach,meant asmiddle-groundbetween the two
aforementioned techniques. There are four main novelties associated with this work.
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First, we endorse an ad-hoc formulation of the equations of motion which minimizes
the presence of non-convex terms. For example, by using Cartesian representation
for position and velocity we avoid the trigonometric terms appearing in the equations
of motion for longitude and latitude, which are typically used for aerodynamic entry
trajectories [15]. Second, we introduce a different parametrization of controls, based
on Euler-angle rates defined with respect to the target-centered Altitude-Crossrange-
Downrange directions, in addition to the thrust-rate already adopted in literature.
This choice allows to maximize the presence of linear terms in our differential equa-
tions while having the controls appearing in affine form, a property which simplifies
the convergence process, as pointed out by Liu et al. [12]. Moreover the proposed
approach gives us the chance to explicitly limit control rates as well, leading to
smooth solutions, and therefore to trajectories which can be more easily tracked by
the attitude controller.

The third novelty relies on entirely convoying the nonlinearities into the terms
appearing in the differential equations representing the accelerations for the aerody-
namic phase and the mass rate. We consequently apply numerical linearization only
to these terms, obtaining therefore an hybrid computation of the matrix representing
the equation of motion in linearized form.

The fourth aspect we want to emphasize is the use of a systematic transcription
based on generalized hp pseudospectral methods, already adopted for the powered
landing problem [20], but here extended to deal with the aerodynamic phase problem
too. This choice benefits from the properties of pseudospectral methods [19], such as
the quasi-exponential (or spectral) convergence, and the easiness of implementation.
Moreover, its mapping between time and pseudotime is conveniently exploited to
formulate the free-final time problem, leading to an increased capability of handling
initial dispersions, since we don’t need any accurate a-priori knowledge or estimate
of the flight time for off-nominal cases.

A last remark concerns the non-convex accelerations, with special focus on the
aerodynamic terms: it is in fact worth mentioning that in related works some sim-
plifications (e.g., constant drag coefficient) are typically made, given their relative
importance. However, in this work we focus on conditions which are as close as pos-
sible to what the vehicle in a real scenario will experience. Therefore we reject these
simplifications typically used for this class of methods, (e.g., constant gravity, neg-
ligible lift, or constant drag coefficient). Instead, we use a full-blown aerodynamic
database, which includes lift, drag, side-force, as well as aerodynamic torques, which
depend on the 3-D attitude of the vehicle as well as on the Mach number [14]. These
assumptions are required given the centrality of the aerodynamic accelerations for
this type of problems.

Numerical results are shown for a CALLISTO-class rocket. We extend our recent
results [21] by also analyzing off-nominal conditions for both the flight phases.
The chapter is organized as follows: in Sect. 5.2 the mission and the vehicle are
briefly described, while Sect. 5.3 focuses on the problem formulation in continuous
form. Sections5.4 and 5.5 describe the convexified approach and its corresponding
pseudospectral transcription, respectively, while numerical results are described in
Sect. 5.6. Finally, we draw some conclusions in Sect. 5.7.
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5.2 Mission and Vehicle

In this section we provide an overview of the mission scenario as well as of the
vehicle.

5.2.1 Vehicle and Mission Overview

Asmentioned in the introduction the vehicle considered in this work is a 40-kN class
rocket. The rocket thrust can be throttled between 40 and 110% of its nominal max-
imum value, and the engine is mounted on a gimballed system able to provide pitch
and yaw control capability during the powered phases, namely ascent and landing.
Roll control is ensured by a set of eight reaction control system (RCS) thrusters,
mounted on top of the rocket. During the unpowered phases we can rely on a set of
four steerable fins mounted on top. They are able to provide complete aerodynamic
control, ensuring full control throughout the entire mission. An impression of the
rocket used as example for this work is depicted in Fig. 5.1. The mission considered
is a Return To Launch Site (RTLS) Scenario. This means that the rocket will fly
back and perform the landing onto a platform that is very close to the launch site, as
visible in Fig. 5.1. A series of flights will take place at the Guiana Space Center, the
European Spaceport in French Guiana. This flight campaign will give indications on
the level of refurbishment required between two consecutive flights performed with
the same vehicle, while providing first-hand data to all the partners to further enhance
the knowledge of reusable technologies and some of the related critical technologies,
especially in terms of Guidance, Navigation and Control domain.

5.2.2 Rocket Modeling

While mass and center of mass (CoM) are considered constant during the aero-
dynamic descent, during the powered phase the vehicle experiences a significant
variation of both these variables. This effect is accounted for by storing the CoM as
a lookup-table depending on the current mass. Mass variations coming from RCS
are in this context neglected. Therefore, we can express this dependency as

CoM = CoM(m) (5.1)

The axis-symmetry of the vehicle has been exploited to compute aerodynamic coef-
ficients as function of an horizontal and a vertical angle of attack α1 and α2, as
illustrated in Fig. 5.2. The aerodynamic force coefficients with respect to the body
axes

Caero
BODY = [Caero

BODY,x C
aero
BODY,y C

aero
BODY,z]T
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(a) CALLISTO experimental vehicle

(b) Return-to-Launch-Site mission profile

Fig. 5.1 Mission and vehicle overview: a CALLISTO rocket, b Reference mission profile

Fig. 5.2 Vertical and horizontal angles of attack
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are provided as multidimensional look-up tables, which depend on Mach number
M , and angles of attack α1 and α2, and on the four fin deflections δ1,δ2,δ3,δ4.

Caero
BODY =

⎡
⎢⎣
Caero

BODY,x (M, α1, α2, δ1, δ2, δ3, δ4)

Caero
BODY,y(M, α1, α2, δ1, δ2, δ3, δ4)

Caero
BODY,z(M, α1, α2, δ1, δ2, δ3, δ4)

⎤
⎥⎦ (5.2)

From these coefficients the aerodynamic force can be computed as

Faero
BODY,i = 1

2ρV
2 SCaero

BODY,i , i = x, y, z (5.3)

with the reference surface S equal to 0.95m. The term ρ represents the atmospheric
density, which depends on altitude, whereas V is the speed of the vehicle with respect
to the air. For what regards the atmospheric density we employ a model coming from
experimental measures, and provided as look-up table, where the geodetic altitude
is the independent variable.

ρ = ρ(h)

This choice confirms oncemore that no strong simplifications (i.e., exponential atmo-
spheric profile) are required with the proposed method.

Remark 1: Note that, although this solution is inherently based on a 3-DOFmodelwe
are interested to generate solutions which we define 6-DOF capable, which means
the generated trajectory has to provide an attitude which can be trimmed by the
aerodynamic fins. This aspect is currently included in the present work, as it will be
shown in Sect. 5.6.

5.3 Problem Formulation

In this sectionwe describe in detail the problem formulation for both the aerodynamic
descent and the powered landing phases of the flight.

Aerodynamic Descent

A. Equations of Motion
We describe the aerodynamic guidance problem in a target-centered Downrange-
Crossrange-Altitude (DCA) reference frame, as depicted in Fig. 5.1. This reference
frame can be thought of as a Up-East-North local reference frame rotated around
the x-axis to align the z-axis with the plane containing most of the trajectory. We
cannot rely on thrust during this phase, and therefore only the aerodynamic forces
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can be used to control the vehicle. These forces are a direct function of the speed
and the relative attitude of the body axes with respect to the airflow. Therefore the
attitude is implicitly the main way to control the rocket, modeled in this work as a
3-DOF point mass. The desired attitude will then define the reference signals to be
tracked by the attitude controller, which is realized by using the fins to generate the
desired aerodynamic torques. The translational dynamics equations can be described
as follows.Note that fromnowon the reference frame indication is omitted for brevity.

ṙ = v
v̇ = agrav + aaero − 2ω × v − ω × (ω × r)

θ̇ = uθ

ψ̇ = uψ

(5.4)

The terms r and v are the position and the velocity of theCoMof the vehicle expressed
in the DCA reference frame. We include non-inertial terms due to the rotation of the
Earth ω, whereas θ and ψ are the pitch and yaw angle of the rocket with respect
to the target-centered Downrange-Crossrange-Altitude reference frame. We assume
that the roll angle is kept constant during the descent to maximize the decoupling
between pitch and yaw axes. Note that the controls we effectively use are the pitch
rate uθ and the yaw rate uψ . This choice is twofold beneficial: first, it decouples the
control matrix from the states, as we will see. Second, it allows to impose explicit
bounds on the control rates, making the solution smoother. The sources of non-
convexity are in this case two: the gravity, which is a non-linear function of position,
and the aerodynamic accelerations, which depend nonlinearly on altitude, velocity,
and attitude angles. Forwhat regards the gravitywe can assume a central-bodymodel,

agrav = −μ⊕
r + rT

‖r + rT ‖32
(5.5)

with μ⊕ representing the gravitational parameter of the Earth, while rT is the posi-
tion vector of the target site with respect to the center of the Earth. Note that with
this formulation more accurate models, like the one based on the World Geodetic
System 84, could be adopted. However, this more advanced modeling is kept for
future development, and a simpler choice was here preferred. For what regards the
aerodynamic accelerations they represent a nonlinear combination of the states. In
fact, the aerodynamic accelerations are, for the rocket under analysis, expressed in
body-reference frame as

aaeroBODY = 1

m
Faero
BODY (α1, α2, M, qdyn, δ1, . . . , δ4) (5.6)

where α1 and α2 are the vertical and horizontal angle of attack (introduced in Fig. 5.2
and used to exploit the axis-symmetry of the vehicle)M represents theMach number,
while qdyn is the dynamic pressure, function of the altitude (through the atmospheric
density ρ) and the speed V .
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qdyn = 1

2
ρV 2 (5.7)

Since we are interested to express the aerodynamic accelerations in DCA coordinates
it is necessary to transform the outcome of Eq. (5.6) as

aaeroDCA = RDCA
BODY · aaeroBODY (5.8)

where RDCA
BODY represents the rotation matrix from BODY to DCA. This matrix is

composed by two different contributions.

RDCA
BODY = RDCA

UEN · RUEN
BODY (5.9)

with UEN representing the target-fixed Up-East-North reference frame. Note that
the first term of the right hand side of Eq. (5.9) is only function of the target position
rT and of the angle χ identifying the trajectory plane. Both are constant,

RDCA
UEN = RDCA

UEN (rT , χ) (5.10)

while the second contribution is a direct function of the attitude of the body. In fact,
we can write

RUEN
BODY = RUEN

BODY (θ, ψ) (5.11)

and this relationship embeds part of the nonlinearities requiring linearization. Note
that the derivation of the aerodynamic accelerations in DCA is not only necessary
for the formulation of the equations of motion, but is also useful because it gives us
an indication of the dependencies to be considered when the linearized equations of
motion are derived.

B. Boundary Conditions
The problem will have fixed initial and final conditions, coming from previous and
successive phases of flight,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rDCA(t0)
vDCA(t0)
θDCA(t0)
ψDCA(t0)
rDCA(tF )

vDCA(tF )

θDCA(tF )

ψDCA(tF )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rDCA,0

vDCA,0

θDCA,0

ψDCA,0

rDCA,F

vDCA,F

θDCA,F

ψDCA,F

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.12)
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as we want, at the end of the aerodynamic descent (occurring at the free final time tF )
to be in conditions of correctly switching to the powered phase in optimal conditions
for the pinpoint landing.

Remark 2: Note that the Euler angles adopted throughout this work are built on the
Up-East-North convention, and not on the traditional North-East-Down. This choice
is motivated by the need to avoid the classical singularity of the pitch angle at 90◦,
which is what would happen for a vertical descending vehicle. With the adopted
convention we ensure to be away from the singularity, as the vertical descent is asso-
ciated with a pitch angle θ = 0◦.

C. Constraints
For the aerodynamic phase no nonlinear constraints were taken into account in this
specific example, even though it is possible to do it by directly linearizing them ([21,
29]).

D. States and controls bounds
Finally, we want to have a meaningful upper bound and lower bound on the states,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rx L
ry L
rz L
vx L
vy L
vz L
θL
ψL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rx
ry
rz
vx
vy

vz
θ

ψ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rxU
ryU
rzU
vxU
vyU
vzU
θU
ψU

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.13)

which derive mainly from flight-safety studies. Moreover, to limit the closed-loop
bandwidth associated with the attitude controller, and generate a smooth solution,
upper and lower bounds are also assigned to the rates of pitch and yaw angles, with
uθ,max = uψ,max = 10◦/s.

[ −uθ,max

−uψ,max

]
≤

[
uθ

uψ

]
≤

[
uθ,max

uψ,max

]
(5.14)

E. Cost function
Finally, for this problem we are interested to minimize the control activity, therefore
we simply express the cost function as

J =
∫ tF

t0

[
u2θ (t) + u2ψ(t)

]
dt (5.15)

where Eq. (5.15) will be weighted by a user-defined positive weight wu , whose
value is formally irrelevant here, but becomes important in the construction of an
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augmented cost function that takes also other effects into account, as it will be shown
in Sects. 5.4 and 5.5. The problem to be solved is therefore the following: we aim at
minimizing Eq. (5.15) with the system subject to the differential equations defined
in Eq. (5.4). The solution has to satisfy the boundary conditions given by Eq. (5.12),
as well as states and control box constraints defined according to Eqs. (5.13) and
(5.14).

Powered Landing

A. Equations of motion
We can extend the previous formulation to the powered landing problem. Several ele-
gant formulations have been proposed over the years to deal with this problem. Here
we aim at including the presence of realistic effects, which in order of relevance are
(1) the thrust-aerodynamic forces interaction, (2) the minimization of aerodynamic
torques that could prevent the 6-DOF feasibility of the trajectory, (3) the motion of
the center of mass while descending, (4) the effect of the pressure on the effective
thrust generated, and 5) other effects, like non-constant gravitational acceleration and
non-inertial forces due to the rotation of the Earth. While in the previous subsection
we were using the aerodynamic forces as means of control in this case their effect is
combined with the force exerted by the engine to dominate the motion of the rocket.
The corresponding model is a 3-DOF point having variable mass, and its evolution
is described by the following set of equations:

ṙ = v
v̇ = athr + agrav + aaero − 2ω × v − ω × (ω × r)

ṁ = − Tvac
Ispg0

φ̇ = uφ

θ̇ = uθ

ψ̇ = uψ

Ṫatmo = uT

(5.16)

Note the presence of the roll angle φ, the massm and the atmospheric thrust Tatmo,
with the last two terms linked to the vacuum thrust Tvac through the equation

Tatmo = Tvac − Anz p (5.17)

with Anz indicating the nozzle area, p the atmospheric pressure, and Tvac the thrust
generated in vacuum. The controls are for this scenario the Euler angle rates uφ , uθ ,
uψ . Moreover, to limit the instantaneous change of thrust, not compatible with the
physical rocket engine, we include the thrust rate uT . This choice gives the chance to
decouple the control matrix from the states as done for the aerodynamic descent, and
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at the same time to obtain solution physically realizable by the rocket’s actuators.
For this problem there are four different sources of non-convexity: in addition to
the aforementioned gravity and aerodynamic accelerations we have now the accel-
eration caused by the thrust athr = Tatmo/m. Moreover, there is an exponential-like
dependence on the massflow from the altitude through the pressure in virtue of Eq.
(5.17). The aerodynamic accelerations can be computed again by invoking Eq. (5.6)
and we can convert them into their DCA representation exactly as done through Eqs.
(5.8)–(5.10). The only difference is represented by the modification of Eq. (5.11),
which, in virtue of the dependence on the roll angle φ is re-written as follows.

RUEN
BODY = RUEN

BODY (φ, θ, ψ) (5.18)

B. Boundary Conditions
The boundary conditions described in Eqs. (5.12) are still valid. We augment them
with some further conditions coming from the new variables included in the problem
as follows.

⎡
⎢⎢⎣

m(t0)
φDCA(t0)
T (t0)

φDCA(tF )

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

m0

φDCA,0

T0
φDCA,F

⎤
⎥⎥⎦ (5.19)

Note that we omitted the final value of mass and thrust, as they are determined by
the algorithm. Moreover, we include final conditions for the attitude to ensure that
the vehicle lands with its x-body axis being normal to the local horizontal plane.

C. Constraints
Three types of constraints are included here: first, we introduce the classical glides-
lope constraint to enforce the vehicle to impose a controlled ratio between reduction
of horizontal and vertical distance with respect to the landing spot.

rA∥∥rD,C

∥∥ ≥ tan γgs (5.20)

with glideslope angle equal to 70◦. To further enforce a vertical motion towards the
end of the pinpoint landing sequence it is imposed that in the last segment of the
trajectory, approximately corresponding to the last 5 s of flight, both side-components
of position and velocity are bounded, and specifically

∥∥rD,C(t ≤ tF − t∗)
∥∥ ≤ rD,C,max∥∥vD,C (t ≤ tF − t∗)
∥∥ ≤ vD,C,max

(5.21)

with t∗ equal to 5 s, rD,C,max equal to 1m, and vD,C,max defined as 0.1m/s.



5 Autonomous Descent Guidance via Sequential Pseudospectral Convex Programming 141

Note that all these constraints can be modeled as second-order conic constraints,
and therefore do not require linearization.

D. States and controls bounds
While Eqs. (5.13)–(5.14) still hold for the powered phase too, we augment them
according to the problem definition by adding the following box constraints for the
states,

⎡
⎣
mL

φL

TL

⎤
⎦ ≤

⎡
⎣
m
φ

T

⎤
⎦ ≤

⎡
⎣
mu

φU

TU

⎤
⎦ (5.22)

and the controls
[−uφ,max

−uT,max

]
≤

[
uφ

uT

]
≤

[
uφ,max

uT,max

]
(5.23)

with uθ,max = uψ,max = 5◦/s, while the roll rate is limited to 0.1◦/s. Finally, a max-
imum throttle rate uT,max here normalized, is included in the formulation. Finally,
note that with the current formulation the thrust vector inclination is not constrained,
as we are relying on a 3-DoF formulation. However, given the constraint on the final
body axes the thrust tilt angle is implicitly constrained to be within ±δT VC,max with
respect to the local vertical axes at touchdown, where δT VC,max is the maximum
thrust gimbal angle.

E. Cost function
The cost function we build for this problem is made of different contributions: first,
we are interested to maximize the final mass of the vehicle, which corresponds to
the minimization of the fuel required to perform the landing maneuver. Moreover,
we introduce a penalization of the control rates to ensure that the solution we obtain
is smooth enough.

J = −wmm(tF ) + wu

∫ tF

t0

(
uT · R · u)

dt (5.24)

The vector u embeds all the four controls included in the formulation through R,
defined as a unitary diagonal matrix, while the termswm andwu measure the relative
importance of the two terms in the optimization process, with the former not exces-
sively larger than the latter. This choice is motivated by the fact that while we are
interested to optimize the fuel consumption, we also want to discourage through the
presence of the term wu large variations of the control rates. In fact, larger control
variations could lead to hectic control profiles, whichmight be slightly more efficient
from the fuel-consumption perspective, but less safe. We have therefore completely
defined the problem to be solved: we aim at minimizing Eq. (5.24) with the system
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subject to the differential equations defined in Eq. (5.16). The solution has to satisfy
the boundary conditions given by Eqs. (5.12), (5.19) and (5.13)–(5.14), (5.22)–(5.23)
as well as the constraints of Eqs. (5.20) and (5.21).

5.4 Convex Formulation

In this section we will transform the two continuous problems described in Sect. 5.3
into a sequence of convex problems, to be solved iteratively.

Aerodynamic Descent

A. Equations of motion
For what regards the equations of motion during the aerodynamic phase we can
decompose the system described in Eq. (5.4) in a convex part, and a non-convex
part. Defined the state vector as

x = [
rDCA vDCA θ ψ

]T
(5.25)

we can write the equations of motion as

ẋ = fnc(x) + fc(x) + Bu + Cν (5.26)

with
u = [

uθ uψ

]T
(5.27)

representing the physical controls used to manipulate the attitude of the vehicle, and
consequently, the aerodynamic forces generated, while the vector ν ∈ R

ns , defined
as

v = [
νrx νry νrz νvx νvy νvz νθ νψ

]T
(5.28)

represents the virtual controls, required to avoid artificial infeasibility [28]. The
matrix C is a design parameter to decide which and how many virtual controls will
be used to help the convergence process. For this work the matrix is defined as

C =
[
I6×6 O6×2

O2×6 O2×2

]
(5.29)

which implies that virtual controls are only applied to the translational states, act-
ing as synthetic accelerations and velocities affecting the differential equations of
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v and r, respectively. This choice is due to the nature of the problem, given that
including virtual controls affecting the attitude states might not provide any physical
improvement to the convergence process.

For what regards the convex terms, they are represented by

fc(x) =
⎡
⎣

vDCA

−2ω × vDCA − ω × (ω × rDCA)

O2×1

⎤
⎦ = Ac · x (5.30)

with

Ac �

⎡
⎣

O[3×3] I[3×3] O[3×2]
−ω × (ω×) −2ω× O[3×2]

O[3×3] O[3×3] O[3×2]

⎤
⎦ (5.31)

The matrix Ac only contains constant terms, and is therefore computed only once
during the initialization of the algorithm.

The non-convex term can be convoyed into the fourth, fifth and sixth elements of
the vector

fnc(x) =

⎡
⎢⎢⎣

O3×1

agrav

DCA + aaeroDCA

O2×1

⎤
⎥⎥⎦ (5.32)

and this contribution represents the only term that requires linearization. Finally, the
control matrix B is

B =
[
O6×2

I2×2

]
(5.33)

We can see that the system is affine in control, which is a very important property
of the problem to be iteratively solved by using sequential convex programming,
as demonstrated by Liu et al. [12]. Moreover, the structure chosen to represent the
problem suggests us that we can apply a partial linearization and perform sequential
convex programming by exploiting the distinction between convex and non-convex
terms. On this purpose, suppose we have solved the problem k times, with k =
0, . . . , kmax . The solution with k = 0 can either be a propagation of dummy controls,
or a linear interpolation between initial and final states and controls. To solve the
(k + 1)th sub-problemwe linearize thenonlinear termsof equations ofmotion around
the sub-solution k. The subscript k will indicate the terms computed by using the
corresponding kth solution. We can therefore rewrite the system described in Eq.
(5.26) as

ẋ = Acx + Akx + Bu + Cν + Gk (5.34)

where

Ak � ∂fnc (x)
∂x

∣∣∣∣
x=xk

(5.35)
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and
Gk � fnc(xk) − Akxk (5.36)

Note that, as highlighted by multiple authors [28, 30] it is necessary that the new
solution does not largely differ from the previous one. This condition is needed to
ensure that the nonlinear behavior of the system is well captured by the first two
terms of the Taylor expansions underlying the linearization. To have a meaningful
linearization process trust-region constraints are adopted. The way to implement
trust-region constraints has been widely treated in literature in multiple forms. Some
researchers prefer to express the trust-region radius as a user-defined vector [10].
This approach has the advantage to reduce the size of the problem, since the trust-
region size is an input to the subproblem to be solved, rather than a variable to
be optimized. Other relevant works include update rules for shrinking or enlarging
their size depending on some metrics measuring the validity of the linearization at
each iteration [5, 13]. Finally, a further approach consists in introducing dynamic
upper bounds for the trust region as part of the subproblem formulation [28]. In a
similar fashion to this last approach we introduce trust-region upper bounds on the
difference between the new solution and the previous iteration, used to build the
current subproblem to be solved.

∥∥∥X̃(t) − X̃k(t)
∥∥∥ ≤ ζ(t) (5.37)

with

X̃ �
[
x(t)
u(t)

]
, X̃k �

[
xk(t)
uk(t)

]
(5.38)

and ζ representing an upper bound that limits the excursion between two consecutive
iterations, to be penalized as well through a corresponding slack variable

‖ζ‖2 ≤ sζ , sζ ∈ R (5.39)

Note that the problemmust be scaled in order to have the construction of the norm
in Eq. (5.37) to be a legitimate operation.

B. Constraints
As mentioned in Sect. 5.3 no nonlinear constraints have been considered in the
formulation of the aerodynamic guidance problem. However other constraints need
to be included: specifically, we define upper and lower bounds on states and controls
corresponding to Eqs. (5.13)–(5.14) as pointwise linear inequalities. Moreover, we
need to impose constraints on virtual controls. Since they are only used to avoid
artificial obstructions, it is required to reduce them to a negligible value along the
convergence process to ensure that the computed trajectory is a physical solution to
our problem. For this reason, as already proposed in literature ([28]) every virtual
control vector is bounded by a corresponding slack variable ην
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‖ν‖2 ≤ ην, ην ∈ R
np (5.40)

and to ensure that the virtual controls are minimized over the process, we include a
further slack variable as upper bound for the norm of ην :

‖ην‖2 ≤ sη (5.41)

with the term sη included in the cost function, and scaled by a positive value wη.

C. Augmented Cost function
To include the penalization of trust regions and virtual controls in the formulation
the augmented cost function for the subproblem is defined as

Jaug(x,u, ν, ζ, sη, sζ ) = wu J + wη · sη + wζ · sζ (5.42)

with the weights wη and wζ measuring the relative importance of the penalization of
virtual control and trust region with respect to the true cost function J defined in Eq.
(5.15), which is weighted bywu . In this workwη is assumed equal to 104 for both the
descent and the landing phases, whilewζ is equal to 10−1 for the aerodynamic phase,
and to 1 for the powered segment. This choice gives full priority to the reduction
of the virtual controls, and poses as secondary objective the shrinkage of the trust-
region radii. A unitary value of wu is associated with the original cost function.
In conclusions during the aerodynamic phase we are interested to optimize at each
iteration Eq. (5.42), subject to Eqs. (5.34) while ensuring proper penalization of both
the trust region size through Eqs. (5.37) and (5.39), and a shrinkage of virtual controls
through Eqs. (5.40) and (5.41).

Powered Landing

A. Equations of motion
By extending the logic of the previous section, we expand the state vector for the
powered landing phase in the following manner,

x = [
rDCA vDCA m φ θ ψ T

]T
(5.43)

with the corresponding dynamics that in vector-form remains the same as Eq. (5.26)
but where the control vector is now the following.

u = [
uφ uθ uψ uT

]T
(5.44)
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The virtual control vector ν ∈ R
ns , is in this case defined as

v = [
νrx νry νrz νvx νvy νvz νm νφ νθ νψ νT

]T
(5.45)

and the matrix C defined in Eq. (5.29) is augmented accordingly,

C =
[
I6×6 O6×5

O5×6 O5×5

]
(5.46)

such that also in this case virtual controls affect the translational motion only. The
convex terms are common to those defined during the aerodynamic descent, modified
only to take the different size of the state vector into account.

fc(x) =
⎡
⎣

vDCA

−2ω × vDCA − ω × (ω × rDCA)

O5×1

⎤
⎦ = Ac · x (5.47)

with

Ac �

⎡
⎢⎣

O[3×3] I[3×3] O[3×5]
−ω × (ω×) −2ω× O[3×5]

O[5×3] O[5×3] O[5×5]

⎤
⎥⎦ (5.48)

The non-convex terms are grouped into the fourth, fifth, sixth and seventh differ-
ential equations coming from Eq. (5.16).

fnc(x) =

⎡
⎢⎢⎢⎢⎣

O3×1

athrDC A + agrav

DCA + aaeroDCA

− Tvac
Ispg0

O4×1

⎤
⎥⎥⎥⎥⎦

(5.49)

As previously done, numerical linearization is applied to these terms only. Finally,
the control matrix B is

B =
[
O7×4

I4×4

]
(5.50)

The procedure is therefore exactly the same as the one highlighted in the previous
section. We apply to this augmented formulation Eqs. (5.34)–(5.39), (5.40), (5.41)
at each iteration. The only differences reside in the size of states and controls, and
in the corresponding non-convex contributions. Moreover, we have different con-
straints and cost function, described in the next subsections.
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B. Constraints
As aforementioned the constraints included in thiswork, and described byEqs. (5.20)
and (5.21) can be exactly implemented as Second-order conic constraints. For the
glide-slope constraint we impose

∥∥Agsr + bgs

∥∥ ≤ cgsr + dgs (5.51)

with

Ags

[
0 1 0
0 0 1

]
, bgs =

[
0
0

]
,

cgs = [
1 0 0

]
, dgs = 0

(5.52)

For the limitations of horizontal position and velocity at the end of the landing
phase, we can derive similar expressions:

‖Arr + br‖ ≤ crr + dr
‖Avv + bv‖ ≤ cvv + dv

(5.53)

where the corresponding matrices are defined as

Ar = Av =
[
0 1 0
0 0 1

]
, br = bv =

[
0
0

]
,

cr = cv = [
0 0 0

]
, dr = 1, dv = 0.1

(5.54)

C. Augmented Cost function
The augmented cost is formally the same as Eq. (5.42). However some practical
terms will differ due to the application peculiarities since the true cost J , defined
respectively by Eqs. (5.15) and (5.24) are clearly distinct. Finally, wm and wu are in
this case equal to 100 and 10, respectively. To summarize the landing convexified
problem we want to minimize at each iteration Eq. (5.42). The solution must satisfy
Eqs. (5.34), (5.20), and (5.21) while ensuring proper penalization of both the trust
region size through Eqs. (5.37) and (5.39), and of the virtual controls through Eqs.
(5.40) and (5.41). Note that since no 6-DoF dynamics is considered in this work no
explicit penalization of roll torque commands are included. However, the limitation
imposed on the roll rate is such that it will be possible for the attitude control system
to track it. In the next section we will transcribe the problem through the use of hp
generalized pseudospectral methods.

5.5 Sequential Pseudospectral Convex Programming

The transcription proposed here is conceptually common to both the aerodynamic
descent and the powered landing problems. Consequently, we will focus on the
aspects common to both first, emphasizing later the differences between the two spe-
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cific formulations, especially in terms of constraints, cost function, and initialization
strategy. The transcription we propose adopts an hp generalized pseudospectral tran-
scription based on the use of flipped Legendre-Gauss-Radau (fLGR) method. This
method is a valid alternative to the more traditional Euler and trapezoidal discretiza-
tion transcriptions, given its higher accuracy. Moreover, its main drawback, i.e., a
typically larger CPU time, can be mitigated by proper choice of h and p [20]. In the
remainder of this section we will identify the steps of transcription according to the
Sequential Pseudospectral Convex Programming (SPCP) method here proposed.

5.5.1 Discretization

Motivated by the good results obtained in our previous works [18, 20] we extend
the methodology to the problem formulated in Sect. 5.4. Specifically, we propose
to use n segments, and in each of them perform a local collocation using p + 1
nodes coming from the p roots of the corresponding fLGR polynomial, defined in
the domain (−1, 1], and initial non-collocated node at τ = −1. A visualization of
the domain is visible in Fig. 5.3.

Note that since the domain is broken into segments, some linking conditions
connecting them are needed. They will explicitly be defined in this section, and
form, together with the equations of motion and the boundary conditions the set of
linear equations underlying the transcription.

Another benefit is associatedwith the possibility to have an open final-time formu-
lation of the guidance problem. In fact, to come upwith a free final-time discretization
some researchers prefer to reformulate the problem by using a different independent
variable, known to be monotonically changing, and with known initial and final val-
ues [31]. A different approach was the use of a stretching term σ̂ in the equations
of motion [27]. This term can be in fact re-interpreted as very close to the typical
mapping between physical time and pseudospectral time kt , defined as

kt � tF − t0
2n

(5.55)

Fig. 5.3 Domain of the hp flipped Legendre-Gauss-Radau method
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with t0 and tF initial and final times of the physical problem to be solved, and n the
number of phases to be used in the hp framework we are proposing. This observation
helps in rewriting the transcription in presence of free final time as follows. We
assume to have the state vector x ∈ R

ns , the control vector u ∈ R
nc , the virtual control

vector ν ∈ R
nv , and a total of n(p + 1) discrete time steps, corresponding to the n

segments and the p + 1 discrete points in each of the segments. Computed the p + 1
nodes τi corresponding to a single segment and defined between -1 and 1 we can,
for every couple t0, and tF , identify the single i th discrete timestep associated with
the j th segment as

t ji = t0 + tF − t0
n

(
j − 1

2

)
+ tF − t0

2n
τi , j = 1, . . . , n − 1 (5.56)

Defined the discrete time domain, we can introduce the augmented discrete deci-
sion vector X ∈ R

nvar as

X = [
x10 u1

0 ν1
0 · · · xnp un

p νn
p η1

0 · · · ηn
p ζ 1

0 · · · ζ n
p μ1

0 · · · μn
p sη sζ tF

]T
(5.57)

The first [ns + nc + nv] [n(p + 1)] elements correspond to states, control and
virtual controls, respectively. The set of data associated with η1

0,. . . ,η
n
p represents the

upper bounds on virtual controls, while the variables identified as ζ 1
0 ,. . .,ζ

n
p constrain

the size of the pointwise trust regions. The variables μ1
0,. . .,μ

n
p are associated with

the cost function. We can see the presence of the slack variables sη and sζ , penalizing
virtual controls and trust regions, as they appear in Eq. (5.42). Finally, since the
problem has open final time the variable tF appears as last element of the augmented
vector, by assuming, without compromising any possibility of general application of
the proposed method, that t0 = 0. This assumption is always applicable by simply
shifting the time vector by the initial time of the aerodynamic descent or the powered
landing sequence.

5.5.2 Dynamics

Let us consider the dynamics of our system as convexified in Eq. (5.34). By adopting
the time mapping of Eq. (5.55) we can rewrite it as follows:

ẋ = kt [Acx + Akx + Bu + Cν + Gk] (5.58)

where the equation now describes the evolution of the states with respect to a new
independent variable τ , defined between –1 and 1, and chosen because it represents
the domain of definition of Legendre-Gauss-Radau polynomials [17, 19]. We can
use this expression to derive linear system of equations representing Eq. (5.58) in
discrete form.
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By keeping in mind that only Ak andGk change at each iteration we can perform
an expansion of the right-hand side of Eq. (5.58) with respect to the variables x, u,
ν, and tF . Let us define the following quantities.

Ã � kt [Ak + Ac]

B̃ � ktB

C̃ � ktC

Ẽ � 1
2n [fnc(xk) + Axk + Buk + Cνk]

G̃ � ktGk − tF,k

2n [fnc(xk) + Axk + Buk + Cνk]

(5.59)

It is straightforward to verify that the equations of motion can be expressed as

ẋ = Ãx + B̃u + C̃ν + ẼtF + G̃ (5.60)

This expression needs to be tailored for the specific domain of choice. In this work
we choose to apply the hp-methods as a series of n equally spaced segments, and
in each of them we can collocate the differential equations using p + 1 nodes. This
choice is motivated by the fact that we are interested to real-time-capable methods,
and therefore we do not focus on refinement methods which iteratively adapt the size
and the distribution of the meshes.

The final step is the inclusion of the pseudospectral differential operator. Note that
the derivative of the state in the discrete points xi , i = 1, . . . , n can be approximated
by a matrix D in the form

ẋ ∼= D · x (5.61)

Equation (5.61) tells us that the derivative in one of the discrete points of the
domain can be approximated by a linear combination of the values that the variable
x assumes over all the discretized points through the coefficients provided by the
columns of D.

We can exploit this property to finally build the linear matrix representing the
equations of motion as follow: definedDi,... as the i th row ofDwe have that for each
segment j ∈ [1, . . . , n] and node i ∈ [0, . . . , p]

Di,... · x j
0,...,p − Ãx j

i − B̃u j
i − C̃ν

j
i − ẼtF = G̃ (5.62)

which in matrix form can be assembled as

AEoMX = bEoM (5.63)
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5.5.3 Boundary Conditions

Wecan augment the previous linear systemofEq. (5.63) by including hard constraints
to comply with initial and final states definitions. The corresponding matrix will
simply by

AbcX = bbc (5.64)

corresponding to

Abc =
[

Ins Ons×(nt )(n)(p−2) Ons×ns Ons×(nvar−[(nt )(n)(p−2)+2(ns )])
Ons×ns Ons×(nt )(n)(p−2) Ins Ons×(nvar−[(nt )(n)(p−2)+2(ns )])

]
(5.65)

where Inx and Ony×nz are the identity matrix and the zero matrix of size nx and
ny × nz , respectively, while nt = ns + nc + nv . The vector bbc is intuitively defined
as

bbc =
[
x(t0)
x(tF )

]
(5.66)

In case some initial and / or final conditions are left free the corresponding rows
in Eqs. (5.65) and (5.66) can simply be deleted.

5.5.4 Linking Conditions

The discretization introduced in Fig. 5.3 requires some extra constraints known as
linking conditions or linkage conditions, needed to enforce continuity of the states
and controls defined on the edge of the segments. These conditions are represented
by equality constraints in the form

⎡
⎣
x
u
ν

⎤
⎦

j

p

=
⎡
⎣
x
u
ν

⎤
⎦

j+1

0

, j ∈ [1, n − 1] (5.67)

It is immediate to see that these conditions can be built by assigning identity
matrices of consistent dimension to the proper indices of a matrix Alc with the
corresponding vector blc � Ont×1.

The overall system of differential equations is therefore given by

AeqX = beq (5.68)

with

Aeq =
⎡
⎣
AEoM

Abc

Alc

⎤
⎦ , beq =

⎡
⎣
bEoM

bbc
blc

⎤
⎦ (5.69)



152 M. Sagliano et al.

5.5.5 Cost

For the cost function by recovering Eq. (5.42), and remembering the quadrature
expression associated with the hp fLGR method an the continuous expression we
can rewrite it as

Jaug = −wmm
n
p + wu

tF − t0
2n

wT
f LGRμ + wν · sν + wζ · sζ + wtF st (5.70)

where the weights w f LGR are dictated by the fLGR theory [17], and wm equal to 0
if we refer to the aerodynamic descent, or larger than 0 if referred to the powered
landing case. Finally, note that a penalization on the final time variation is included
through a corresponding slack variable st . This variable acts as upper bound on the
variation of the final time with respect to the previous one, and is also modeled as
conic constraint. Its construction is trivial and skipped to avoid excess of redundancy
in the equations.

Remark 3: Note that since we are dealing with open final time problems a formal
linearization of the second term in Eq. (5.70), bilinear in the variables μ

j
i and tF ,

is needed. For easiness of implementation this linearization is not carried out, and
approximated by tF,k−t0

2n wT
f LGRμ. This approximation is valid as long as the con-

dition (tF − tF,k)wT
f LGRμk 
 (tF − t0)wT

f LGRμ is satisfied. This aspect is omitted
here for brevity, but numerically verified during the simulations, and therefore the
approximation is valid.

The role of the variablesμ is to act as upper bound for the true elements appearing
in the cost function of Eq. (5.15). Given the selected cost function it is immediate to
observe that it can be cast in a second-order cone constraint as follows.

∥∥∥∥
uθ

uψ

∥∥∥∥
j

2,i

≤ μ
j
i ,

i ∈ [0, p]
j ∈ [1, n] (5.71)

The transcription is completed by applying point-wise the second-order conic
constraints representing the upper bound on virtual controls, i.e.,

∥∥∥ν
j
i

∥∥∥
2

≤ η
j
ν,i ,

i ∈ [0, p]
j ∈ [1, n] (5.72)

and on the trust region. ∥∥∥X̃ − X̃k

∥∥∥
j

2,i
≤ ζ

j
i (5.73)

‖ζ‖ j
2,i ≤ s j

ζ,i , sζ ∈ R
np (5.74)
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5.5.6 Constraints—Powered Landing

In addition to Eq. (5.71) (opportunely augmented to consider the different number
of controls) the constraints of Eqs. (5.20) and (5.21) are also modeled as second-
order conic constraints. Therefore, they can simply be applied to each discrete node
representing position and velocity.

∥∥∥Agsr
j
i + bgs

∥∥∥
2

≤ cgsr
j
i + dgs

∥∥∥Arr
j
i + br

∥∥∥
2

≤ crr
j
i + dr ,

∥∥∥Avv
j
i + bv

∥∥∥
2

≤ cvv
j
i + dv

i ∈ [0, p]
j ∈ [1, n] (5.75)

5.5.7 Initialization

For the aerodynamic descent the initial guess for the states is built by using linear
interpolation between the desired initial and final states, while the controls were kept
equal to 0. For the landing phase a more sophisticated strategy is adopted. A scheme
illustrating the SPCP algorithm is depicted in Fig. 5.4. Inspired by the idea of Sim-
plicio et al. [24] we adopt an educated guess, obtained by solving the problem with
the method described in [20]. Given the reference scenario the simplified problem is
solved with hard constraints for initial and final conditions, as well as for the time of
flight, assumed to be fixed. In this initialization solution neither aerodynamic effects,
nor control rates are considered, and the gravity is assumed to be constant. Then,
the obtained solution is converted into a format compatible with the SPCP transcrip-
tion illustrated in this section, and utilized as k th solution, with k = 0 to start the
sequential pseudospectral convex optimization procedure.

The solution obtained contains the thrust vector in Cartesian coordinates, which
are converted into the corresponding Euler angle representation by assuming that
the x-body axis coincides with the thrust vector. This is a valid assumption since we
are dealing with a 3-DOF model. The control rates are then obtained by numerically
differentiating the Euler angles and the thrust magnitude profile, completing the
information required to build the very first solution according to the format described
by Eqs. (5.43) and (5.44). It is then possible to start the sequential pseudospectral
convex optimization, and at the end of each iteration the algorithm checks whether
convergence has been reached. In negative case the current solution is used to build
the new subproblem and iterate the procedure. In the opposite case the procedure
is concluded. To validate our solution we perform a feedforward propagation of the
full nonlinear equations of motion driven by the computed controls, and compare
the obtained solution with the optimized one, which is the outcome of the proposed
algorithm.
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Fig. 5.4 Sequential
Pseudospectral Convex
Programming (SPCP)
scheme

Remark 4: Note that this further step is not considered to be part of the on-board
guidance strategy, but it is only meant as validation tool to measure the effectiveness
and the accuracy of the proposed algorithm.

5.5.8 Convergence Criterion

Once the algorithm is initialized the process of generating subsolutions is repeated
until convergence is reached. In literature many authors meaningfully use as criterion
the difference between subsolutions meant in vector or scalar form [28, 29]. To take
into account both the convergence of subsolutions and the cost function we use
as stopping criterion the difference between consecutive values of the augmented
functions, defined in Eq. (5.70). Although this choice plays no big differences in
practical terms, since very close subsolutions will also lead to similar cost functions,
it represents a way to account also for the variations of other parts of the algorithms,
such as virtual controls and trust region radii, which do not belong to the set of
physical variables of the problem. The stopping criterion can be therefore expressed
as

δ Jaug �
∣∣J k

aug − J k−1
aug

∣∣ ≤ ε (5.76)

with ε chosen equal to 5 · 10−5 for the aerodynamic phase and to 2 · 10−4 for the
powered landing segment. The choice is dictated by empirical experience showing
that given the shorter duration of the powered phase a slightly less stringent criterion
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is sufficient to reach very good accuracy while limiting the number of iterations, and
therefore speeding up the total execution time of the algorithm.

5.6 Numerical Results

This section illustrates results obtained with the proposed method for both types of
scenarios. First, we will describe the aerodynamic descent scenario, followed by the
powered landing results.

5.6.1 Aerodynamic Descent—Nominal

For the aerodynamic descent initial and final conditions are described in Table5.1.
Note that all the positions have been scaled with respect to the initial altitude, the
scaled gravity is equal to 1, and all the other variables have been scaled consistently
with these two assumptions. Results are shown in Figs. 5.5 through 5.11. By looking
at the states (Fig. 5.5) we see that the solution shows a smooth behavior while satisfy-
ing initial and final conditions. The same holds for the attitude (Fig. 5.6a), where the
specific upper and lower bounds for pitch and yaw are met, and the attitude rates, cor-
rectly bounded between –10 and 10◦ (Fig. 5.6b). The overall trajectory is depicted in
Fig. 5.7, where the body axes (in RGB convention) depict the corresponding attitude
while performing the aerodynamic descent. The associated aerodynamic behavior is
visible in Fig. 5.8a, showing the normalized aerodynamic forces in body axes. Note
that to further enhance the 6-DOF feasibility of the solution the aerodynamic forces
are computed by dynamically trimming the vehicle. To verify the correct behavior of
the solution the resulting aerodynamic torques with respect to the center of mass are
stored and observed. The normalized aerodynamic torque residuals are depicted in
Fig. 5.8b, and are close to the zero-machine. The trimming is realized by opportunely

Table 5.1 Aerodynamic descent—initial and final conditions

Initial state Value Final state Value

rA(t0) 1.0000 rA(t f ) 0.0714

rC (t0) −0.0038 rC (t f ) 0.0006

rD(t0) 0.0669 rD(t f ) 0.0158

vA(t0) −1.1056 vA(t f ) −0.4509

vC (t0) 0.0014 vC (t f ) 0.0026

vD(t0) −0.0254 vD(t f ) −0.0297

θ(t0) 0.0172 θ(t f ) −0.0391

ψ(t0) −0.0030 ψ(t f ) −0.0037
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Fig. 5.5 Aerodynamic guidance solution—translational states

deflecting the four fins, which ensure that the aero-torque disturbances are nullified
while satisfying the maximum allowed fin deflections (shown in normalized coordi-
nates in Fig. 5.8c).

Forwhat regards the accuracy of the solution a full propagation of the trajectory by
using the full set of nonlinear equations is performed, and depicted in Fig. 5.9a, with
the mismatch between the two profiles visible in Fig. 5.9b. The two solutions agree
very well, with a maximum scaled error in the order of 4 · 10−4 for the position and
2 · 10−3 for the velocity. In full scale these results correspond to meter-error for the
position, and less than 0.5m/s for the velocity. The convergence behavior is depicted
in Figs. 5.10a through 5.10f. The first thing to observe is the behavior of the cost
and the augmented cost, shown in Fig. 5.10a and b. At the beginning of the process
larger variations between solutions are experienced. From iteration 4 to the end the
algorithm converges to a specific solution, and therefore the upper bounds on trust
regions and virtual control fade away. As a consequence the two profiles converge to
very similar values. The reduction of virtual controls and trust regions can be seen in
Fig. 5.10c and d. We can see that starting from the second iteration the method does
not really rely on virtual controls, meaning that the actual controls are sufficient to
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Fig. 5.6 Aerodynamic guidance solution: a Attitude states, and b Attitude rates

Fig. 5.7 Aerodynamic
guidance
solution—trajectory: the
body axes are depicted in red
(X), green (Y), and blue (Z)
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Fig. 5.8 Aerodynamic guidance solution: a Aerodynamic forces, b Aerodynamic torques, c Fin
deflections

solve the convex subproblems. The trust regions upper bound becomes smaller than
10−3 starting from the 7th iteration, and no sensitive variations of the augmented cost
function and of the solution are observed. Finally, we can observe that the final time
variations between consecutive solutions rapidly decreases too (Fig. 5.10e). Note that
as further test the initialized final time is given as the converged final time + 10s
to observe whether the algorithm was able to come back to the optimal value. This
behavior is confirmed by looking at the first iteration, where a variation of about 9 s
is observed, followed by smaller variations along the successive iterations. The last
plot on the bottom right (Fig. 5.10f) shows the decisions of keeping or rejecting the
subsolution along the iterations. A subsolution is rejected in two cases: first, when the
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Fig. 5.9 Nominal solution
validation: a comparison of
states, and b difference
between optimized and
propagated states
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Fig. 5.11 Convergence behavior: evolution of translational states

SOCP solver returns an infeasibility status, or if themaximum number of iterations is
reached without finding a valid solution, with the iteration limit for the SOCP solver
set equal to 100. This issue did not occur in the results shown here, as confirmed by
Fig. 5.10f.

To give an intuitive idea of the convergence process we plot the several subsolu-
tions obtained over the iterations in Fig. 5.11, showing the translational states. The
process is initializedwith a trivial linear interpolation between initial and final desired
states (in blue). After three iterations the solution is already resembling the final one
(in red), that is only refined in the remaining iterations. This is a consequence of
having variable trust region upper boundaries, which allow larger variations at the
beginning if needed, and are dynamically reduced, making, iteration after iteration,
the linearized dynamics more and more able to capture the behavior of the nonlinear
differential equations underlying the problem.
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5.6.2 Aerodynamic Descent—Dispersed Cases

As further test we simulated 25 dispersed cases associated with different initial
conditions in terms of position and velocity for both the aerodynamic and the powered
landing phases. Note that these cases are purely demonstrative and of course not
representative of a full Monte-Carlo campaign. However, they confirm the capability
of the algorithm to generate valid solutions over a much larger set of conditions
than the one given by the nominal scenario. Specifically, since it is assumed that the
aerodynamic guidance algorithm is triggered at a specific altitude, errors in terms
of crossrange and downrange components have been considered for what regards
the position. These errors are equal to 200m, whereas all the three components
of the velocity are perturbed up to ±15 m/s. All the perturbations are uniformly
distributed. Figures5.12 and 5.13 show the resulting trajectories, together with the
translational and the rotational states. Moreover, the Runge-Kutta validation of the
obtained solutions are depicted in Fig. 5.14a and b. All the trajectories converged to
the prescribed interface conditions while satisfying the constraints. Moreover, from

Fig. 5.12 Aerodynamic
guidance
solution—dispersed
trajectories
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Fig. 5.13 Aerodynamic guidance solution: a Attitude states, and b Attitude rates

the validation of the solutions (Fig. 5.14a–b) we can see that all of them fully satisfy
the equations of motion, with a consistently small error between propagated and
optimized states.

5.6.3 Powered Landing—Nominal

The prescribed initial and final conditions for the powered landing scenario we are
dealing with are described in Table5.2. The weightswvc andwtr are equal to 500 and
10. We keep the same penalization of final-time variations as for the aerodynamic
descent. States, and controls are depicted in Figs. 5.15 and 5.16. Besides a smooth
solution also in this case with initial and final boundaries fully satisfied we can see
that in the last phase of landing the horizontal components of position and velocity
are correctly constrained too, and so is the glideslope constraint (here omitted for
brevity). Moreover, the attitude rates always lie in the prescribed boundaries, and the
vehicle shows a vertical attitude when landing.

The throttle profile,with its corresponding throttle rate andmass profiles are shown
in Fig. 5.17. All of them are within the prescribed limits. The attitude is visible also
in Fig. 5.18, while the corresponding aerodynamic forces and torques are depicted
in Fig. 5.19a and b. Note that the forces are computed also in this case by taking the
attitude controllability into account, such that the aerodynamic torque is constantly
minimized (Fig. 5.19c). Specifically, only 15% of the fin maximum deflections is
sufficient to remove the undesired aerodynamic torque that would from having fin
deflections equal to 0◦. Since the effectiveness of fins decreases with the dynamic
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Fig. 5.14 Dispersed
solutions validation: a
Comparison of states, and b
Difference between
optimized and propagated
states
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Table 5.2 Powered landing—initial and final conditions

Initial state Value Final state Value

rA(t0) 1.0000 rA(t f ) 0.0002

rC (t0) −0.0049 rC (t f ) 0.0000

rD(t0) 0.053 rD(t f ) 0.0000

vA(t0) −1.4778 vA(t f ) −0.0064

vC (t0) 0.0087 vC (t f ) 0.0000

vD(t0) −0.1511 vD(t f ) 0.0000

m(t0) 1.0000 m(tF ) –

φ(t0) 3.1415 φ(t f ) 3.1415

θ(t0) 0.0126 θ(t f ) 0.0000

ψ(t0) −0.0073 ψ(t f ) 0.0000

T (t0) 1.100 T (tF ) –
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Fig. 5.15 Landing guidance solution—translational states
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Fig. 5.16 Landing guidance solution: a Attitude states, and b Attitude rates
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Fig. 5.18 Landing guidance
solution—trajectory x-body
is in red, y-body in green,
z-body in blue
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pressure, at the pseudotime equal to approximately 0.65 the fins are disabled and
the TVC can continue to control the attitude until touchdown occurs. Finally, as
depicted at the end of the scheme of Fig. 5.4, a validation through Runge-Kutta 45 is
performed to verify that the obtained solution satisfies the full nonlinear equations
of motion. The results are visible in Fig. 5.20a and b. Note that the solution perfectly
matches the propagated one, with an error that in full scale is in the order of 0.02m
for the position components, and below 0.1m/s for the velocity components. We can
have a look at the convergence properties of the algorithm: (Fig. 5.21a–f). First, by
looking at Fig. 5.21a we can see that no big changes are observed in the original
cost function. This means that the mass consumption remains approximately the
same, whereas the algorithm focuses on the refinement of the trajectory. This is
confirmed by the augmented cost in Fig. 5.21b, where we can see that after iteration
2 no big variations occur anymore. The upper bounds on virtual controls (Fig. 5.21c)
is constantly equal to 10−10, meaning that the algorithm is always able to obtain
a solution without actively leveraging the use of virtual controls for this specific
scenario. Good convergence properties are visible also from the variation of the
upper bounds on trust regions (Fig. 5.21d), which at the end of the iterative process is
in the order of 2 · 10−4. The same behavior is visible for the variations of tF , shown
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Fig. 5.19 Landing guidance solution: aAerodynamic forces, bAerodynamic torques, c Fin deflec-
tions

in Fig. 5.21e. After iteration 2 the variations on the final time are always smaller than
0.1 s, and become negligible after iteration 4.

The convergence process in terms of acceptance/rejection is depicted in Fig. 5.21f.
All the solutions are accepted, confirming that the proposed approach shows good
feasibility. Finally, the convergence behavior can be also seen in Fig. 5.22, where the
colormapmoves from blue to red as the number of iterations goes from the first to the
last iteration. All the states quickly converge to the final solution. This figure shows
that the initialization strategy correctly captures most of the behavior, simplifying
the work of the SPCP algorithm. Note however, that whenever this is not the case, the
SPCP was nevertheless able to correct the violations, as previously shown in [21].
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Fig. 5.20 Nominal solution
validation: a Comparison of
states, and b Difference
between optimized and
propagated states
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Fig. 5.22 Convergence behavior—translational states

5.6.4 Powered Landing—Dispersed Cases

Also in this case we did a preliminary analysis of the algorithm in presence of dis-
persions on the initial conditions in terms of position and velocity, as well as for the
attitude. The errors on crossrange and downrange position are uniformly dispersed
up to± 50m,while for the three velocity components the error is up to±5m/s.More-
over, up to 2.5◦ error is added to the initial pitch and yaw angles. Figures 5.23 and
5.24 show the resulting trajectories, together with the translational and the rotational
states. Moreover, the Runge-Kutta validation of the obtained solutions are depicted
in Fig. 5.25a and b.

Also in this case all the trajectories fullfill the requirements (Fig. 5.23) and all the
states and control limitations are satisfied (Fig. 5.24). Finally also in this case from
the point of view of the accuracy of the solution we obtain a consistent ensemble of
trajectories that accurately capture the nonlinear behavior of the system (Fig. 5.25a),
and show a maximum error of approximately 7 · 10−4 in position, and 4 · 10−4 in
velocity.
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Fig. 5.23 Powered landing
guidance
solution—dispersed
trajectories
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5.7 Conclusions

In this chapter we proposed an approach able to deal with both the aerodynamic
descent and the powered landing phases of a reusable rocket. In the former case
the control means are represented by the attitude of the vehicle with respect to the
airspeed, which induces the aerodynamic forces that effectively drive the motion of
the rocket during the unpowered descent, while in the latter these contributions are
effects to be coupled with the thrust force, which is the main control means during
the landing phase.

The approach exploited the distinction between convex and non-convex terms to
come up with a convex sub-problem in which the need of numerical linearization is
reduced to the sole non-convex terms. The reformulation of the problem in terms of
rates of Euler angles allowed to express the system in affine form, with the corre-
sponding benefits in terms of convergence behavior. Moreover, a transcription based
on hp pseudospectral methods allowed on one side to improve the accuracy of the
obtained solution, and on the other side to naturally formulate the free-final time
version of the problem.
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Fig. 5.24 Powered landing guidance solution: a Attitude states, and b Attitude rates

Numerical results for nominal and dispersed condition confirm that the proposed
approach is a viable method to quickly solve both the aerodynamic and landing
guidance problems while providing at the same time a very accurate solution, with
errors in the meter-range for what regards position, and less than 0.2m/s in terms of
velocity. The method is therefore a candidate technology to cover the entire descent
guidance problem associated with the use of reusable rockets.
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Fig. 5.25 Dispersed
solutions validation: a
Comparison of states, and b
Difference between
optimized and propagated
states
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