
Chapter 3
Ascent Predictive Guidance for Thrust
Drop Fault of Launch Vehicles Using
Improved GS-MPSP

Xiaodong Yan and Cong Zhou

3.1 Introduction

Increasing complex space missions require launch vehicles to be with greater load-
carrying capacity, better orbit injection accuracy and higher reliability. Such demands
also cause the increased complexity of the vehicle, leading to a higher probability of
fault, especially for the propulsion system. To remedy this issue, an advanced and
robust ascent guidance capable of fault-tolerant is critical for the success of mission.
Iterative guidance method [1] (IGM) and powered explicit guidance [2] (PEG) are
two commonly used methods for the ascent phase of launch vehicles. These two
guidance methods work well in the nominal condition and can adapt to many off-
nominal conditions [3]. However, they lack of strong adaptive capacity, which cannot
guarantee the reliability when the dynamicmodel or parameters change significantly.
Alternatively, numerical approaches based on the optimal control theory may be the
better choice. The existing algorithms can be divided into direct methods and indi-
rect methods. Using the indirect methods, the guidance problem is transformed into
Hamilton two-point boundary value problems [4] (TPBVP), but the solving pro-
cess of this Hamilton two-point boundary value problem is complicated and highly
sensitive to the initial guess. Using the direct method, the guidance problem is trans-
formed into a nonlinear programming problem [5] (NLP). However, solving such
problem is extremely computational intensive, which is difficult to meet the real-time
requirement for online application.

In recent years, computational guidance has been proposed, which allows for
onboard to generate guidance commands by the rapid trajectory optimization or
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other numerical computation [6]. Convex optimization method is the most popular
one in this field [7]. The advantage of convex optimization is that the convex prob-
lem can be reliably solved by the interior point method to gain global optimality
in polynomial time, regardless of the initial guess. Owing to the high efficiency,
the convex optimization methods have been applied into various guidance designs,
such as entry guidance [8], landing guidance [9], as well as ascent guidance [10]. A
Newton-Kantorovich pseudospectral convex programming method was presented in
[10] to solve the ascent trajectory planning problem. The combination of Newton-
Kantorovich and pseudospectral discrete furtherly improves the computational effi-
ciency. Similarly, Li et al. [11] presented a pseudospectral based convex optimization
approach to solve the ascent guidance problem in the presence of thrust drop fault.
Song et al. [12] investigated online joint optimization of the target orbit and flight
trajectory for launch vehicles under a propulsion system fault. Most recently, the
optimal abort orbit problem is studied in [13], which employed the SOCP approach
to solve the circular abort orbit with the maximum of the radius. Through these
literature, the computational guidance and online programming methods for ascent
problems have been studied extensively. However, most of them are still limited in
terms of the computational efficiency.

Another promising approach for online application is model predictive static pro-
gramming (MPSP) [14]. Owing to featuring an explicit closed-form solution and
avoiding numerical complexities of optimal control theory, this method exhibits a
higher computational efficiency over convex optimization methods. In our previ-
ous work, a new developed generalized quasi-spectral MPSP (GS-MPSP) has been
proposed [15], which furtherly improves the computational speed by using spectral
discretization and collocation method. This new algorithm also offers the advantage
of smooth control and better usability, and hence holds great promise for online
application.

In this chapter, based on the GS-MPSP philosophy, an ascent guidance for the
thrust drop fault of the launch vehicle is presented. For the ascent guidance problem,
the thrust drop fault may lead to the flight time substantially changing compared
to the nominal trajectory, and a proper final time or orbit injection point is not
easy to give out. In this case, the ability to search the final time in a large range is
required for the guidance algorithm. The original GS-MPSP [15] is able to address
the free terminal time problem by formulating a sensitive relation between the final
time and final outputs, and taking the final time as the additional variable to be
determined. However, this operation is quite rough and feasible just for slightly
adjusting the terminal time when a proper initial guess is provided. Therefore, an
improvedGS-MPSP (IGS-MPSP)method is first proposed,which furtherly enhances
the convergence robustness for the free final time in the presence of the poor initial
guess by introducing a scale factor of time interval. Then, the ascent guidance is
systematically formulated using this improved algorithm. Consequently, a numerical
simulation for the case of injecting into a circular orbit is conducted to verify the
effectiveness of the proposed method. The comparison with the SOCP based method
is also carried out.



3 Ascent Predictive Guidance for Thrust Drop Fault of Launch Vehicles … 77

3.2 Generic Theory of the IGS-MPSP Method

TheGS-MPSPmethod is proposed for efficiently solving a class of nonlinear terminal
constraint problem. The considered nonlinear system dynamics is as follows:

Ẋ(t) = f (X,U, t), t ∈ [t0, t f ] (3.1)

Y(t) = h(X, t) (3.2)

where X ∈ Rn , U ∈ Rm and Y ∈ R p denote the state, control and output vectors,
respectively. The purpose of this approach is to find suitable control history U(t)
to ensure that the final system output Y f (t f ) approaches the desired value Y d with
minimum control effort.

3.2.1 The Sensitivity Relation for Free-Terminal Time
Continuous System

In this subsection, a sensitivity relation for the continuous system with the
free -terminal time is derived. It is based on the sensitivity relation developed in
Ref. [15, 16]. The brief introduction is presented in the following.

In the proposed method, it is considered that the terminal time is adjusted by
uniformly scaling the length of time interval [t0, t f ]. Thus, the updated terminal time
can be written as:

t l+1
f = t lf + �κ · (t lf − t0) (3.3)

where �κ ∈ R is the scale factor, and the superscript l and l + 1 denotes the current
step and the update step. The differential of Eq. (3.3) is given by

dtl+1 = dtl + �κ · dtl , t ∈ [t0, t lf ] (3.4)

Note that in Eq. (3.4), the term �κ · dtl denotes the changed time length for each
infinitesimal time interval, dt, t ∈ [t0, t lf ]. Next, the final output vector of the system
(3.1) can be expressed as follow by introducing a weighting matrix W(t) ∈ R p×n

Y(X(t f )) = Y(X(t f )) +
t f∫

t0

[
W(t) · ( f (X,U, t) − Ẋ)

]
dt (3.5)

We then differentiate both sides of Eq. (3.5), it gives
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dY(X(t f )) = ∂Y(X(t))

∂X(t)
· dX(t f ) +

t f∫

t0

[
W(t) · ∂ f (X,U, t)

∂X(t)
· δX(t)

+W(t) · ∂ f (X,U, t)

∂U(t)
· δU(t) − W(t) · d Ẋ(t)

]
dt

(3.6)

Note that in Eq. (3.6), dX(t) denotes the differential of X(t) taking into account
the differential change of time interval, �κ · dt , and δX denotes the variation in X
when the time interval is assumed to be fixed. They have the relationship as follow

dX(t) = δX(t) + Ẋ(t) · �κ · dt (3.7)

We conduct the first order differential of Eq.(3.7) respect to the time, it yields

d Ẋ(t) = δ Ẋ(t) + Ẋ(t) · �κ (3.8)

Substituting the d Ẋ(t) for Eq. (3.8) into the term of the integrand on right side of
Eq. (3.6) leads to

dY(X(t f )) = ∂Y(X(t))

∂X(t)
· dX(t f ) +

t f∫

t0

[
W(t) · ∂ f (X,U, t)

∂X(t)
· δX(t)

+W(t) · ∂ f (X,U, t)

∂U(t)
· δU(t) − W(t) · Ẋ(t) · �κ − W(t) · δ Ẋ(t)

]
dt

(3.9)

By integrating the last term on the right side of Eq. (3.6), we obtain

dY(X(t f )) = ∂Y(X(t f ))

∂X(t f )
· δX(t f ) − [W(t) · δX(t)]t=t f + [W(t) · δX(t)]t=t0

+
t f∫

t0

[
W(t) · ∂ f (X,U, t)

∂X(t)
· δX(t) + Ẇ(t) · δX(t)

+W(t) · ∂ f (X,U, t)

∂U(t)
· δU(t) − W(t) · Ẋ(t) · �κ

]
dt

(3.10)
Equation (3.10) can be further rearranged as
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dY(X(t f )) =
(

∂Y(X(t f ))

∂X(t f )
− [W(t)]t=t f

)
· δX(t f ) + [W(t) · δX(t)]t=t0

+
t f∫

t0

[(
W(t) · ∂ f (X,U, t)

∂X(t)
+Ẇ (t)

)
· δX(t) + W(t) · ∂ f (X,U, t)

∂U(t)
· δU(t)

−W(t) · Ẋ(t) · �κ
]
dt

(3.11)
Here, it is necessary to choose W(t) so that eliminates the coefficients of δX(t)

and δX(t f ) in Eq. (3.11), which leads to the following weighting matrix dynamics
with the associated boundary condition at the final time t f :

Ẇ(t) = −W(t) · ∂ f (X,U, t)

∂X(t)
(3.12)

W(t f ) = ∂Y(X(t f ))

∂X(t f )
(3.13)

In Eq. (3.11), it is straight to obtain δX(t0) = 0 with the fact that the initial
conditions are specified. Then use this observation and theweightingmatrix dynamic
as presented in Eqs. (3.12) and (3.13), the Eq. (3.11) can be further simplified as

dY(X(t f )) =
t f∫

t0

[
W(t) · ∂ f (X,U, t)

∂U(t)
· δU(t)

]
dt +

t f∫

t0

[
−W(t) · Ẋ(t) · �κ

]
dt

=
t f∫

t0

[Bs(t) · δU(t)] dt + Bκ · �κ

(3.14)

where

Bs(t) � W(t) · ∂ f (X,U, t)

∂U(t)
(3.15)

Bκ � −
t f∫

t0

[
W(t) · Ẋ(t)

]
dt (3.16)

where Bs(t) is the sensitivity matrix that relates the error δU to dY as per Ref. [16].
And Bκ can be interpreted as the sensitivity matrix that relates the scale factor of
time internal, �κ to the final out error dY . Note that in here, the sensitive relation
for terminal time is indirectly formulated by the scale factor of time internal, �κ .
Compared with the original way in GS-MPSP, this strategy is more accurate since
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it uniformly scales each infinitesimal time interval on [t0, t f ], rather than roughly
adjust the final time.

3.2.2 The Mathematical of IGS-MPSP Method

In IGS-MPSP, the control vector is represented by a weighted summation of some
basic spectral functions to reduce the number of various to be optimized:

U(t) =
Np∑
i=1

C i Pi (t) (3.17)

where C j = [c1 j , c2 j , . . . , cmj ]T is the coefficient vector corresponding to the j th
spectral function. Np is the number of basic functions in the expression, and P j (t)
is the basic spectral function. The spectral functions can be selected as Legendre
series, Chebyshev series, etc.

Next, the new developed relationship as presented in Eq. (3.14) is applied to
derive the GS-MPSP method for the free-time problem. Since the control history
U(t), t ∈ [t0, t f ] has been represented by the spectral functions in Eq. (3.17), and a
new scale factor of time internal, �κ , is introduced to adjust the unspecified final
time as in Eq. (3.3), both the coefficient vector [C1,C2, . . . ,CNp ] and scale factor
δκ are selected as variable to be determined.

First, the variationof the control history during the time t = [t0, t f ] canbeobtained
from Eq. (3.17):

dU(t) =
Np∑
j=1

dC j Pj (t) (3.18)

Substituting Eq. (3.18) into Eq. (3.14), it yields

dY N =
t f∫

t0

⎡
⎣Bs(t) ·

Np∑
j=1

δC j Pj (t)

⎤
⎦dt + Bκ · �κ

=
Np∑
j=1

A j · dC j + Bκ · �κ

(3.19)

in which

A j =
t f∫

t0

Bs(t) · Pj (t)dt, j = 1, 2 . . . Np (3.20)
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In Eq. (3.19), A j is the spectral sensitivity matrix as per Ref. [15], which relates
the error of the coefficient of the j th spectral function, dC j , to the error of the output
dY N . Thus, a linear formula for the error of the final output and the error of each
coefficient vector as well as the scale factor is obtained. Then the desired coefficients
and scale factor can be worked out by formulating a static programming problem:

The update equation for coefficient vectors can be written as

C l+1
j = C l

j − dC l
j (3.21)

where C l
j denotes as the j th coefficient at the current iteration (represented by super-

script l), and C l+1
j denotes the updated coefficient in the next iteration (represented

by superscript l + 1). After substituting the expression of dC l
j in Eq. (3.21) into Eq.

(3.19), the error of final output can be written as

dY N =
Np∑
j=1

F jδC l
j =

Np∑
j=1

Fj (C l
j − C l+1

j ) = cλ −
Np∑
j=1

A jC
l+1
j + Bκ · �κ (3.22)

where

cλ =
Np∑
j=1

A jC l
j (3.23)

Equation (3.22) is apparently a linear equations set about C l+1
j and �κ , which con-

tains Np × m + 1 unknowns and p equations where Np × m + 1 > p. Hence, Eq.
(3.22) represents an under-constrained system and it is necessary to impose an appro-
priate performance index to facilitate a solution. In here, we consider to minimum
the control effort, that is

J = 1

2

t lf∫

t0

[
U l+1(t)T R(t)U l+1(t)

] · dt + Rκ�κ2 (3.24)

where R(t) and Rκ are the weight matrix for control and scale factor. Substituting
Eq. (3.17) into Eq. (3.24), it yields

J = 1

2

t lf∫

t0

⎡
⎢⎣

⎛
⎝

Np∑
i=1

C l+1
i Pi (t)

⎞
⎠

T

R(t)

⎛
⎝

Np∑
i=1

C l+1
i Pi (t)

⎞
⎠

⎤
⎥⎦ · dt + Rκ�κ2 (3.25)

Then, combined with the cost function (3.25) and the constraints given in Eq. (3.22),
a static programming problem for the coefficient vector and scale vector can be
formulated. The augmented cost function of this problem is given by
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J̄ = J + λT

(
dY N − cλ +

Np∑
j=1

A jC
l+1
j − Bκ · �κ

)
(3.26)

where λ ∈ R p is Lagrange multiplier. The first-order optimality conditions are

∂ J̄

∂dC j
=

Np∑
i=1

Ri j · C l+1
j − A j

T · λ = 0,

j = 1, 2 · · · Np

(3.27)

∂ J̄

∂�κ
= Rκ · �κ − Bκ

T · λ = 0 (3.28)

where

Ri j =
t lf∫

t0

[
Pi (t)R(t)Pj (t)

] · dt (3.29)

Thus, Eqs. (3.22), (3.27) and (3.28) make up a equation set about C l+1
j , λ and δκ ,

which can be written as a compact form as follow

D · X̃ = E (3.30)

where

D =

⎡
⎢⎢⎢⎢⎢⎣

R11 · · · R1Np −A1
T 0

...
. . .

...
... 0

RNp1 · · · RNpNp −ANp
T 0

A1 · · · ANp0 −Bκ

0 · · · 0 −Bκ
T Rκ

⎤
⎥⎥⎥⎥⎥⎦

, X̃ =

⎡
⎢⎢⎢⎢⎢⎣

C l+1
1
...

C l+1
Np

λ

�κ

⎤
⎥⎥⎥⎥⎥⎦

, E =

⎡
⎢⎢⎢⎢⎢⎣

0
...

0
cλ − dY N

0

⎤
⎥⎥⎥⎥⎥⎦

(3.31)

The Eq. (3.30) contains Np × m + p + 1 unknowns (i.e., C l+1
1 ,C l+1

2 · · ·C l+1
Np

,

λ,�κ) and the same number of equations.Assuming that thematrix D is nonsingular,
the unknown vector X̃ can be solved by

X̃ = D−1 · E (3.32)

Consequently, the updated coefficients C l+1
j and scale factor �κ are obtained from

the solution of X̃ . Then substituting the �κ into Eq. (3.3), the update terminal time
can be obtained by

t l+1
f = t lf + �κ · (t lf − t0) (3.33)
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And substitute C l+1
j ( j = 1, 2 · · · Np) into Eq. (3.17), the updated control history

at time t ∈ [t0, t l+1
f ] is eventually given by

U l+1(t) =
Np∑
i=1

C l+1
i Pi (t), t ∈ [t0, t l+1

f ] (3.34)

Remark 1 To implement the IGS-MPSP algorithm, the sensitivity matrix A j , Bκ

and Ri j are necessary to be worked out in each iteration. The Gauss Quadrature
Collocation method can be applied to efficiently compute such matrix and ensure the
computational efficiency of this approach. The detailed procedure will be presented
in the next subsection.

Remark 2 Compared with the original algorithm [15], the improved method intro-
duces a scale factor of time internal to adjust the terminal time, and accordingly a
sensitive relation for this factor is derived. This way improves the accuracy of sen-
sitive relation for terminal time and hence is able to search the final time in a wide
range when a poor initial guess is provided. That is, the convergence robustness for
initial guess of final time is improved.

3.2.3 The Computation of Sensitive Matrix by Gauss
Quadrature Collocation

In this subsection, the Gauss Quadrature Collocation method is applied to efficiently
compute the sensitive matrix A j , Bκ and Ri j . The detailed procedure is presented
as follow.

For the convenience of solving, the physical time t ∈ [t0, t f ] is converted to the
scale time τ ∈ [−1, 1] by the following relation:

t ≡ t (τ, t0, t f ) = t f − t0
2

τ + t f + t0
2

(3.35)

Next, the collocation method is used to solve the weighting dynamic equation as
presented in Eqs. (3.12) and (3.13). First, we rewrite the matrix equation (3.12) as
the following vector equation with the independent variable τ :

Ẇ k(τ ) = −W k(τ ) · f x (τ )

k = 1, 2, . . . , p
(3.36)

where W k(τ ) denotes the kth row vector of matrix W(t), and f x (τ ) is defined by

f x (τ ) � ∂ f (X,U, t)

∂X(t)
· t f − t0

2
(3.37)
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Then N Lagrange interpolating polynomials Li (τ )(i = 1, 2, . . . , N ) are used
to appropriate both sides of Eq. (3.36), by which the differential equation can be
converted to a series of algeria equations at specified collocation points τi (i =
1, 2 · · · N ). In here, the Gauss-Lobatto type collocation is used, such as Legendre-
Gauss-Lobatto (LGL), or Chebyshev-Gauss-Lobatto (CGL) series. Note that, in prin-
ciple W k(τ ) must satisfy Eq. (3.36) at all collocation points τi (i = 1, 2, . . . , N ).
However, W k is generally computed by integrating the matrix dynamics (3.36)
backward from τN to τ1 since the value at the final time t f (τN ) is known. This
meansW k(τ )|τ=τ1 is the last integral step as well as the integration result. Therefore,
W k(τ )|τ=τ1 is not necessary to strictly satisfy the differential equation (3.36), and
we just consider the N − 1 collocation points τi (i = 1, 2, . . . , N ) for the accord-
ing collocation equations. Consequently, the collocation equations are given in the
compact form:

(D ⊗ In) · �k = − f · �k (3.38)

where �k = [W k(τ1),W k(τ2), . . .W k(τN )]T ; In is an n × n identity matrix and
D ⊗ In denotes the Kronecker product of D and In; D ∈ R

(N−1)×N is known as the
differential matrix. The matrix D and f are given by

D =

∣∣∣∣∣∣∣∣∣

L̇1(τ2) L̇2(τ2) · · · L̇ N (τ2)

L̇1(τ3) L̇2(τ3) · · · L̇ N (τ3)
...

...
. . .

...

L̇1(τN ) L̇2(τN ) · · · L̇ N (τN )

∣∣∣∣∣∣∣∣∣
, f = diag

∣∣∣∣∣∣∣∣∣

0n(N−1)×n

f Tx (τ2)

. . .

f Tx (τN )

∣∣∣∣∣∣∣∣∣
(3.39)

Equation (3.38) can be further simplified by

A�k = 0 (3.40)

where A = f + (D ⊗ In) ∈ R(N−1)n×Nn . Equation (3.40) contains (N − 1)n linear
equations and the same number of unknowns (that isW k(τi )(i = 1, 2, . . . , N − 1)).
Defining the unknown vector as Xk = [

W k(τ1),W k(τ2), . . .W k(τN−1)
]T
, it is easy

to obtain�k = [
Xk

T Wk(τN)
]T
. Next A is rearranged as A = [AF , AN ], where AF

and AN denote the first (N − 1)n columns and the rest n columns of A, respectively.
Using these relations, the linear equations can be further expressed as

A�k = [AF,AN ] ·
[

Xk

W k(τN )T

]
= AFXk+ANW k(τN )T = 0 (3.41)

Assuming that the matrix AF is nonsingular, the Xk is eventually solved by

Xk = −A−1
F AN · W k(τN )T (3.42)

The solution of Xk gives the value of kth row of matrix W(τ ) at the collocation
points τk (τ1, τ2, . . . , τN−1). By repeating the above calculation procedure for each
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row (k = 1, 2, · · · , p), the matrixW(τ ) at all the collocation points (τ1, τ2, . . . , τN )
can be obtained.

Subsequently, the sensitivity matrix Bs(t) at collocation points can be calculated
out according to Eq. (3.15):

Bs(τi ) = W(τi ) · ∂ f (X,U, t)

∂U(t)

∣∣∣∣
t=τi

, i = 1, 2, . . . , N (3.43)

Lastly, the principle of Gaussian quadrature [16] is applied to compute the sensi-
tive matrix A j ,Bκ and Ri j :

A j =
t f∫

t0

Bs(t) · Pj (t)dt = t f − t0
2

N∑
i=1

Bs(τi ) · Pj (τi ) · ηi

j = 1, 2, . . . , Np

(3.44)

Bκ
�= −

t f∫

t0

[
W(t) · Ẋ(t)

]
= − t f − t0

2

N∑
i=1

W(τi ) · Ẋ(τi ) · ηi (3.45)

Ri j =
t f∫

t0

[
Pi (t)R(t)Pj (t)

] · dt = t f − t0
2

N∑
k=1

Pi (τk)R(τk)Pj (τk) · ηk

i, j = 1, 2, . . . , Np

(3.46)

where ηi is the weight coefficient of Gaussian quadrature corresponding to the col-
location point τi . In this way, such sensitive matrix is obtained by a set of algebraic
operation at very few collocation points.

Remark 3 In the calculation loop for each row of thematrixW , thematrix A remains
unchanged and just need to be computed once, since which only upon to the given
collocated points τi (i = 1, 2, . . . , N ) and f x (τi ). This feature effectively reduces
the computational complexity.

Remark 4 Since the spectral sensitivitymatrix is directlyworked out by theGaussian
quadrature method in Eqs. (3.42)–(3.46) and avoids heavy computational consump-
tion produced by the numerical integration of a series ofmatrix differential equations,
the computational efficiency is improved significantly.
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3.2.4 The Implementation Step of IGS-MPSP

The implementation procedure of this approach is provided in Algorithm 1. This
method starts from the initial guess for spectral coefficients and terminal time. Then
the final output errors and trajectory state are evaluated out. If the tolerance of the
output errors is small enough, the desired control sequence is obtained. Otherwise,
the corresponding sensitivity matrices are recalculated and the spectral coefficients
as well as terminal time are updated. Then, the updated control history is generated,
and the output errors are evaluated again. This iterative procedure is repeated until a
specified criterion for the terminal output errors is met.

Algorithm 1: IGS-MPSP algorithm

Step 1: Initialize the initial guessC0
j , t

0
f , the stopping criterions δy, the number of spectral

function Np, the number of collocation points N
Step 2: For k = 0, 1, 2, . . .

(2.1)Compute the control historyUk(t), t ∈ [t0, t f ] by Eq.(3.17);
Integrate the system dynamic to obtain the trajectory state as well as the output error,
‖dY N‖∞;

(2.2) If ‖dY‖∞ < δy
Output the current control historyUk(t) and break the iteration;
Otherwise continue the iteration.

(2.3)Compute the sensitive matrix A j , Bκ and Ri j according to Eq.(3.42) − Eq.(3.46);
Solve the linear equation (3.32) to obtain the updated solution;

(2.4)Update the terminal time by
t l+1
f = t lf + �κ · (t lf − t0)

(2.5)Obtain the update coefficient vector Ck+1
j from the updated solution X̃;

Since the spectral coefficients have no physicalmeaning, it’s not straightforward to
assign an initial guess with appropriate values. Therefore, the least-squares algorithm
is applied to obtain the initial guess of the spectral coefficients when an initial guess
of control sequence is provided.

Denoting Ĉ
0 = [Ĉ0

1, Ĉ
0

2, . . . , Ĉ
0

Np
] as the initial guess of the spectral coefficients,

as per Eq. (3.17), the control vector represented by the guess Ĉ
0
at time step tk, k =

1, 2, . . . , n can be written as

Û
0

k =
Np∑
j=1

Pj (tk)Ĉ
0

j , k = 1, 2, . . . , n (3.47)

In matrix form, Eq. (3.47) can be written as

Û
0 = Ĉ

0
P (3.48)

where Û
0 = [Û0

1, Û
0

2, . . . , Û
0

n], and
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P =

∣∣∣∣∣∣∣∣∣

P1(t1) P1(t2) . . . P1(tn)
P2(t1) P2(t2) . . . P2(tn)

...
...

. . .
...

PNp (t1) PNp (t2) . . . PNp (tn)

∣∣∣∣∣∣∣∣∣
(3.49)

If the initial control guess sequence U0 = [U0
1,U

0
2, . . . ,U

0
n] is given, the proper

spectral function coefficients Ĉ
0
are to be found so as to minimize |Û0 − U0|.

According to the principle of the least squares, the coefficients are estimated as

Ĉ
0 = U0PT · (P PT )−1 (3.50)

The initial guess of the spectral coefficients is obtained from Eq. (3.50).

3.3 The Ascent Predictive Guidance Under Thrust Drop
Fault

In this subsection, the proposed method is employed to solve the ascent guidance
problem of launch vehicle under thrust drop fault. The problem formula is firstly
introduced, then the detailed procedure to address this problem is presented.

3.3.1 Problem Formulation

To be solved conveniently, a modified orbital inertial (MOI) coordinate system is
firstly defined as follow. As shown in Fig. 3.1, PF is the position of launch vehicle
when the fault occurs; P ′

F is the projection of PF onto the injected orbital plane; Pf

is the nominal injection point. Then, the origin of this modified orbital coordinate
(MOC) is located at the center of the earth. The coordinate plane coincides with the
injected orbital plane OP ′

F Pf , in which the axis OeY directing to the midpoint of
the arc P ′

F Pf and the axis OeX perpendicular to the OeY . Lastly, the axis OeZ is
determined by the right-hand-thread rule.

Note that the MOI coordinate can be determined by the position of launch vehicle
at the time that the fault occurs and the injected orbit information (the inclination
i f , longitude of ascending node � f , and injection point for nominal trajectory). The
relationship between the Modified orbital inertial (MOI) coordinate and the Earth-
centered inertial (ECI) system is given by

XMOI = MMOI
EC I (� f , i f , P

′
F ) · XEC I (3.51)
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Fig. 3.1 Modified orbital inertial (MOI) coordinate system

where MMOI
EC I denotes the transformation matrix from the ECI coordinate system to

the MOI system.
It is considered the thrust drop fault occurs at the second stage of the launch vehi-

cle. In this flight stage, the launch vehicle is assumed to fly out of the dense atmo-
sphere and the aerodynamic forces can be ignored. Therefore, the three-dimensional
point-mass dynamic equations of launch vehicles build in the (MOI) coordinate is
given as follow: ⎧⎪⎨

⎪⎩
ṙ = V

V̇ = T · eT /m − μr/r3

ṁ = −me

(3.52)

where r = [rx , ry, rz]T is the position vector in the MOI coordinate system; V =
[Vx , Vy, Vz]T is the inertial velocity vector; T is the thrust magnitude, which is
considered to be constant; m is the mass of vehicle and me is the mass flow rate;
eT denotes the thrust direction vector, which is generally aligned with the body
longitudinal axis of the vehicle and can be given by

eT = [cosϕ cosψ, sin ϕ cosψ,− sinψ]T (3.53)

where ϕ and ψ are the pitch angle and yaw angle relative to the MOI coordinate
system, respectively. The dynamic equations as presented in Eqs. (3.52) and (3.53)
can be written as the compact form
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ẋ = f (x, u) (3.54)

where x = [rx , ry, rz, Vx , Vy, Vz]T is the state vector and u = [ϕ,ψ]T is the control
vector of the system.

Remark 5 Since the flight path angle and angle of attack of the launch vehicle is
generally small in the second stage, the defined MOI and the according dynamic
equation will ensure the pitch angle of the vehicle remain a small value. This can
effectively reduce the nonlinearity of the controls as presented in Eq. (3.53) and
improve the convergence of the algorithm. Moreover, such definition can simplify
the terminal constraint to be introduced later.

3.3.2 Terminal Constraints

It is assumed that the thrust fault of the launch vehicle takes place at the initial time
t0, and the corresponding states are given by:

X(t0) = X0 (3.55)

The final orbital injection time t f is constrained by

t f ≤ t f,max (3.56)

where t f,max is the maximum burn time of the vehicle, which is determined by the
remaining fuel and mass flow rate.

The terminal constraints of ascent guidance are determined by the orbital insertion
conditions, which are generally provided by the semi-major axis a f , eccentricity e f ,
orbital inclination i f , and longitude of ascending node � f . In here, we consider to
entry into a circular orbit (e f = 0). Then, the first two conditions can be equivalently
described by ∥∥r(t f )∥∥ = r∗

f (3.57)

∥∥V (t f )
∥∥ = V ∗

f (3.58)

rT (t f )V (t f ) = 0 (3.59)

Moreover, in the modified orbital inertial (MOI) coordinate system, the final two
orbital insertion conditions i f and� f are equivalent to make the final position vector
component rz(t f ) and velocity vector component Vz(t f ) to be zero. Therefore, the
terminal constraints of this ascent guidance problem are defined by
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h(x(t f )) =

⎡
⎢⎢⎢⎢⎣

∥∥r(t f )∥∥ = r∗
f∥∥V (t f )

∥∥ = V ∗
f

rT (t f )V (t f )
rz(t f )
Vz(t f )

⎤
⎥⎥⎥⎥⎦ = 0 (3.60)

Thus, the ascent guidance problem can be organized by
P0 : find t f , u(t), t ∈ [t0, t f ]
subject to:

x(t) = f(x(t),u(t),t) (3.61)

x(t0) = x0 (3.62)

h(x(t f )) = 0 (3.63)

t f ≤ t f,max (3.64)

3.3.3 Solved by the IGS-MPSP

As introduced earlier, the proposed algorithm is able to solve the free-final time
guidance problem. However, this algorithm cannot directly handle the inequality
constraint as given in Eq. (3.64). Therefore, a numerical trick is additionally con-
ducted to address this constraint.

First, the proposed method is employed to solve the problem P0 in which the
constraint (3.64) is omitted. Then the obtained terminal time t f is checked. If this
value is smaller than the maximum t f,max, it means the solution is feasible and the
obtained control history can be used as the renewed commands of the launch vehicle.
Otherwise, it implies the solution is infeasible for this problem. That is, the launch
vehicle cannot directly entry into the required orbit. In this situation, a new guidance
strategy is needed, such as entering into a new parking orbit or transfer orbit. This
case is beyond the scope of this work.

The detailed implementation steps are summarized as follow. As presented in Fig.
3.2, the guidance strategy is triggered by a fault detection. Then the current state t0, x0
is employed as the initial state of the proposed algorithm, and the terminal time and
control of nominal trajectory is used as the initial guess. Obviously, these controls
and terminal time guess cannot steer the launch vehicle to well meet the required
terminal states in the presence of thrust drop fault. Thus, the proposed algorithm is
iteratively conducted to obtain the updated terminal time and control history. If the
updated terminal time is smaller than the maximum value, then the corresponding
control history is directly used as the new guidance for the launch vehicle. Otherwise,
it implies that the launch vehicle cannot directly inject into the original orbit.
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Fig. 3.2 Ascent guidance strategy for launch vehicle under thrust drop fault

3.4 Numerical Results

In this section, the numeric simulation is carried out to demonstrate the performance
of the proposed method in term of accuracy and computational efficiency. It is con-
sidered that the fault of thrust drop occurs at the second stage flight phase of a launch
vehicle. The nominal parameters of the launch vehicle are illustrated in Table 3.1.
Both the initial conditions (at the fault occurring time) and target orbit’s parameters
are given in Table 3.2.

The proposedmethod is employed to solve such guidance problemwhen the thrust
of the launch vehicle drops to 70% and 80% of the nominal value, respectively. In
the algorithm implementation, the six order Legendre polynomials are used as the
spectral function of control, and the Legendre-Gauss-Latto (LGL) points are selected
as the collocation points in computing the spectral sensitivity matrix. In addition, the
number of LGL nodes is taken as 15.

Additionally, a SOCP based method [11] is conducted in here as the comparison
of the proposed method. This algorithm takes the minimum fuel consumption as
the optimization object, and the classical Euler method is used to discrete the prob-
lems. The number of discretization nodes is set to be 50, which is determined by
comprehensively considering the solving accuracy and efficiency.

Table 3.1 Nominal parameters of the launch vehicle

Parameter Value Unit

Initial mass m0 27.769 ton

Dry mass mdry 17 ton

Nominal thrust T 98 KN

Dry mass me 22.138 kg/s
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Table 3.2 Initial conditions and target orbit

Parameter Value Unit

Initial position vector r0 [368502, 6508822, 7201] m

Initial velocity vector v0 [6148.49, 99.79, −18.13] m/s

Target orbit semi-major axis
a f

6578145 m

Target orbit eccentricity e f 0

Target orbit inclination i f 0.5068 rad

Target orbit ascending node
� f

6.2368 rad

In simulations, the terminal time and control history of nominal trajectory are used
as the initial guess of the proposed method and SOCP based method. Moreover, all
numerical simulations are implemented in the MATLAB 2021a environment on a
personal desktop (Intel i7-8750H, 3.2 GHz). The CVX [17] optimization toolbox
with SDPT3 4.0 [18] is employed as the solver of the SOCP based method.

3.4.1 The Results by the Proposed Method

The proposed method reaches the required tolerance of terminal conditions by 8
iterations. Figure 3.3 depicts the altitude profiles of the trajectories with the thrust
of 70% and 80% nominal value. Additionally, the nominal trajectory and the trajec-
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Fig. 3.3 Altitude profiles for nominal trajectory and the trajectories obtained by IGS-MPSP
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Fig. 3.4 Control profiles for the nominal trajectory

tories obtained by the nominal control in the case of thrust drop are also provided
in Fig. 3.3. It can be seen that with the nominal control, the launch vehicle fails to
enter into the target orbit under the thrust drop. The proposed method succeeds in
regenerating the updated guidance commands (shown in Fig. 3.4) to steer the vehicle
into the original target orbit. Specially, the trajectory states for each iteration of the
proposed algorithm when the thrust is 80% of nominal value is presented in Fig.
3.5. It clearly reflects that the proposed method reaches the required orbit injection
parameters by a few iterations, even if the relatively poor control and terminal time
guess (nominal trajectory) are given. At the same time, the orbit injection time is
considerably increased as compared to the nominal value, but still smaller than the
maximum allowable value. These results demonstrate the effectiveness of the pro-
posedmethod, which is able to re-plan the ascent trajectory under the thrust drop, and
search the appropriate orbit injection time when a relatively accurate guess cannot
not be given out.

3.4.2 Comparison with SOCP Method

Furthermore, the comparison between the proposedmethod and SOCP basedmethod
are provided in Table 3.3, Figs. 3.6 and 3.7.

The Table 3.3 illustrates the terminal mass and terminal time achieved by the
proposed algorithm and SOCP based method, respectively. It can be noted that the
results obtained by the proposed algorithm are very close to that produced by SOCP
method. The deviations are less than 0.025%. This means the proposed method
achieves a near optimality for the fuel consumption compared to the SOCP based
method. Moreover, the control histories and trajectories for the proposed method and
SOCP are depicted in Figs. 3.6 and 3.7. As it can be seen, the control profiles as well
as the trajectories by the proposed method are similar to those of SOCP, no matter in
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Fig. 3.5 The trajectory for each iteration in the 80% of nominal thrust

Table 3.3 The results of final time and final mass

80% of nominal thrust 70% of nominal thrust

t f (s) m f (kg) t f (s) m f (kg)

The proposed
method

533.9370 18312.7483 641.2647 17831.5629

SOCP 533.6772 18317.3497 641.2007 17832.5554

the case of 70%of the nominal thrust or 80%of the nominal thrust. This demonstrates
the proposed method produces approximate effect of SOCP based method to solve
the ascent guidance problem with the thrust drop fault.

Lastly, the computational efficiency of the proposed method and SOCP method
are comparatively investigated by conducting the same simulation case. Figure 3.8
and Table 3.4 present the CPU time consumed by two methods, in which the time
elapses for one iteration and the total are shown. It can be seen that, the CPU time
consumed by the proposed method is almost one-sixtieth or one-seventieth of that



3 Ascent Predictive Guidance for Thrust Drop Fault of Launch Vehicles … 95

The proposed method in 70% thrust
The proposed method in 80% thrust

SOCP in 70% thrust
SOCP in 80% thrust

0 200 400 600 800
t(s)

-60

-40

-20

0

20

40

(d
eg

)

(a) Pitch angle profiles

0 200 400 600 800
t(s)

-1

-0.5

0

(d
eg

)
(b) Yaw angle profiles

Fig. 3.6 The Control profile for IGS-MPSP and SOCP method

by the SOCP method for one iteration and the total value. This result clearly demon-
strates the superiority of the proposed method in the computational speed. Such
highly computational efficiency is achieved by a series of careful design such as
the spectral representation of control, sensitive matrix computation conducted by
collocation method. Hence, the proposed method owns the great potential for online
application.

3.5 Conclusion

In this chapter, a predictive ascent guidance based on the IGS-MPSP for the thrust
drop fault of the launch vehicle is presented. Firstly, an IGS-MPSPmethod is derived.
Compared with the original GS-MPSP method, this approach introduces a scale
factor for the time internal as the additional variable to adjust the terminal time.
Then, a new sensitive relation for the final time is established. Since the accuracy
of the sensitive relation is improved, the approach owns the better performance to
search the appropriate final time in the presence of the poor initial guess. Hence,
it is more suitable for the ascent guidance problem. Secondly, the application of
the proposed method for the ascent guidance problem under the thrust drop fault
is detailed introduced. The numerical simulation for a typical case and comparison
with the SOCP based method are carried out. The results indicate the effectiveness
of the proposed method, which generate approximate results with the SOCP method
but with considerably higher computing efficiency.
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Fig. 3.7 Trajectories by various methods
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Fig. 3.8 CPU time
consumed by various
methods
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Table 3.4 The CPU time consumed by various methods

Method CPU time for one
iteration (s)

Iterations number Total CPU time(s)

SOCP 0.451 10 4.512

IGS-MPSP 0.008 8 0.064
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