
Chapter 2
Autonomous Guidance Control
for Ascent Flight

Zhengyu Song, Cong Wang, and Yong He

2.1 Introduction

The purpose of the guidance control is to release a payload into a prescribed target
orbit (PTO) accurately. The parameters that determine an orbit are called orbital
elements (OEs), which include the semi-major axis a, the eccentricity e, the argu-
ment of perigee angle ω, the inclination angle i , and the longitude of ascending
node (LAN) or the right ascension of ascending node (RAAN) �, where a and e
can be converted to the perigee height hp and the apogee height ha . Thus, the guid-
ance mission of a launcher is a typical optimal control problem with multi-terminal
constraints, which requires complex iterative calculations. Considering various con-
straints in practical applications, such as the accuracy of inertial navigation systems
and the performances of embedded computing devices (speed and storage capacity),
guidance methods need to balance the mission requirements, hardware resources,
and algorithm complexity. A variety of guidance methods has been developed with
distinct era characteristics.
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2.1.1 Traditional Guidance Methods

(1) Guidance methods in early stage
The early guidance methods of the ascent phase for launchers in various countries
were open-loop guidance (OLG)methods [1–3]. In these solutions, an off-line trajec-
tory to the PTOwas planned in advance, including the time-varying position, velocity,
and thrust directions (guidance commands). After liftoff, the guidance commands in
the corresponding flight phases were interpolated based on the trajectory by taking
the time, velocity, or altitude as the independent variable. In general, the command
interpolated over time consumes more fuel than that over the velocity. OLGs usually
transform the OEs into terminal velocity and position constraints at the prescribed
injection point, and they perform well to meet the load limit requirements when fly-
ing in the atmosphere using a wind biasing trajectory based on the wind field of the
launch day [4].

The perturbation guidance method (PGM) was developed to further improve the
injection accuracy, and its guide coefficients were designed offline based on the flight
profiles and the most concerned OEs. The state variables of the velocity and position
were fed back into the guidance loop, then their deviations to the nominal values
were calculated, and the guidance commands were initiated therefrom to guide the
launcher to fly as close to the nominal trajectory as possible [5–8]. PGMs have been
applied to launchers since the 1950s, when the guide control could only be conducted
first on a simple computing device (which cannot be regarded as a computer). The
algorithm was very simple during the early stage, and all the complex operations,
such as the calculation of the gravity of Earth, could not be completed onboard.
For example, the PGM of the Long March launch vehicles (LMLVs) proposed by
Cui et al. generated the guide commands onboard based on interpolation tables [7].
Combinedwith the perturbation cutoff equations, a better separation control accuracy
was obtained [8–10]. Considering that the precision of the inertial devices was also
low at that time, the PGM had been applied for a long time.

With the development of avionics, the computational bottlenecks on the guidance
methods have been greatly eliminated, and PGMs have also further developed. For
instance, the simplified apparent velocity accumulation has evolved into explicit
navigation calculations. The influence of the second-order term of gravity has also
been involved in the algorithms, and more OEs, not just those most concerned ones,
can be satisfied by segmented or weighted guide controls.

Compared with OLGs, PGMs calculate guide commands online, exhibiting a cer-
tain degree of autonomy. However, if the control deviations increase, the hypotheses
of the first-order linearization in the design of guide coefficients cannot hold, which
greatly degrades the performance of the PGMs.

(2) Explicit guidance methods
Explicit guidance methods calculate guidance commands in real-time based on the
explicit expressions of control functions, which are generally appliedwhen the rocket
enters into the vacuum environment. Owing to the release of the wind loads on the
vehicle’s structure in a vacuum, an optimal guidance command can be derived by
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closed-loop guidance (CLG) algorithms. The OEs of the PTO can be directly taken
as the terminal constraints, which greatly improves the adaptability and injection
accuracy [11]. Typical analytical CLG methods include the iterative guidance mode
(IGM) [11–16] for rockets, the powered explicit guidance (PEG) [17–19] for the
space shuttles, and the optimal guidance (OPGUID) [20, 21] based on variational
methods.

The IGM could iteratively calculate the required velocity and position incre-
ments to the PTO, and then plan the optimal flight path [13, 14]. The earlier the
IGM is called, the more complex the algorithm is, because the flight profile covers
more flight phases, but the stronger the fault adaptability becomes. The develop-
ment in IGM boosted the progress of the rendezvous and docking (RVD) missions
in China’s manned spaceflight project, where the IGM across two continuous pow-
ered phases was first used in the LM-2F/Y8 mission in November 2011. After this,
a prediction-correction IGM was adopted for LM-7, which achieved high injection
accuracies under high thrust conditions without terminal velocity correction systems.
In September 2020, the IGM with a terminal attitude constraint was first utilized in
the LM-2F/T3 mission, and the OEs and terminal attitudes were well controlled
simultaneously without a reaction control system (RCS) [15]. The IGM across the
coasting phase was first used in the maiden flight of LM-8 in December 2020.

The abort or termination requirements during ascent were required for the space
shuttles, allowing them to return safely or enter into a pre-set parking orbit if one
main engine failed. Thus, a semi-analytical prediction-correction algorithm, i.e.,
PEG, was proposed. It was a kind of linear tangent guidance, assuming that the thrust
direction vector satisfies the linear tangent control laws from the point of view of fuel
minimization, and then the guidance lawwas derived based on the variationalmethod.
The covariates were solved based on the required velocity increments, corrected by
estimating the velocity deviations at the shutdown time [19]. The number of OEs
that must be satisfied can be selected to meet the different mission needs, and the
scenario of returning after failures is also considered by the PEG.

OPGUID had been regarded as a backup for the IGM and PEG from the era of
the Saturn rockets to the space shuttles. It could meet all the necessary optimality
conditions, including theEuler-Lagrange equations, but itsmaturity is still considered
to need improvement.

IGM and PEG exhibit basically the same performances in terms of adaptability,
robustness, target performance, and flexibility when confronted with engine faults,
while the advantages of the OPGUID lie in its fewer assumptions [21]. In addition, an
early release IGM(ERIGM)was studied to be applied before entering the vacuum [1].
The restrictions of the rocket structure caused by the aerodynamic loadswhen passing
through high-dynamic-pressure or high-wind regimes are taken as the constraint of
the output commands. Although the assumption of ERIGM’s analytical expression
in a vacuum is not satisfied in the atmosphere, the simulation analysis shows that
compared with the combination of OLG + IGM, the ERIGM can improve the launch
performance while maintaining a smaller dispersion of the terminal states.
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2.1.2 Autonomous Guidance Methods

Autonomous guidance methods (AGMs) in and out of the atmosphere have become a
popular research topic since 2016, aiming to improve flight autonomy under various
scenarios. AGM is a kind of method to dynamically generate the current guidance
command based on real-time trajectory planning, while satisfying the process and
terminal constraints of all the following flight phases. It does not rely on but also does
not exclude the reference trajectory planned off-line, and it can deal with complex,
time-varying, and nonlinear constraints onboard, exhibiting strong adaptability and
robustness.

2.1.2.1 Related Studies

The analytical CLGs based on the optimal control theory under vacuum conditions,
i.e., IGM, PEG, and OPGUID, can also be regarded as the first generation of AGMs.
With the upgrading of the onboard computing power, the online trajectory planning
methods, which mainly include indirect [22–24] and direct methods [25–27], were
developed and backed by numerical calculations. If their planning period meets the
real-time requirements, they may replace the existing analytical methods; if not, a
combination of “on-line planning + tracking guidance” can be adopted. Currently,
many new concepts related to guidance control have been proposed, reflecting some
aspects of the features of AGMs:

(1) Computational guidance
In 2016, the Journal of Guidance, Control, and Dynamics published a special issue of
Computational Guidance and Control [28] and pointed out that the control laws and
controllers with fixed structures in traditional guidance and control will be replaced
by algorithms, which are different from other branches of computational engineering
and science. The commands of computational guidance would be model- or data-
based, and there is no need for in-advance planning, gain adjustment, or a large
amount of off-line design for the nominal state. Thus, computational guidance can
be regarded as a special and possibly the main solution strategy for AGMs.

(2) Model-based real-time optimization
At the 2016 Aerospace Conference, it was suggested that model-based real-time
optimization is the main direction of future research. It can deal with complex con-
straints [29, 30], and overcome the shortcomings of traditional real-time optimal
control methods which only handle unconstrained or simply constrained problems
Therefore, model-based optimization can be regarded as the main research area of
AGMs.

(3) Autonomous mission planning
This concept was first found in NASA’s project “Flight Autonomy”, which can be
regarded as a higher-level representation of AGMs. If the mission planning can be
conducted in real-time, its effect is equivalent to that of AGMs. Four elements of
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autonomous mission planning [31], such as automatic operators, intelligent initial
guesses, powerful optimization software, and technologies supporting online real-
time operations, are also the key factors of AGMs.

(4) Adaptive guidance
The adaptive guidance and mission planning were proposed in the roadmap of
aerospace intelligent systems drafted by the AIAA Intelligent Systems Technical
Committee [32]. These technologies would learn and optimize the system behav-
ior, optimize the aerodynamics and performances of propulsion systems, and solve
challenging problems such as the real-time aerodynamic control optimization, con-
vergence of onboard optimization, computational efficiency, adaptive control with
sensor constraints, and the security cost of over-optimization. Adaptive guidance
reveals the main features and requirements of AGMs.

(5) Adaptive optimal guidance
It was reported by Russian scholars at the 2016 International Astronautical Congress
[33] that the three lost global navigation satellite system (GLONASS) satellites
launched on December 5, 2010 might have been saved if adaptive optimal guid-
ance had been applied. This method adopts model-based numerical optimization,
making full use of the upper stage’s carrying capacity to compensate for the perfor-
mance degradation of the former stages and re-planning the flight path to the PTO.
This solution was similar to the “End to End” (E2E) space mission planning archi-
tecture [34], which refers to a multi-stage simultaneous optimization from launching
to the final destination. From this point of view, adaptive optimal guidance or E2E
planning emphasizes the global optimization feature of AGMs.

All the above-mentioned technologies aim to deploy the payloads to the PTO, even
facing unexpected conditions. The potential assumption is that the PTO is reachable,
which is reasonable under normal conditions or with enough margin of performance
left when a failure occurs.

(6) Fault-tolerant guidance (FTG)
If the PTO is unreachable under failure conditions, the propellant will be exhausted
during the flight to it, and the terminal velocity and position may not ensure a parking
orbit, causing the rocket/satellite to crash into the ground. The FTG is proposed to
reconstruct the mission under this situation [35] to avoid a complete loss, because
the well studied fault-tolerant control cannot overcome the effect of gravity to enter
into an orbit. Thus, FTG represents an important application scenario of AGMs.

The failures of thrust drop do occur in space launches, but if the PTO is still
reachable, either IGM or PEG is capable of re-planning the flight path and releasing
the payloads to it. For the Space Launch System (SLS) of NASA, the mission abort
design was studied when the target was no longer reachable, but the strategy was
based on the off-line simulation and loaded into the onboard computer in advance. It
was reported that the Artemis I 1 flight software would pre-upload nine alternative
targets. However, only autonomous rescue measures can fully use the remaining
carrying capabilities of the launcher to save a mission or avoid crashing down to the
ground.



38 Z. Song et al.

2.1.2.2 Features of AGMs

AGMs are significantly different from OLGs and have a wider range than the tradi-
tional CLGs, and could satisfy the demands of research institutions and experts to
improve flight autonomy.

AGMs are not synonymous with the trajectory optimization. Trajectory optimiza-
tion is usually planned off-line, and the result is used as the reference for the tracking
control of the launcher. However, the trajectory is generally designed according to
the nominal state and cannot predict all disturbances and uncertainties inflight, then
the actual flight path usually deviates from the prescribed trajectory. Moreover, tra-
jectory optimization is time consuming, but this is tolerable and the real-time feature
is not a key factor for off-line planning. Numerical computing is applied in the trajec-
tory optimization which can consider as many constraints and variables as possible.
Even if the planning is not convergent, it can be stopped by human interventions or
reset by a new initial guess.

In recent years, trajectory optimization has gradually been adopted for onboard
applications, such as the online trajectory optimization, where the constraints and
variables it deals with are tailored to facilitate onboard processings, and the dynamic
trajectory planning, representing the on-line, real-time, and iterative planning. The
former plans the trajectory once or several times followed by the tracking control.
The latter is mostly equivalent to AGMs if the frequency of the dynamic planning is
almost the same as that of the guidance control. However, only a PTO and nomission
reconstruction is considered by these trajectory optimization technologies.

AGMs have the following four distinct features:

(1) Online. This sets a high demand for the real-time performance of the algorithms
and onboard computers. Although a prescribed flight path is no longer required,
it can be used as the initial guess to accelerate the online computing.

(2) Dynamic. Planning is scheduled in each guidance cycle, sometimes called the
iterative optimization. The shorter the period of planning is, the stronger the
adaptability to uncertainties and interferences becomes. Only the current com-
mand of the newly planned results is used for the real control. This process is
repeated in the next guidance cycle.

(3) Global. Each planning process obtains a whole flight path from the initial states,
e.g., the current velocity, position, and mass, to the terminal constraints. This
is quite different from rolling optimizations, where only a short time period of
dynamics is involved.

(4) Reconstructing. When the PTO is impossible to be reached (often caused by
propulsion system faults), it can reconstruct the flight profile or mission target
to match the remaining carrying capacity, so as to save the mission or avoid
irretrievable disasters as far as possible.

The challenges faced by rockets for the autonomous guidance are also different
from those faced by automobiles and civil aircrafts.By taking into account the prac-
tices of automobile industries, mission planning and guidance methods are no longer
strictly distinguished.
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(1) For automobiles, the planning problem is rules or process based. They basically
drive in planar motions under relatively certain environments and operations on
road networks with determined risk levels. When an emergency issue occurs,
there is not more than one minute to switch from a cruising state to a safe state,
such as resting on the roadside and waiting for conditions to improve. They
have many control modes, such as forward motion, backward motion, steering,
acceleration, deceleration, pausing, and restarting. The difficulties lie in the time-
varying dynamic interactions with other vehicles, pedestrians, traffic conditions,
and road markings, as well as driving rules.

(2) Civil aircrafts usually fly in prescribed routes at fixed altitudes except for takeoff
and landing. They also have high control abilities, such as the forward motion,
upward motion, downward motion, steering, acceleration, and deceleration. The
main challenges lie in handling uncertainties autonomously, including the local
climate phenomena, variable weather, sudden surges, and out-of-service airports
due to delays. They are sensitive to climate conditions, such as the airflow, gales,
and thunderstorms. Emergency treatment is definitely needed considering the
available fuel, alternative airports and their altitudes, runway lengths, and slope
constraints, extended flights in harsh terrain (such as mountains or wilderness),
and possible survival concerns.

(3) Launchers are usually insensitive to abrupt climate changes, because they fly
across the atmosphere very quickly, and there are no dynamic constraints sim-
ilar to that of civil vehicles. The planning problem is strongly nonlinear due to
the gravitational and OE constraints. In fault conditions, there is no prescribed
parking orbit similar to alternative airports or roadsides, and finding an optimal
rescue orbit onboard is very challenging. The control modes are limited, and
no descent or stop inflight is available. The amplitude of the thrust is usually
fixed, and only the thrust direction can be adjusted. Unlike automobiles or air-
crafts, there are no database supports or high-performance computing platforms
onboard, even if a database is available.

The problems concerning various vehicles are different in terms of the guidance
control ormission planning. Except for the abrupt changes of the climate and dynamic
constraints, the AGMs of a launcher face more challenges. This is partly due to the
stronger nonlinearity in the optimization problemmainly induced by the gravitational
force, the terminal constraints, and a wider range of mass changes, while the other
reasons mainly lie in the weaker computing power of the on-board computer (OBC)
compared with those on automobiles or aircrafts.

AGMs can relax the pressure of attitude control. If the control deviations exist in
each guidance cycle, the accumulated errors can be eliminated in line with a newly
planned trajectory in the next cycle, and the influence of errors is retained within
a very short planning period. Thus, AGMs improve the robustness of a launcher to
disturbances or uncertainties.

It would become difficult to obtain analytical solutions with the increased num-
ber of variables that need to be determined, however, an analytical solution after
simplifying the problem is a preferable initial guess for AGMs. Even so, AGMs can-
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not solve too many constraints without affecting the computational efficiency, and
hundreds of milliseconds of the solving time are the maximum tolerance. Further,
divergence should be avoided in AGMs, but if it does occur, some countermeasures
must be scheduled in advance.

2.1.3 Summary

The history of ascent guidance methods applied in LMLVs is introduced here to sum
up the above discussion. The three stages are explained in Fig. 2.1, reflecting the
changes of the mission requirements and the evolution of the guidance methods. The
latter two stages in Fig. 2.1 represent two typical applications of AGMs:

(1) Closed-loop guidance methods for determined target orbit
When the target orbit is determined (i.e., the target matches the carrying capacity),
traditional or enhanced analytical methods can play a very good role in the extra-
atmospheric flight. For example, although the IGM shows weakness in large arc
flight profiles owing to its simplified mean gravitational field assumption, this can
be solved by the segmented processing if a coasting phase is inserted. An enhanced
PEG algorithm is also being developed by the SLS to adapt to extended flight times.

When flying in the atmosphere, the landing restrictions of the launcher’s jettisons,
such as the separated boosters and fairing, should be seriously considered. Then,
tracking control is still a relatively safe method under this condition to ensure that
the debris falls within a predictable area. Sun and Lu proposed the homotopy method
to deal with the atmospheric density onboard for the ascent guidance control, and
it showed a certain adaptability to the main engine thrust loss [22]. However, the
constraints of the landing area were not considered.

Fig. 2.1 Evolution of ascent guidance methods for Long March rockets
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(2) Simultaneous optimization of target orbit and flight path
This only occurs when the PTO is no longer reachable and a new target orbit should
be determined. Onboard joint optimization of the new orbit and flight path is very
difficult, so a special failure mode, called “engine out,” is considered in the SLS, and
a similar approach was also used by the space shuttle. NASA expects a successful
mission even if one engine cuts off prematurely, so a sufficient performance margin
is definitely needed. When facing severe failures, the SLS can make decisions based
on the pre-uploaded alternatives, as introduced in sections above. In recent years,
the studies of the autonomous dynamic trajectory optimization under typical failure
modes have been initiated for LMLVs and obtained positive results.

At present, few studies on ascent AGMs have been publicly published when
considering the needs of mission re-constructions.

2.2 Motion Models of Launchers

2.2.1 Motion Models

The differential translational motion is usually described in the launch inertial coor-
dinate system (LICS) and is shown as follows:

ṙ = V ,

V̇ = FT +FR+FA+Fs+Fe+FD+G
m ,

ṁ = − (‖FT ‖−Se(Pe−Pa))
Ispg0

,

(2.1)

where r is the position vector, V is the velocity, G is the gravity. F is the other forces
acting on the vehicle, and the subscripts T , R, A, s, e, and D represent the engine
control, RCS, aerodynamic, sloshing, elastic, and interference torques, respectively.
Isp is the specific impulse of the engine, Se is the cross-sectional area of the nozzle,
Pe is the atmospheric pressure in the design state, Pa is the external atmospheric
pressure inflight, m is the mass, and g0 is the gravitational acceleration of the sea
level. The origin of the LICS is the launch point, the x-axis points in the launch
direction in the horizontal plane of the launch site, and the y-axis points to the sky
along the connecting line between the earth center and the launch point. The z-axis
satisfies the right-hand rule.

The aerodynamic force is related to the shape of the launcher and the dynamic
pressure inflight, which can be expressed as

FA = qSAC A. (2.2)

where q is the dynamic pressure, SA is the reference area, C A is the aerodynamic
coefficient related to the altitude, Mach number, angle of attack, and sideslip angle.
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The differential rotational motion is usually described in the vehicle’s body coor-
dinate system (BCS). The origin of the BCS is located at the center of mass of the
launcher, the x1-axis points to the head along the body axis, the y1-axis is perpen-
dicular to the longitudinal symmetry plane of the launcher and points upward, and
the z1-axis satisfies the right-hand rule.

The following equations reflect the influence of torques on the angular velocity
of the launcher:

ω̇ J = MT + M R + M A + Ms + Me + MD − ω × Jω. (2.3)

where ω is the angular velocity rotating around the axial direction, J is the moment
of inertia, and M is the torque acting on the rocket.

M A = (
qSAlACω

d ω/‖V‖ + qSAlACd
)
, (2.4)

where lA is the reference length,Cd is the aerodynamic torque, andCω
d is the damping

coefficient.

Me=
∑

i

(bϕ

1i q̇i + bϕ

2i qi ), (2.5)

where qi is the i-th order elastic generalized coordinate, b
ϕ

1i and b
ϕ

2i are the i-th order
elastic additional moment coefficients.

The propellant sloshing moment can be divided into three parts: normal, trans-
verse, and axial. For example, the propellant normal sloshing moment (Ms3) is

Ms3 =
∑

p

(bω3
4p�ÿp − bω3

5p�yp), (2.6)

where �yp is the p-th order longitudinal sloshing displacement, bω3
4p and b

ω3
5p are the

interaction coefficients of the sloshing moment and sloshing centroid in the pitch
channel.

The modeling of the elastic vibration is established according to the finite element
method [36]:

q̈i + 2ζi�i q̇i + � 2
i qi =

Dωz1
1i ωz1 + Dωz1

2i α3 + Dωz1
3i δωz1 + D

′′ωz1
3i δ̈ωz1

+∑

p
(G

′′ωz1
i p �ÿp + Gωz1

i p �yp) + ∑

j
(R

′ωz1
i j q̇ j + Rωz1

i j q j )

+D
ωy1

1i ωy1 + D
ωy1

2i α2 + D
ωy1

3i δωy1 + D
′′ωy1

3i δ̈ωy1

+∑

p
(G

′′ωy1

i p �z̈ p + G
ωy1

i p �z p) + ∑

j
(R

′ωy1

i j q̇ j + R
ωy1

i j q j )

+Dωx1
1i ωy1 + D

ωy1

2i α1 + Dωx1
3i δωx1 + D

′′ωx1
3i δ̈ωx1

+Q̄xi + Q̄yi + Q̄zi ,

(2.7)
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where ξi is the i-order elastic damping, �i is the i-order elastic frequency. �z p
is the p-th order transverse sloshing displacement. δωx1 , δωy1 , δωz1 are the engine

swing angles, G ′′ωz1
i p , Gωz1

i p , G
′′ωy1

i p , G
ωy1

i p are the coupling coefficients of the p-th

order sloshing to the i-th order elasticity, R′ωz1
i j , Rωz1

i j , R
′ωy1

i j , R
ωy1

i j are the coupling

coefficients of the j-th order to the i-th order elasticity, Q̄xi , Q̄yi , Q̄zi are the elastic
generalized disturbances.

The motion equation describing normal sloshing is

�ÿp + 2ζhp�p�ẏp + �2
p�yp =

−E1�θ̇ + E2�ϕ + E3�α − Epz�ϕ̈ + ∑

i
(E ′′

i pq̈iy + Eipqiy),
(2.8)

where E ′′
i p, Eip are the elastic hinge coupling coefficients, ζhp is the i-th order sloshing

damping, �p is the p-th order sloshing frequency.

2.2.2 Constraints and Objectives

(1) Initial state constraints
The takeoff time t0 is defined as the initial time. The initial position at t0 is the location
of the launch point, the initial velocity is that of the launch point generated by the
earth’s rotation, and the liftoff mass is the initial mass. The rocket flies vertically off
the launch pad, and the initial state constraints can be expressed as

[r, V ,m] (t0) = [r0, V 0,m0] , ϕ = 90◦, ψ = 0◦, (2.9)

where φ, ψ are the pitch and yaw angles, respectively.

(2) Process constraints
When flying in the atmosphere, the following constraints should be met to ensure
structural safety:

|qα| ≤ qαmax, N ≤ Nmax, q < qmax, (2.10)

where N is the overload, α is the angle of attack (AOA). The subscripts max and
min represent the maximum and minimum values of the corresponding constraints,
respectively.

Limited by the control ability of the actuators, the following constraints are pre-
scribed:

|δ| ≤ δmax, MH ≤ MHmax, (2.11)

where δ is the engine swing angle, and MH is the hinge moment. To ensure the
attitude stability, the following constraints are imposed:
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∣∣ωϕ

∣∣ ,
∣∣ωψ

∣∣ ≤ ωmax, ϕmin ≤ ϕ ≤ ϕmax, ψmin ≤ ψ ≤ ψmax,

uT (t) = [0, 1, 0]T , t ∈ [t0, t1] ,
(2.12)

where ωφ , ωψ are the corresponding angular velocities, uT is the thrust direction.
The rocket should keep rising vertically for a short time (t1) after takeoff, that is,

uT is perpendicular to the horizontal plane.
According to the engine configurations, the mass differential equation given by

Eq. (2.1) is revised to the following equation, where the equivalent thrust and specific
impulse of the k-stage engines are denoted by the superscript k:

ṁk = −
(∥∥Fk

T

∥∥ − Ske
(
Pk
e − Pk

e

))

I kspg0
. (2.13)

For the multi-stage launcher, the states of the velocity, position, and attitude
between the stages are continuous. During stage separations, the mass constraints
are included:

[
r0, V 0, ϕ0, ψ0

]k = [
r f , V f , ϕ f , ψ f

]k−1
, mk

0 = mk−1
f − mk−1

s , (2.14)

where ms is the separation mass, and the subscript f represents the terminal state of
each stage.
(3) Terminal constraints
When the payload is released from the launcher, it would enter into an orbit, which
is determined by the terminal states of the payload, the gravitational force, and
other perturbation forces. If only considering the gravitational effect, the OEs can be
calculated based on Vx , Vy , Vz , and x , y, z in the LICS.

First, we have the following equation:

xr = x + R0x , yr = y + R0y, zr = z + R0z,

r = √
x2r + y2r + z2r , V =

√
V 2
x + V 2

y + V 2
z ,

(2.15)

where Vx , Vy , Vz are the velocity components in LICS, and x , y, z are the position
components in LICS, R0x , R0y , R0z are the geocentric vector components to the
launch point.

Then, the OEs are
a = r

2−υ
, υ = rV 2

μ
, (2.16)

e = √
1 − (2 − υ) υcos2γ , γ = arcsin Vx xr+Vy yr+Vzzr

V r , (2.17)

h p = rp − Re, rp = a (1 − e) , ha = ra − Re, ra = a (1 − e) , (2.18)

where Re is the radius of the Earth; rp, ra are the distances from the center of the
Earth to perigee and apogee, respectively; μ is the gravitational constant.
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T = 2π

√
a3

μ
, (2.19)

where T is orbital period.
The parameters characterizing the orbital direction are i , �, and ω:

i = arccos hz
h ,

⎡

⎣
hx

hy

hz

⎤

⎦ =
⎡

⎣
yVz − zVy

zVx − xVz

xVy − yVx

⎤

⎦ , h =
√
h2x + h2y + h2z , (2.20)

where [hx , hy, hz]T is the vector product of velocity and position.

sin� = hx√
h2x+h2y

, cos� = − hy√
h2x+h2y

, (2.21)

where� ∈ [0, 2π ], and the quadrant is determined according to the symbols of sin�

and cos�. Furthermore,
w = u − f, (2.22)

where f is the true anomaly, u is the angular argument to the ascending node and
calculated by the following equation:

u =
{
arccos xr cos�+yr sin�

r , (zr ≥ 0)

2π − arccos xr cos�+yr sin�

r , (zr < 0)
, (2.23)

f is used to characterize the position of the payload in orbit and is expressed as
follows:

f =
⎧
⎨

⎩
arccos

a(1−e2)−r
er , (γ ≥ 0)

2π − arccos
a(1−e2)−r

er , (γ < 0)
. (2.24)

The terminal velocity and position are transformed into constraints of the OEs,
as well as a terminal mass constraint, shown as follows:

∥∥[as, es, is, �s, ws, fs]T − [a, e, i, �, w, f ]T (ts)
∥∥ ≤ �Orbit,

m (ts) ≤ mallow,
(2.25)

where ts is the terminal time and the subscript s represents the nominal state at the
departure time.�Orbit is themaximumallowance of the six orbital elements,mallow

is the minimum allowable mass at the end of the ascent phase.
(4) Objectives
The objective of the ascent guidance method of a launcher can be expressed as the
weighted sum of maximizing the residual mass at the payload departure time while
minimizing the terminal state deviations:
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min J = −m (ts) + λorbit

∥∥[as, es, is,�s, ws, fs]
T − [a, e, i,�,w, f ]T (ts)

∥∥ ,

(2.26)
where λorbit is the weight of the terminal state deviations.

In addition to ensuring a stable flight, the peak value of the hinge torque and the
peak power consumption of the servomechanisms need to be minimized:

min J = λMH |MH | + λsv

∫ t f

0
|MH × ωsv|dt. (2.27)

where λMH , λsv are the weight coefficients,ωsv is the angular velocity of servomech-
anisms.

This section constructs a complete motion model of a launch vehicle. It should be
pointed out that the tracking guidance is still used when flying in the atmosphere, so
the variables related to aerodynamics are interpolated according to the parameters of
the nominal trajectory. The exo-atmospheric guidance methods are the focuses of the
following discussion, and the rotational equations are not included in the AGMs due
to the assumption that the attitude control can track the guidance commands well.

2.3 Exo-Atmospheric Analytical Guidance Methods

2.3.1 Basic Closed-Loop Guidance Method for Long March
Launch Vehicles (LMLVs)

• The process of CLG

A closed-loop guidance method for LMLVs in a vacuum environment is summarized
as follows.

Step 1: Release the expectation of the fixed-point injection, and take five OEs
directly as terminal constraints.

Step 2: Find the most matching entry point according to the current state of the
launcher.

The state includes the velocity, position, mass, specific impulse, and mass flow
rate. The time-to-go and entry point are solved iteratively based on the above param-
eters, and the entry point is updated in each guidance cycle.

Step 3: Construct an optimization problem of the current guidance cycle in the
orbital coordinate system (OCS).

The main features of this optimization problem are as follows:

1. The objective function is to minimize the fuel consumption;
2. The OE constraints are transformed into the state variables after an optimal entry

point is found;
3. The terminal constraints in the OCS are further simplified, and only the velocity

along the oξ axis and the position along the oη axis are non-zero.
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4. Make the following conversion:

Ẇx1(t) = Px1
m(t)

= Isp · ṁ
m0 − ṁt

= Isp
τ − t

, (2.28)

where Px1 is the axial thrust, m0 is the initial mass, and ṁ is the mass-flow rate.
In this way, Ẇx1(t) is related to Isp and the mass flow ratio τ = m0/ṁ, rather
than the parameters that are difficult to measure in real time, such as Px1, m0,
and ṁ. It should be noted that τ can be determined by Ẇx1(0), then the analytical
expression of Ẇx1(t) can be obtained.

5. Design an analytic expression to represent the thrust direction, i.e., the pitch and
yaw commands.
Many simulations have shown that the optimal thrust direction in a vacuum envi-
ronment can be approximated as a linear function of time, as follows:

{
ϕcx (t) = ϕ̃ + (−k1 + k2 · t)
ψcx (t) = ψ̃ + (−k3 + k4 · t) . (2.29)

6. Solve for the unknown variables in Eq. (2.29) based on the terminal velocity and
position constraints, then obtain the guidance command of the current cycle for
the real-time control.

Step 4: Repeat Steps 2 and 3 during each guidance cycle until the cutoff equations
are met to shut down the engines.

The CLG is also known as the iterative guidancemode (IGM). The above process-
ing assumes that the PTO lies within the performance scope of the launcher, so we
can always find a matching entry point on the PTO, and the optimization problem is
converted to the planning of fixed-point terminal constraints in each guidance cycle.
In the following cycle, the entry point shall be updated again.

The CLG has the following advantages over the PGMs:

1. High injection accuracy. It predicts and regulates the entry point responsively,
mostly matching the states of the launcher and guaranteeing that all OEs are
met. The initial states, terminal constraints, and performance indices rather than a
reference trajectory are considered in the real-time planning, allowing deviations
from the prescribedflight path to counter interferences.On the contrary, PGMscan
only satisfy few constraints or synthesized objectives, flying nearby the nominal
trajectory.

2. Robust to thrust variations. This is due to its sensitivity to the change of the thrust,
and the flight path would be re-planned in line with the variations.

3. Responsive to the target orbit adjustment. If the target is re-scheduled just before
liftoff, only the new OEs need to be uploaded to the OBC, avoiding the hard work
of the reference trajectory preparation and guide coefficients tuning.

• The solutions of the guidance law variables

Seven parameters in the guidance law of Eq. (2.29), i.e., φ̃, ψ̃ , k1, ∼, k4, and t ,
need to be solved. Note that t represents the time-to-go, also denoted as Tk . The CLG
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Fig. 2.2 Definition of thrust
vector direction

is adopted when the rocket flies out of the atmosphere, so only the thrust and gravity
are considered as the external forces, and the aerodynamic drag is omitted, which
makes the following analytical solution possible.

The OCS is labeled as OE − ξηζ , where OEη points from the center of the earth
to the injection point, ξOEη denotes the orbital plan, and the three coordinate axes
follow the right-hand rule, as shown in Fig. 2.2.

Consider that the OEs are set as the terminal constraints and the flight has been
out of the atmosphere, the planning problem described in Sect. 2.2 is revised in the
OCS as follows:

Objective : J = ∫ Tk
0 dt̃ = Tk, (2.30)

Dynamics : Ẋ = f (X, u, t̃),

or

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̇ξ (t̃) = Ẇx1(t̃) · cosϕ∗(t̃) · cosψ∗(t̃) + gξ (t̃)

V̇η(t̃) = Ẇx1(t̃) · sin ϕ∗(t̃) · cosψ∗(t̃) + gη(t̃)

V̇ζ (t̃) = −Ẇx1(t̃) · sinψ∗(t̃) + gζ (t̃)

ξ̇ (t̃) = Vξ (t̃)

η̇(t̃) = Vη(t̃)

ζ̇ (t̃) = Vζ (t̃)

,
(2.31)

Constraints:
X = [

Vξ0 Vη0 Vζ0 ξ0 η0 ζ0
]T

, (2.32)

N1 (X (Tk) , Tk) = 0. (2.33)
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The performance index, Eq. (2.30), is fuel-efficient and can also be expressed as
the shortest time for the liquid launcher considering a basically constant thrust and
mass flow rate. Equation (2.32) is the initial condition, and Eq. (2.33) represents the
terminal constraints, i.e., the target orbital elements.

The control variables are the directions of the thrust vectors, which can be
expressed by the Euler angles, φcx and ψcx , as follows:

u = [φcx (t), ψcx (t)]. (2.34)

Hypothesis 1: A uniform gravitational field is introduced to simplify the state equa-
tions, i.e., the gravity is expressed by the average of the gravity of the current and
entry point (the selection of the entry point will be introduced later):

⎧
⎨

⎩

gξ (t̃) = ḡξ

gη(t̃) = ḡη

gζ (t̃) = ḡζ

. (2.35)

The following Hamiltonian function is established:

H = 1 + λt f = 1 + λV ξ (Ẇx1 cosφ∗ cosψ∗ + ḡξ )

+λVη(Ẇx1 sin φ∗ cosψ∗ + ḡη) + λV ζ (−Ẇx1 sinψ∗

+ḡζ ) + λξVξ + ληVη + λζVζ .

(2.36)

Tomaximize theHamiltonian function Eq. (2.36), the following conditions should
be met:

∂H

∂φ∗ = Ẇx1 cosψ∗ (−λV ξ sin φ∗ + λVη cosφ∗) = 0, (2.37)

∂H

∂ψ∗ = Ẇx1
(−λV ξ cosφ∗ sinψ∗ − λVη sin φ∗ sinψ∗ − λV ζ cosψ∗) = 0. (2.38)

By solving the above equations, we obtain the following equations:

φ∗ = arctan
λVη

λV ξ

, (2.39)

ψ∗ = − arctan
λV ζ

λV ξ

cosφ∗. (2.40)

The adjoint equations are as follows:

λ̇V ξ = − ∂H
∂Vξ

= −λξ , λ̇Vη = − ∂H
∂Vμ

= −λη, λ̇V ζ = − ∂H
∂Vζ

= −λζ ,

λ̇ξ = − ∂H
∂ξ

= 0, λ̇η = − ∂H
∂η

= 0, λ̇ζ = − ∂H
∂ζ

= 0.
(2.41)



50 Z. Song et al.

The following solution is derived from Eq. (2.41):

λV ξ = λV ξ0 − λξ t̃, λVη = λVη0 − λη t̃, λV ζ = λV ζ0 − λζ t̃,

λξ = λξ0, λη = λη0, λζ = λζ0.
(2.42)

(1) First, only the velocity constraints are considered.
If only the terminal velocity constraints are considered and the terminal position
constraints are relaxed, then

λξ = λη = λζ = 0. (2.43)

Substituting Eqs. (2.43) and (2.42) into Eqs. (2.39) and (2.40), we obtain the
optimal solutions of the control variables:

φ∗ = arctan
λVη0

λV ξ0
= φ̃, (2.44)

ψ∗ = − arctan
λV ζ0

λV ξ0
cos φ̃ = ψ̃. (2.45)

Thus, an important conclusion is drawn: the optimal control variables are constant
if only the velocity constraints are taken into account. To determine this constant, we
substitute Eqs. (2.44) and (2.45) into the first three terms of state equations given by
Eq. (2.31): ⎧

⎪⎨

⎪⎩

V̇ξ (t̃) = Ẇx1(t̃) · cos ϕ̃ · cos ψ̃ + ḡξ

V̇η(t̃) = Ẇx1(t̃) · sin ϕ̃ · cos ψ̃ + ḡη

V̇ζ (t̃) = −Ẇx1(t̃) · sin ψ̃ + ḡζ

. (2.46)

Assuming that the time-to-go, Tk , and the entry point are known, so the terminal
velocity and position constraints are determined, then φ̃ and ψ̃ can be obtained by
integration: ⎧

⎪⎨

⎪⎩

Vξk − Vξ0 = L · cos φ̃ · cos ψ̃ + ḡξ · Tk
Vηk − Vη0 = L · sin φ̃ · cos ψ̃ + ḡη · Tk
Vζk − Vζ0 = −L · sin ψ̃ + ḡζ · Tk

, (2.47)

where L = ∫ Tk
0 Ẇx1dt̃ . Then,

φ̃ = arctan
Vηk − Vη0 − ḡη · Tk
Vξk − Vξ0 − ḡξ · Tk , (2.48)

ψ̃ = arcsin
−Vζk + Vζ0 + ḡζ · Tk

L
. (2.49)
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L =
∫ Tk

0
Ẇx1dt̃ =

∫ Tk

0

Isp
τ − t̃

d t̃ =Isp · ln τ

τ − Tk
. (2.50)

Hypothesis 2: For the guidance law of Eq. (2.29), φ̃ and ψ̃ are used to ensure
the terminal velocity conditions, and they are determined by Eqs. (2.48) and (2.49),
respectively. The expressions (−k1 + k2 · t̃) and (−k3 + k4 · t̃) could be used tomeet
the terminal position conditions.
(2) Second, the position constraints are also included.
Thus the expressions of Eqs. (2.44), (2.45) are updated as follows:

φ∗ = φ̃ − k1 + k2t, ψ∗ = ψ̃ − k3 + k4t (2.51)

Based on the known entry point, the terminal conditions can be transformed into
the following:

X (Tk) =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

Vξk

Vηk

Vζk

ξk
ηk
ζk

⎤

⎥
⎥⎥⎥⎥⎥
⎦

=

⎡

⎢
⎢⎢⎢⎢⎢
⎣

Vk · cos θk
Vk · sin θk
0
0
Rk

0

⎤

⎥
⎥⎥⎥⎥⎥
⎦

, (2.52)

where Vk is the required injection velocity, θk is the terminal velocity inclination,
and Rk is the terminal geocentric vector diameter.

The state equation is converted to the following form:

⎧
⎨

⎩

ξ̈ (t̃) = Ẇx1(t̃) · cosϕ∗(t̃) · cosψ∗(t̃) + ḡξ

η̈(t̃) = Ẇx1(t̃) · sin ϕ∗(t̃) · cosψ∗(t̃) + ḡη

ζ̈ (t̃) = −Ẇx1(t̃) · sinψ∗(t̃) + ḡζ

. (2.53)

If (−k1 + k2 · t̃) and (−k3 + k4 · t̃) are small quantities, then

cos ki ≈ 1,
sin ki ≈ ki ,
cosφ∗ = cos φ̃ + k1 sin φ̃ − k2 t̃ sin φ̃,

sin φ∗ = sin φ̃ − k1 cos φ̃ + k2 t̃ cos φ̃,

cosψ∗ = cos ψ̃ + k3 sin ψ̃ − k4 t̃ sin ψ̃,

sinψ∗ = sin ψ̃ − k3 cos ψ̃ + k4 t̃ cos ψ̃.

(2.54)

The expressions (−k1 + k2 · t̃) and (−k3 + k4 · t̃) are required not to have appar-
ent effects on the terminal velocity, so

∫ tk
0 (−k1 + k2 · t)dt = 0, (2.55)

∫ tk
0 (−k3 + k4 · t)dt = 0. (2.56)
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Fig. 2.3 Solving of optimal entry point

The longitudinal position is mainly determined by Tk . Thus the transverse and
normal position constraints are:

ηk = η + vη · tk + ∫ tk
0

∫ t
0 η̈(t̃)dtdt, (2.57)

ζk = ζ + vζ · tk + ∫ tk
0

∫ t
0 ζ̈ (t̃)dtdt . (2.58)

The four equations, i.e., Eqs. (2.55)–(2.58), are used to solve k1 ∼ k4. The integral
processes are not complicated that the derivation is omitted, and interested readers
can refer to [37].
(3) Finally, the time-to-go and the entry point are solved based on the geocentric
angle.
Tk , the latest time-to-go, would be solved with the optimal entry point concurrently.
This process is illustrated in Fig. 2.3.

P0 is the current position of the launcher. The terminal position Pf can be predicted
according to the CLG command planned in the current cycle. According to the
geocentric angle between Pf and the ascending node �0 + ��, the position O f on
the target orbit can be determined with the same geocentric angle. If the velocities of
Pf and O f are the same, O f is then regarded as the latest entry point, and Tk needs
no compensation; otherwise, a correction time�t should be found to ensure the new
predicted terminal position after Tk + �t is located in the PTO, as shown as O∗

f in
Fig. 2.3. O∗

f is also considered to be a new entry point.
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According to the above analysis, Tk is updated by the following process:

v0 + L(Tk) + g̃(Tk + �t) + ∂L

∂t
· �t = fv(S) + ∂ fv(S)

∂t
· �t, (2.59)

Tk ← Tk + �t, (2.60)

where v0 is the current velocity of the rocket, L(Tk) denotes the apparent velocity
increment, g̃(Tk + �t) represents the gravitational effects on the velocity, fv denotes
the velocity of position S on the PTO, and S has the same geocentric angle as the
predicted terminal position of the launcher.

After Tk converges to a stable value during the iteration process, the orbit entry
point, O∗

f , is also determined. Thus the terminal velocity and position are known,
which are used by Eqs. (2.35), (2.48), (2.49), (2.57), (2.58).

At this point, all the variables in Eq. (2.29) have been solved, and the guidance
law is then updated and applied for current control. The above solving process is
carried out iteratively in each guidance cycle.

In the above treatment, some approximates are made, which would produce devi-
ations. However, as the rocket approaches the entry point, the accuracy of the above
processing is also continuously improved. If the flight arc is long, the gravitational
effect can be processed in segments, or a high-order approximation can be substituted.

The CLG is very sensitive to thrust variations, including thrust drops. Thus, it has
a certain fault-tolerance ability by adjusting the flight path in time.When performing
trajectory planning at fault time td and taking td as the start time of the following
flight, we obtain

Ẇx1(td) = Isp
τ(td)

, i.e., τ (td) = Isp
Ẇx1(td)

. (2.61)

That is, τ(td) is updated during each planning cycle according to the apparent
acceleration Ẇx1(td) measured by the IMU. Then, the dropped thrust is reflected in
the apparent acceleration, which causes τ(td) to increase. Under the assumption that
Isp and Tk remain unchanged, L decreases according to Eq. (2.50), so �t increases
therefrom according to Eq. (2.59), and then Tk increases. This means that the flight
time is extended and the orbit entry point is re-determined.

An example of LM-7 is given to illustrate IGM’s adaptability to thrust variations.
The engines of its second stage start up with a thrust of 150 kN, and then are tuned to
180 kN within 7 s. Four failure modes are considered, and the guidance commands
(the pitch Euler angles) are compared with those under nominal conditions, as shown
in Fig. 2.4, where the guidance commands are all re-planned after the failure occurs.
However, the premise of the fault tolerance is that there is sufficient remaining per-
formance to reach the PTO, and the measures if the performance is greatly degraded
are discussed in Sect. 2.4.

Nowadays, many enhanced algorithms have evolved from this basic method. The
improvements are mainly concentrated in Step 3 of Sect. 2.3.1, i.e., revising the form
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Fig. 2.4 Adaptability of CLG to thrust reduction

of the thrust directions or correcting the terminal velocity and position constraints.
These upgraded versions of CLGs are discussed in the following sections.

2.3.2 Evolutions of the Closed-Loop Guidance Methods

The evolution methods provide acceptable suboptimal solutions under more compli-
cated scenarios or constraints, which are proved to be feasible in real flights.

2.3.2.1 IGM Across Different Flight Phases

The above discussion only considers single powered flight phase. However, the IGM
is not always applied in the last stage. The earlier the IGM is introduced, the more
robust it is to faults.

During planning, the accelerations of the next stages need to be integrated to
obtain the terminal states, so the algorithm’s complexity is closely related to the
number of stages or segments, and each additional segment will require additional
calculations and control branches in the software. However, the number of segments
is also closely related to the change of the thrust-to-weight ratio, which is determined
by the trajectory characteristics. Therefore, the moment when the CLG is introduced
for the real-time control should be thoroughly studied.

Segmentation for continuous powered phases is applied in the LM-2F/Y8mission.
The CLG was introduced after the fairing was jettisoned. The second stage of the
LM-2F was operating at that moment, which was equipped with five engines, i.e.,
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Fig. 2.5 Thrust variation
with a coasting phase

•

one high-thrust main engine and four low-thrust swing engines. Thus, the flying was
divided into two segments: all five engines were working, or only four swing engines
were working after the main engine was shut down. During the working phase of
the five engines, the equivalent impulse for the second flight segment is set based
on the theoretical values of four swing engines; when the main engine shut down,
it was updated based on the apparent acceleration measured by the IMU. Thus, the
state equations were no longer continuous when facing different powered phases. An
example including two powered phases (two burns) and a coasting phase in between
is shown in Fig. 2.5.

The time-to-go has three components:

tk = tk1 + tk2 + tk3. (2.62)

The corresponding apparent acceleration is as follows:

Ẇx1(t) =

⎧
⎪⎪⎨

⎪⎪⎩

Isp1
τ1−t ta ≤ t < tb

0 tb ≤ t < tc
Isp3
τ̃3−t tc ≤ t ≤ td

. (2.63)

As discussed above, τ̃3 is set as a theoretical value during the iterative computing of
the first burn and then updated by the real flight data when the second burn initiates.
Thus, the closed-loop guidance across different flight phases are implemented by
replacing Eq. (2.28) with Eq. (2.63).

2.3.2.2 IGMs with Terminal Attitude Constraints

The guidance command is realized by adjusting the attitude of the launcher. To
meet the terminal velocity and position constraints simultaneously at the orbit entry
point, the guidance law requires the attitude to be tuned to a certain state to satisfy
the thrust vector requirements. Furthermore, the actual flight path would deviate
from the planned trajectory because of the existence of interferences and model
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uncertainties. These lead to large dispersions between the real and nominal attitude
when the payload is released, and the degree of dispersions is mainly related to the
magnitude of the interferences and the flight accelerations.

The missions with terminal attitude constraints are not uncommon, and usually
a reaction control system (RCS) is configured to regulate the attitude after the orbit
injection. However, if the guidance method could satisfy the constraints, the RCS
could be omitted to simplify the launcher, improve the reliability, and reduce the
cost. This demands that the guidance method satisfies OEs and attitude constraints
simultaneously only through the thrust vector control of the pitch, yaw, and cutoff
sequences.

An upgraded quadratic time-to-go function expressing the thrust direction is pro-
posed to meet the terminal attitude constraints, i.e., Eq. (2.29) is modified as follows:

{
ϕcx (t) = ϕ̃ + (−k1 + k2 · t + k5 · t2)
ψcx (t) = ψ̃ + (−k3 + k4 · t + k6 · t2) . (2.64)

The two new variables, k5 and k6, can be obtained based on the terminal pitch
and yaw attitude constraints. The solving of these new variables can be found in Ref.
[15], and the method is applied in the LM-2F/ T3 mission.

However, the terminal attitude cannot be set arbitrarily in this way. If the angle
between the thrust and the terminal velocity direction is too large, the assumption
that k1-k6 are small does not hold. This is the premise for deriving an analytical
guidance law by simplifying the trigonometric functions. In the next section, another
prediction and correction algorithm is proposed and compared to tackle the same
problem.

2.3.3 Prediction-Correction Iterative Guidance Method

To avoid the singularity in the solving of the IGM when approaching the cutoff
moment, the iterative calculation is terminated in advance before the engine shuts
down. The variables of the guidance law then remain unchanged for the follow-up
control. The errors arising therefrom should be compensated for, which is the initial
purpose of the prediction-correction IGM. Its process is described as follows [38]:
(1) Based on Eq. (2.29), calculate the pitch and yaw commands when the IGM is
terminated, φ(t f 0) and ψ(t f 0), respectively, where t f 0 = t f − �t , t f represents
terminal time, and t f 0 is the moment when the IGM is terminated.
(2) Construct the apparent acceleration model Ẇx1(t):

Ẇx1(t) = Isp
τ(t) − t

, (2.65)

where τ(t) = m(t f 0)/ṁ(t), and t takes t f 0 as the starting point:
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Ẇx1(t f 0) = Isp
τ(t) − 0

. (2.66)

Then,

Ẇx1(t) = Isp
Isp

Ẇx1(t f 0)
− t

. (2.67)

(3) Calculate the increases in the apparent velocity (or velocity) and position from
t f 0 to t f , and then obtain the predicted terminal state X∗

k(t f ) under this condition,
which can be expressed as a function of the following variables:

X∗
k(t f ) = fpts(Xk(t f 0), φ(t f 0), ψ(t f 0), Ẇx1(t)). (2.68)

where fpts denotes the function to calculate the terminal state.
The thrust vector remains the same after t f 0.

(4) Calculate the compensation to the terminal constraints �Xk(t f ) as follows:

�Xk(t f ) = Xk(t f )−X∗
k(t f ). (2.69)

(5) Update the terminal constraints Xk(t f ):

Xk(t f ) ← Xk(t f ) + �Xk(t f ). (2.70)

The terminal constraints, which include the velocity and position constraints,
were formerly determined by the entry point, however Eq. (2.70) renews them based
on error predictions, while the time-to-go remains the same. Then, the variables
of guidance law is re-calculated based on Eq. (2.70) in the current guidance cycle.
Although these updated terminal constraints are not strictly optimal, the simulations
show that the resulting errors are acceptable.

For different application scenarios, Eq. (2.69) has various updates. Note that
�Xk(t f ) represents the terminal constraint compensation induced by various factors
during the period from t f 0 (or other moments we are interested in) to t f . These
compensations are due to the systematic errors caused by conditions such as the
in-advance termination of the IGM, the deviations caused by the tracking control or
the cutoff thrust, and the other processing such as the attitude regulation.

2.3.3.1 Direct Injection Under High Thrust

Under high-thrust conditions before a payload is released to an orbit, the same attitude
tracking error would result in large lateral or normal velocity deviations, and the
disturbances and the uncertainties of the cutoff thrust also increase. All the above
effects are adverse to the entry accuracy, and this is what LM-7 faces when launching
cargo spacecrafts.
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In general, a terminal velocity correction system (TVCS) could be installed to
reduce the velocity errors after the main engines were shut down, but this auxiliary
system would increase the complexity and cost of the launcher, reduce the carrying
capacity and reliability. The final solution of LM-7 is to shut down two fixed engines
in the last stage ahead of the cutoff of two other swing engines to reduce the overload
before entering into an orbit. The time interval between these two cutoffs should not
be too long to affect the launcher’s performance, but a short interval would lead to
a rapid time-varying thrust due to the coupling of the cutoff thrusts of four engines,
and prominent variations in the guidance commands because the position constraints
are very sensitive to the thrust. This leads to the increases in the attitude tracking
errors and the injection deviations. To tackle this dilemma, the position constraints of
the CLG are relaxed just before the cutoff of two fixed engines, letting the guidance
commands quickly enter into a stable state. Although this strategy would produces
systematic position errors, but a relatively accurate prediction of the terminal position
is realized due to the stable guidance commands and high tracking accuracies, thus a
prediction-correction scheme could be adopted before the shutdown of the two fixed
engines.

The state vector at time t f , X
(2)
k (t f ), which indicates the scenario that only two

swing engines operatewhile the other twofixed engines shut down, could bepredicted
through the motion equation of the last stage in the vacuum regime. It should be
pointed out that after two fixed engines shut down, t f would not be updated again.

Similarly, Xk(t f ) represents the state vector predicted by the CLG if the four
engines shut down simultaneously in the end. The deviation is solved as follows:

�Xk(t f ) = Xk(t f ) − X(2)
k (t f ). (2.71)

The above deviation is introduced into the IGM terminal constraint:

Xk(t f ) ← Xk(t f ) + �Xk(t f ). (2.72)

The control variables of the IGM would not update when the two fixed engines
shut down and remain unchanged until the end of the flight. More detailed discussion
can refer to Ref. [13].

2.3.3.2 Error Correction of Terminal Velocity

Even if the TVCS is configured, the process of velocity corrections is general open-
loop. The entry accuracy mostly depends on whether the state vectors at the cutoff
time are consistent with the theoretical conditions. Owing to the influences of various
disturbances and deviations (such as thrust deviations), it is most probable that the
terminal state differs from the expected value. Thus, the open-loop velocity correction
based on the prescribed command sequences will lead to non-negligible velocity
errors, which is disadvantageous to the orbit entry accuracy. This problem can also
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be solved by the prediction-correction strategy, but at this time, only the terminal
velocity would be corrected.

After the engines shut down, the velocity increments caused by the cutoff thrust
can be predicted as follows in the target OCS:

⎧
⎪⎪⎨

⎪⎪⎩

�Wxcf = ∫ tcut
t f

Ẇc f (t) cosφ∗
f cosψ∗

f dt

�Wycf = ∫ tcut
t f

Ẇc f (t) sin φ∗
f cosψ∗

f dt

�Wzcf = ∫ tcut
t f

Ẇc f (t) sinψ∗
f dt

. (2.73)

where ϕ∗
f ,ψ

∗
f are the real pitch and yaw control commands at the cutoff moment, Ẇcf

is the apparent acceleration of the cutoff thrust, tcut is the moment when the cutoff
thrust ends, �Wxcf , �Wycf , �Wzcf are the apparent velocity increments induced by
the cutoff thrust under ϕ∗

f , ψ
∗
f commands.

Similarly, the nominal apparent velocity increments based on the prescribed pitch
and yaw angles can also be obtained as [�Wx f ,�Wyf ,�Wzf ]T , and then,

�Xk(t f ) = [�Wx f − �Wxcf ,�Wyf − �Wycf ,�Wzf − �Wzcf , 0, 0, 0]T .

(2.74)
This scheme plays a major role in the LM-8/Y1 mission. The deviation between

the terminal pitch command of the IGM and the nominal condition was 10.5◦, and if
no measures were adopted, the velocity errors caused by cutoff thrust would exceed
theTVCS’s correction ability, resulting in a timed shutdownof theTVCS (itsworking
timewas scheduled as 40 s). Thus, the velocity errors would not be fully compensated
for, thereby affecting the injection accuracy. Benefiting from the above algorithm,
the timed shutdown of the TVCS was avoided, and the accuracy of the semi-major
axis was ensured and greatly improved.

2.3.3.3 Handling of Terminal Attitude Constraints

Based on the prediction-correction strategy, a new approach different from that in
Sect. 2.3.2.2 is discussed to handle terminal attitude constraints. IGM is terminated at
time t f 0, which is close to the terminal time t f , and then an attitude adjustment phase
is introduced to regulate the thrust vector from the current values φ(t f 0), ψ(t f 0) to
the expected terminal states φ f , ψ f . Taking the pitch channel as an example, the
expression of the attitude adjustment is as follows:

φ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

2(φ f −φ(t f 0))

(t f 1−t f 0)
2 (t − t f 0)2 + φ f 0, t f 0 ≤ t ≤ t f 1+t f 0

2

− 2(φ f −φ(t f 0))

(t f 1−t f 0)
2 (t − t f 1)2 + φ f ,

t f 1+t f 0
2 < t ≤ t f 1

φ f , t f 1 < t ≤ t f

, (2.75)
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Fig. 2.6 Comparisons of Euler angles

where t f 1 is the moment when the attitude adjustment ends, φ (t) represents the
thrust vector at time t , and the expression ψ (t) in the yaw channel is similar and not
repeated.

The apparent acceleration during the attitude adjustment can be expressed as

Ẇx1(t) = Isp
τ − t

. (2.76)

Based on Eqs. (2.75) and (2.76), we can determine the terminal state as follows:

X∗
k(t f ) = fpts(Xk(t0), φ(t), ψ(t), Ẇx1(t)). (2.77)

The terminal compensation is

�Xk(t f ) = Xk(t f ) − X∗
k(t f ). (2.78)

Three cases under different methods, i.e., the fundamental CLG (labeled as
Case1_0), themethod introduced in this section (labeled as Case1_1), and themethod
introduced in Sect. 2.3.2.2 (labeled as Case1_2), are compared in the Fig. 2.6, where
FCX and PCX represent the pitch and yaw Euler angles, respectively.

Compared with the method introduced in Sect. 2.3.2.2, we can see an obvious
attitude regulation process before entering into an orbit, and the guidance commands
before the adjustment are more consistent with that of the fundamental method.

2.4 Joint Optimization of Target Orbit and Flight Path

For most launch failures caused by a thrust drop, the engines can continue to operate
without an explosion. If the engines deteriorate to a very risky level indicated by the
sensed data, active shutdown is preferable to ensure flight safety. No matter what
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measures are taken, the carrying capacity will degrade. If still using the prescribed
guidance law under this situation, whether an orbit is reachable depends on the
remaining carrying capacity. Under severe failures, the propellant will be exhausted
inflight, the terminal velocity and position will not be able meet the requirements of
circling the Earth, and LV/payloads will crash to the ground. Thus, onboard decision
making is required in the above situations to save missions.

The assumption for analytical CLGs is that we can always find an injection point
on the PTO that matches the current flight states, and how to find the target orbit is
not within the scope of guidance methods. However, this assumption does not hold
if the PTO is beyond the performance capabilities of the rocket. A possible rescue
orbit in which the rocket makes use of the remaining fuel should be found first, then
the flight path should be planned or solved concurrently. A rescue orbit refers to a
new target that is different from the PTO, where the payloads can enter as the starting
point for the follow-up orbital transfer to avoid crashing. It has the same meaning
as a parking orbit in most contexts, where the satellite can circle the Earth for many
rounds. To consume as little fuel as possible by the payloads during the orbit transfer,
an optimal rescue orbit becomes attractive. Under special conditions, a rescue orbit
can also be a sub-orbit with a negative perigee height. The payload could not circle
the Earth under this condition and should initiate the orbit transfer as soon as possible
when released by the rocket.

It is difficult to find an analytical optimal rescue orbit, so a numerical method is
usually adopted. This problem was first discussed in Refs. [40, 41]. In Ref. [40],
the errors of different OEs were regulated through weights of element deviations in
the objective. In Ref. [41], sequential optimization was conducted based on state-
triggered-indices (STI), so as to gradually approach the optimal rescue solution. A
convex optimization (COP) sub-problem was constructed, and its solution was taken
as the initial value of the rescue planning problem. During the COP process, the
geocentric angle of the injection point after the failure is estimated referring to the
IGM process, then the COP sub-problem is transformed to the OCS to simplify the
terminal constraints. This treatment greatly improves the calculation efficiency of the
COP. Reference [39] proposed solutions for themaximumorbital radius optimization
if the rescue orbit were confined to a circular orbit. However, none of the above
methods can adapt to the flight scenario where a coasting phase is inserted. In Ref.
[43], an autonomous mission reconfiguration algorithm considering the coasting
phase was discussed to handle the typical failure modes that occur in real launchers,
but the coasting orbit and the command sequences during coasting still refer to
the prescribed planning results. This treatment can obtain a feasible solution when
failures occur, but it may not make full use of the remaining performance. Thus the
study of the multiple graded optimization (MGO) continues, while solving theMGO
online is still very challenging.
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Fig. 2.7 Framework of STI method

2.4.1 State-Triggered-Indices (STI) Based Method for
Continuous Powered Phases

The process of the STI-based optimization is explained in Fig. 2.7 [41]. The impacts
of the deviations of the OEs on the fuel consumed to correct these errors are closely
related to the orbital characteristics and the launcher’s current state, which exhibit
strong nonlinear features. Thus, the objective in Fig. 2.7 cannot be solved directly
because of the concerns on the convergence or local optimal solutions, and it is
transferred to three sub-problems.
(1) For the sake of safety, the orbital height should be ensured first after a failure
occurs, so the first reaction is to find a maximum height circular orbit (MCO).

If the height is less than a safety value, it means the rocket can hardly stay in any
orbit, the rescue is then abandoned. If the height meets the safe threshold but is less
than the perigee height of the PTO, the circular orbit is then taken as the rescue orbit
(optimal circular orbit, OCO). However, if the height is much higher, it indicates that
there is a certain performance margin used to adjust other OE errors. Then, the next
planning is triggered.
(2) The orbital inclination and LAN are regulated while ensuring the height of the
perigee to obtain the optimal eclipse orbit (OEO).

The deviations of the inclination and LAN are eliminated as much as possible
while keeping the perigee height of the rescue orbit around the required value. If the
rescue orbit can be coplanar with the PTO, the following planning will be triggered
again.
(3) The argument of the perigee, semi-major axis, and eccentricity are regulated
whilemaintaining the perigee height and orbital planar elements to obtain the optimal
rescue orbit (ORO).
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During the optimization, the solution of the current sub-problem is taken as the
initial guess of the next sub-problem. The initial guess can meet the equality con-
straints of all the motion equations, improving the convergence and efficiency of the
numerical computation. However, to obtain a reasonable initial guess value of the
first sub-problem, the nonlinear terminal constraints of the OEs are transformed to
the OCS. This idea is inherited from the IGM, and the transformation matrix is as
follows:

GO =
⎡

⎣
− sin�0 cos i0 cos�0 cos i0 sin i0

cos�0 sin�0 0
− sin�0 sin i0 cos� sin i0 − cos i0

⎤

⎦

⎡

⎣
cos�k − sin�k 0
sin�k cos�k 0

0 0 1

⎤

⎦ , (2.79)

where �k is the geocentric angle between the orbit entry point and the ascending
node (see Fig. 2.3).

In the OCS labeled as O − ξηζ , the position components along the Oξ and Oζ

axes are 0, and the velocity components along the Oη and Oζ axes are 0. The terminal
constraints are summarized as follows:

ξ f = ζ f = 0, Vη = Vζ = 0, μ = η f V 2
ξ f . (2.80)

Compared with the constraints in the LICS, i.e., Eqs. (2.16)–(2.23), (2.80) is
greatly simplified, where �k in Fig. 2.3 can be predicted as follows [40]:

�k = �0 + d�, (2.81)

where �0 is the geocentric angle between the position of the launch vehicle at the
current time and the ascending node, and d� is the geocentric angle in the current
orbital plane during the remaining flight range.

d� ≈ d�re f

κ
, (2.82)

where κ is the percentage of nominal thrust after a failure occurs.

d�re f = arccos

(
Pre f · P0∥∥Pre f

∥∥ · ‖P0‖

)

. (2.83)

An example is given below. For a PTO with hp = 200 km and ha = 300 km, the
corresponding OEs are shown in Table 2.1. It is assumed that the thrust reduction is
caused by the decrease in the mass flow rate at 118.2 s, and the remaining thrust is
77.94%. The results in Fig. 2.8 were obtained by the STI-based processing.

Trajref is the nominal flight path. At the fault moment, �k is estimated as
171.05◦, and d�est = 15.6475◦. The OCS can be established when i0 = 41.27◦ and
�0 = 315.51◦ at the fault time. The result of theCOP is shownby the blue line labeled
TrajCVX, which can be taken as the initial guess for the OCO by the adaptive collo-
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Table 2.1 Orbital elements of prescribed target orbit

Orbital
elements

a e i w �

Values 6628140 (m) 7.54 × 10−3 42◦ 160◦ 315◦

Fig. 2.8 Trajectories of rescue results

Table 2.2 Orbital elements of OCO, OEO and ORO

Orbital
elements

a (km) e i (◦) � (◦) w (◦) hp (km) ha (km)

PTO 6628.1 0.0075 42 315 160 200 300

COP 6586.0 0.0 41.28 315.51 – 207.9 207.9

OCO 6586.9 0.0 41.28 315.51 – 208.8 208.8

OEO 6586.0 0.0012 42 315.01 161.49 200.1 215.6

ORO 6607.6 0.0045 42 315 160.40 199.5 259.4

cation method. The OCO result is represented by TrajOCO, and d�act = 15.6496◦,
showing that the deviation from the estimated value is 0.0021◦.

Since the height of OCO is 208.8 km, which is greater than the h p of the PTO, then
the followingplanning is triggered,where [λhp, λa, λi , λ�] = [10−3, 10−3, 1, 1]. The
result is shown as TrajOEO with hp = 200.1 km and ha = 215.6 km.

By defining εi = ε� = 0.05◦, �i and �� are both less than 0.05◦, triggering the
next planning. The result of the ORO is represented as TrajORO, and the OEs are
summarized in Table 2.2.
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Because thefirst planningof theOCOneeds to solve theCOPproblem toobtain the
initial guess, the calculation time accounts for more than 60% of the total planning
time. By taking the OCO as the initial value, the solutions of the OEO and ORO
problems can converge quickly.

More detailed discussion can be found in Ref. [41].

2.4.2 Segmented Rescue Optimization Crossing Coasting
Phase

If a coasting phase is inserted into the optimization of the rescue orbit, the complexity
of on-line planning will be further increased. Thus, a segmented planning strategy
(SPS) is studied first, and the continuous solution is discussed in the next section. The
SPS is similar to the IGM across the coasting phase, i.e., the coasting obit is taken
as the target orbit of the first burn. Under nominal conditions, the IGM across the
coasting arc does not lose optimality, because the terminal constraints of each flight
phase are reachable. However, these constraints might not best match the remaining
performance and guidance command sequences when a failure occurs, leading to the
handover conditions between phases being unreachable.

However, the SPS relaxes the computational burden of online planning and
demonstrates its effectiveness under the typical failure modes [42]. Under the back-
ground of launching satellites to the GTO using a two-stage rocket, its solutions are
briefly explained as follows:

(1) Identify the fault mode first.
Three failure modes are considered. If the engine is going to explode, shut it down
immediately, and let the subsequent stages make up for the performance loss of the
premature cutoff. If an engine fails to start or shuts down by accident, restart it again if
it has multiple burns. The restart may succeed or fail; even if it succeeds, it will make
the engine unable to operate the following scheduled startup owing to the restriction
on re-ignition times. However, the restarting scheme has the effect of postponing the
fault moment and reducing the impact on the performance degradation. If only the
thrust drops and there is no emergent risk, let the engine continue working. In the
discussion in this section, it is assumed that there is no leakage, and all the remaining
propellants can be utilized.
(2) Judge the flying regimes. If flying in the atmosphere and considering the landing
area of the rocket debris, call the PGM for the tracing control until the fuel in the
boosters is exhausted, then turn off the engines.
(3) If flying out of the atmosphere, evaluate the remaining performance by the ES-
IGM algorithm [42].

If flying before coasting, first evaluate whether the prescribed coasting orbit is
reachable; if flying after coasting, evaluate whether the PTO is reachable. The ES-
IGM algorithm is based on the numerical integration and summarized in Ref. [42].
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(4) Call the STI to optimize the new orbit and flight path if the prescribed orbit
is beyond the remaining performance capabilities; otherwise, call the IGM for the
guidance control.

The above algorithm is an approximate processing because the coasting phase
is not optimized according to the fault state. If the coasting orbit is still reachable,
the guidance command consequence is inherited during the coasting; if not, a new
transfer orbit is planned by the STI method, and the triggering of the second burn is
scheduled nearby the apogee of the new coasting orbit.

The discussion in Ref. [42] indicated that, if the PGM is adopted from the current
point to the end or if the IGM is called only during the last burn, the LV/satellite
may fall out of space under fault conditions with a high probability. In contrast, if the
IGM is called as early as possible, the payload could be deployed into an orbit. This
echoes the previous conclusions, the earlier the IGM is adopted inflight, the stronger
the fault adaptability becomes. However, the IGM cannot guarantee a safe parking
orbit, so the evaluation of the remaining performance is very important to support
onboard decision making.

2.4.3 Multiple Graded Optimization

The STI method specifies the minimum orbital height as a safety constraint, for
example, not less than 150 km. Thus, the satellite could circle the Earth and then
carry out an orbital transfer at an appropriate point. If taking the payload as the final
stage of a launcher, the flight process of the LV/payload can be jointly optimized,
which is the meaning of the E2E optimization. At this time, we can relax the safety
restrictions on the orbital height, even plan a sub-orbit (the perigee height is negative)
to increase the apogee height, and make the orbital transfer responsively when flying
to the apogee. E2E optimization can reduce the propellant consumed during the
orbital transfer.

With the increase in commercial launches and constellations, multiple-satellite
ridesharing launches are becoming more and more common. The purpose of the
MGO is to separate some payloads in advance during the coasting phase while
sending the remaining payloads to the PTO if the performance of the launcher is
greatly reduced.

To clearly explain the MGO problem, the trajectory planning problems of the
powered-coasting-powered profiles are summarized in Table 2.3. Offline numerical
optimization is applied to analyze and compare the features of IGM, autonomous
coasting reconstruction (ACRC), and MGO under thrust drop failures.

In Table 2.3, FT is the nominal thrust, F1
T and F

2
T are the nominal thrustmagnitude

of the 1st and the 2nd powered phase, respectively, and κ is the percentage of the
remaining thrust to its nominal value; t0 and t f are defined as the fault time and
the terminal time of the second stage, t1 and t2 are the engine cutoff time of the
1st powered phase and the start time of the 2nd powered phase, respectively; tc0,
tc f are the initial and terminal times of the coasting phase; t1max and tcool are the
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Table 2.3 Description of typical optimization problems
Method IGM ACRC MGO

Objective J = −m
(
t f

)

Common constraints s.t. Dynamics : ṙ = V , V̇ = κFT
m − μ

‖r‖3 r, ṁ = − κ
∥∥FT

∥∥
Ispg0

phase1 :

⎧
⎪⎨

⎪⎩

[
r0, V0, m0

]
=

[
r, V , m

]
(t0) ,

‖FT (t)‖ = F1
T , t ∈ [

t0, t1
]
, t1 ≤ t1max

phasec :
⎧
⎨

⎩

[
r, V , m

] (
tc0

) =
[
r, V , m

]
(t1) ,

‖FT (t)‖ = 0, t ∈ [
tc0, tc f

]
,

phase2 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
r, V , m

]
(t2) =

[
r, V , m

] (
tc f

)
,

‖FT (t)‖ = F2
T , t ∈ [

t2, t f
]
,

[
are f , ere f , ire f , �re f , wre f

]

= Funorbit
(
r
(
t f

)
, V

(
t f

))
,

t f − t2 ≥ t2min,

Special constraints phase1 :
[ac, ec, ic,�c, wc]

= Fun (r (t1) , V (t1)) ,

phasec :
tc f − tc0 = tcoast ,

phase2 :
m

(
t f

) ≥ mmin .

phasec :
tc f − t1 ∈ [tcool , tcmax],
phase2 :
m

(
t f

) ≥ mmin .

phasec :
{
m

(
tc0

) = m (t1) − msep ,

tc f − t1 ∈ [tcool , tcmax],
phase2 :
m

(
t f

) ≥ mmin − msep .

maximum first burn time and the engine cooling time; tcmax, t2min are the maximum
coast phase time and the minimum second burn time; tcoast is the standard coasting
time,mmin andmsep are the minimum mass of the rocket and the separation mass off
the payloads.

For the IGM, the coasting OEs [ac, ec, ic,�c, wc] = Fun (r (t1) , V (t1)) are
introduced as the terminal constraints in the first powered flight phase. After entering
the coasting phase, a timed schedule is applied as the startup condition of the second
powered flight phase. Then, the IGM is called again to fly to the PTO.

For the ACRC method, the planning of the powered-coasting-powered profiles is
optimized simultaneously while taking all payloads as a whole, so the coasting orbit
will be re-planned, and there are no fixed OEs as the constraints of the first burn.
The coasting time is planned onboard only considering the cryogenic propellant
management and the precooling time required to restart engines. The terminal mass
constraint is the same as that of the IGM.

Compared with the ACRC, the MGO method considers the solution of departing
parts of the payloads during the coasting. Thus, m (tc0) = m (t1) − msep, and the
terminal mass constraint of the second burn is reduced accordingly.

• Fault adaptability analysis

The following analysis is based on a two-stage launcher, and the launch site and PTO
parameters are shown in Tables 2.4 and 2.5.
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Table 2.4 Main parameters

Rocket Thrust (kN) Specific impulse
(m/s)

Structural mass
(kg)

Propellant quality
(kg)

Side booster 2400 2924 15000 141000

First stage 2400 2924 18500 153500

Second stage 328.8 4295 4350 16950

Fairing – – 2200 –

Table 2.5 Parameters of PTO and launch site

PTO Launch site

a (m) e i (◦) � (◦) Longitude (◦) Latitude (◦)
7078140 0 50 94.5 110.95 19.61

We set tcool as 60 s, tcmax as 850 s, and t2min as 50 s. The adaptive collocation
method is used to plan the nominal trajectory of the launcher off-line, as shown in
Fig. 2.9. The superscript ‘1st’ represents the flight state during the flight phase when
the side and core boosters are working, and ‘2nd’, ‘3rd’, and ‘4th’ represent the first
burn, coasting, and second burn of the second stage, respectively. According to the
optimization results, the performance of the rocket is 5840 kg without considering
the orbital height constraints of the coasting orbit.

According to the nominal trajectory, tcoast in the IGM is defined as 528.5 s. It
is assumed that the launcher carries 10 identical satellites, each weighing 584 kg.
The failure time is introduced in the time interval of 200–350 s of the first burn, and
the thrust after failure occurs is represented by a factor κ . The simulation results
are shown in Fig. 2.10, where S3 represents the fault adaptation range of the IGM,
S2 represents the range of the ACRC, which is more than that of the IGM, and S1
represents the range of the MGO, which is greater than that of the ACRC. Method 1
and Method 2 represent the lower limits of fault adaptation ranges of the IGM and
ACRC, respectively, and Method 3-1 and Method 3-2 represent the lower limits of
the MGO corresponding to departing 5 or 9 satellites during coasting, respectively.

For Method 1, the IGM can only endure the thrust dropping by 10% if the fail-
ure occurs at 200 s. With the delay of the failure, the dropping tolerance increases
exponentially, and 33% of the total thrust can still send the payloads to the PTO if
the failure occurs at 350 s. For Method 2, if the coasting could be re-planned online,
the allowable dropping thrust could be extended to 64% at 200 s and 6% at 350 s. If
the failure state of the thrust were deteriorated beyond the lower limit, for example,
thrust dropping to 45% at 200 s, all the payloads could not enter into the PTO. How-
ever, for Method 3-1 under this condition, the MGO could send half of the payloads
to the PTO by releasing the other half during coasting, avoiding the complete loss of
the mission. The more payloads released during the coasting, the more severe thrust
drop failure could be endured, but fewer payloads would be sent to the PTO.
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Fig. 2.9 Parameters of the nominal flight trajectory

Fig. 2.10 Fault adaptation ranges
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Compared with the IGM, the ACRC could adaptively adjust the coasting orbital
inclination and LAN by extending the flight time of the first burn, regulate the shape
of the coasting orbit, and elevate its perigee height to reduce the fuel consumption
of the second burn. For the MGO method, the main mission of the second burn was
to elevate the apogee height by boosting the speed, so the acceleration of the second
burn could be improved by releasing parts of the payloads in advance.

• Case analysis

A test case is provided shown in Table 2.6.
If the minimum departure mass of 2625.5 kg could be determined onboard, five

payloads should be separated in advance. With msep as 5 × 584 kg in the MGO, the
optimization results are shown in Fig. 2.11.

The flight time of each phase by the MGO is shown in Table 2.7. The coasting
OEs are shown in Table 2.8.

In the above analysis, the coasting orbit is optimized as a sub-orbit, and the satel-
lites released during the coastingwill inevitably crash to the ground.Another solution
is to constrain a minimum safe perigee height of the coasting orbit, so the departed
satellites could still circle the Earth and wait for rescue, but the number of satellites
that could be put into the PTOwould greatly decrease. No matter which solution was
adopted, the MGO could avoid the complete loss of payloads for rideshare launches.

Table 2.6 Failure state of test case

t (s) κ x (km) y (km) z (km) Vx (m/s) Vy (m/s) Vz (m/s) m (kg)

250 31% 548.8 135.8 55.8 4863.0 718.4 81.9 25880.4

Fig. 2.11 MGO planning results

Table 2.7 Flight time

Cutoff of the first burn (s) Startup of the second burn (s) Cutoff of the second burn (s)

719.5659 1268.7850 1318.7850
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Table 2.8 Coasting orbital elements

a (km) e i (◦) � (◦) w (◦) hp (km) ha (km)

6076.2 0.1648 50.0092 94.6643 –94.3177 –1303.5 699.7

However, the discussion in this section is based on off-line plannings, and onboard
ACRC or MGO plannings are still challenging. A special issue is analyzed in Ref.
[43], where the payload could still enter into the PTO by adjusting the coasting orbit.

2.5 Conclusions

Ascent guidance methods are a basic, fully studied, and seemly mature technology.
The off-line planning and on-line tracking strategy were widely applied in the early
stage and have achieved good results; they are even still used currently. Considering
thewind load relief and the restrictions of the debris landing area, theOLGor tracking
guidance is still playing a major role in endo-atmospheric flight.

CLGs perform well for exo-atmospheric guidance. No structural load constraints
and atmospheric disturbances are considered. The optimization problem is then sim-
plified to obtain analytical solutions based on optimal control theories. Compared
with the tracking guidance, the CLGs are more adaptive to model uncertainties and
interferences, and they are capable of satisfying multiple terminal constraints such
as six OEs to obtain higher injection accuracies. If mild thrust drop failures occur,
they can also be taken as disturbances handled by the CLGs.

It’s assumed that model uncertainties and disturbances are bounded. If the faults’
effect is far beyond the limits, the CLGs no longer work. Thus, the AGMs are attract-
ing more interest. AGMs cannot ensure an entry into the PTO, because they cannot
violate physical laws under severe failures, but they may reconstruct the mission to
avoid the complete loss of the payloads.

In conclusion, the AGMs need to solve the following sub-problems: (1) onboard
model identification or reconstruction, which mainly occurs in the case of abnor-
mal conditions, such as loss of thrust; (2) evaluation of the remaining performance,
which is to simplify the decision making: whether to use the CLGs to the PTO or
to reconstruct the mission; and (3) determination of the optimization objectives, i.e.,
keeping the payload in an orbit, the end-to-end planning, or the graded optimization
for rideshare launches.

Although there is no perfect or groundbreaking method to solve all the above
problems, the collocation method with smart initial guesses provides a strategy for
complex onboard planning. The convergence is not guaranteed, but it is better than
doing nothing to let the LV/payload assembly fall from space. Any solution, although
not optimal, is acceptable under these failure scenarios. The study of the AGMs to
reconstruct the mission is just beginning, while the study of the analytical guidance
is still important because it is often the first choice of the initial guess.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
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