Skip to main content

The Random Spatial Distribution of Pulsed Air Spark Discharge Path Under Needle-Plate Electrode Configuration

  • Conference paper
  • First Online:
The Proceedings of the 17th Annual Conference of China Electrotechnical Society (ACCES 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1013))

Included in the following conference series:

Abstract

The development of the streamer discharge has the characteristic of randomness. In this work, based on the statistical and digital image processing method, the effects of the applied voltage, pulse interval and discharge gap on the random path of the spark discharge are studied with a needle-plate electrode configuration. The measurements show that the distribution of the discharges path obeys normal distribution. By calculating its standard deviation, it is concluded that its randomness of the path decreases with the increase of applied voltage, increases with the increase of pulse interval, and increases with the increase of discharge gap. The experimental results indirectly verify that the randomness of spark discharge is affected by the space electron concentration and the applied electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amarasinghe, D., Sonnadara, U., Berg, M., Cooray, V.: Channel tortuosity of long laboratory sparks. J. Electrostat. 65(8), 521–526 (2007)

    Article  Google Scholar 

  2. Diaz, O., Hettiarachchi, P., Rahman, M., Cooray, V., Vayanganie, S.P.A.: Experimental study of leader tortuosity and velocity in long rod-plane air discharges. IEEE Trans. Dielect. Electr. Insul. 23(2), 806–812 (2016)

    Article  Google Scholar 

  3. Molas, M., Szewczyk, M.: Experimental evaluation of 3D tortuosity of long laboratory spark trajectory for sphere-sphere and sphere-plane discharges under lightning and switching impulse voltages. Energies 14(21), 7409 (2021)

    Article  Google Scholar 

  4. Watson, D.B., Ma, L.: Investigation of impulse spark trajectory in air between hemispherically-ended rod and plane electrode. IEE Proc.-Sci., Meas. Technol. 143(2), 106–112 (1996)

    Article  Google Scholar 

  5. Watson, D.B., Barber, M.I., Samuels, K.A.: Investigation of electrical breakdown in air using an image processing technique. Int. J. Electr. Eng. Educ. 29(4), 313–320 (1992)

    Article  Google Scholar 

  6. Watson, D.B., Ma, L.: The impulse breakdown trajectory in air between rod and plane electrodes. IEEE Trans. Dielectr. Electr. Insul. 4(1), 108–113 (1997)

    Article  Google Scholar 

  7. MacAlpine, J.M.K., Qiu, D.H., Li, Z.Y.: An analysis of spark paths in air using 3-dimensional image processing. IEEE Trans. Dielectr. Electr. Insul. 6(3), 331–336 (1999)

    Article  Google Scholar 

  8. Qiu, D.H., MacAlpine, J.M.K., Li, Z.Y.: An incremental analysis of spark paths in air using 3-dimensional image processing. IEEE Trans. Dielectr. Electr. Insul. 7(6), 758–763 (2000)

    Article  Google Scholar 

  9. An, Y., Wen, X., Hu, Y.: Statistical characteristics of the initial direction of the short-air gap negative-polarity operation impact spark discharge path. Chin. J. Electr. Eng. 37(9), 2734–2740 (2017). (in Chinese)

    Google Scholar 

  10. Kim, J., Anderson, R.W.: Spark anemometry of bulk gas velocity at the plug gap of a firing engine. SAE Trans. 104(3), 2256–2266 (1995)

    Google Scholar 

  11. Arai, R., et al.: Numerical Modeling of Spark Path with Stretching and Short Circuit in Three-Dimensional Flow. SAE Technical Papers 01-1164 (2021)

    Google Scholar 

  12. Konate, L., Beroual, A., Maciela, F.: Modelling of dielectric strength in long air gaps: application to a complex geometry. J. Phys. D Appl. Phys. 53(13), 135502 (2020)

    Article  Google Scholar 

  13. D’alessandro, F., et al.: Experimental study of lightning rods using long sparks in air. IEEE Trans. Dielectr. Electr. Insul. 11(4), 638–648 (2004)

    Article  Google Scholar 

  14. Xie, S., D’Alessandro, F., Chen, W., He, J., He, H.: Attachment processes and influencing factors in competition tests under switching impulse voltages. IEEE Trans. Plasma Sci. 41(7), 1773–1780 (2013)

    Article  Google Scholar 

  15. Kozyrev, A., Kozhevnikov, V., Semeniuk, N.: Kinetic theory of high-voltage low-pressure gas discharge with electron initiation on a cathode in a planar gap. Plasma Sources Sci. Technol. 29(12), 125023 (2020)

    Article  Google Scholar 

  16. Yu, J., Zhang, W., Wu, X., Wu, L.: The influence of gas humidity on the discharge properties of a microwave atmospheric-pressure coaxial plasma jet. AIP Adv. 11(2), 025131 (2021)

    Article  Google Scholar 

  17. Lizunova, A., et al.: Effects of temperature on the morphology and optical properties of spark discharge germanium nanoparticles. Materials 13(19), 4431 (2020)

    Article  Google Scholar 

  18. Jiang, Z., Gan, Y., Shi, Y.: An improved model for prediction of the cone-jet formation in electrospray with the effect of space charge. J. Aerosol. Sci. 139, 105463 (2020)

    Article  Google Scholar 

  19. Gu, J., et al.: Morphological characteristics of streamer region for long air gap positive discharge. J. Phys. D: Appl. Phys. 54(2), 025205 (2020)

    Article  Google Scholar 

  20. Nijdam, S., Teunissen, J., Ebert, U.: The physics of streamer discharge phenomena. Plasma Sources Sci. Technol. 29(10), 103001 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

This research project was supported by National Natural Science Foundation of China (No. 11905094) and Liaoning provincial department of Education (No. LQ2019021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Beijing Paike Culture Commu. Co., Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, L., Sun, Z., Xia, Y. (2023). The Random Spatial Distribution of Pulsed Air Spark Discharge Path Under Needle-Plate Electrode Configuration. In: Li, J., Xie, K., Hu, J., Yang, Q. (eds) The Proceedings of the 17th Annual Conference of China Electrotechnical Society. ACCES 2022. Lecture Notes in Electrical Engineering, vol 1013. Springer, Singapore. https://doi.org/10.1007/978-981-99-0451-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0451-8_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0450-1

  • Online ISBN: 978-981-99-0451-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics