Skip to main content

Design of Domino Logic-Based NOR Gate Circuit for Reduction of Charge Sharing

  • Conference paper
  • First Online:
Microelectronics, Circuits and Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 976))

  • 274 Accesses

Abstract

In this paper, NAND gate circuit is designed by the help of domino logic circuit to improve the performance of NAND gate circuit. Domino logic circuit is introduced to resolve the problem of dynamic logic circuit. Domino logic circuit will help to remove the problem of charge sharing in dynamic logic circuit. This NAND gate circuit is the universal logic gate and by the help of this any digital circuit block can be easily design. In this modern era, all the things are digital. Here, power dissipation of the circuit is improved approx. 50–60% and delay of the circuit is reduced. Speed of the device will improve and the charge sharing problem is also resolved. All the simulations are carried out on electronic design automation (EDA) tool on LTSPICE software. Domino logic is one of the best technique when try to reduce power consumption as well as speed, delay of the device and delay of the circuit is reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2001)

    Google Scholar 

  2. Z. Wu, K. Xie, H. Yang, Band gap properties of two dimensional photonic crystals with rhombic lattice. Optik 123, 534–536 (2012)

    Article  Google Scholar 

  3. Z.J. Li, Z.W. Chen, B.J. Li, Optical pulse controlled all optical logic gates in SiGe/Si multimode interference. Opt. Express 13, 1033–1038 (2005)

    Article  Google Scholar 

  4. H. Alipour-Banaei, S. Serajmohammadi, F. Mehdizadeh, All optical NAND and NOR gates based on nonlinear photonic crystal ring resonators. Optik 125, 5701–5704 (2014)

    Article  Google Scholar 

  5. H. Alipour-Banaei, F. Mehdizadeh, Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters. Optik 124, 2639–2644 (2013)

    Article  Google Scholar 

  6. M. Djavid, M.S. Abrishamian, Multi-channel drop filters using photonic crystal ring resonators. Optik 123, 167–170 (2011)

    Article  Google Scholar 

  7. H. Alipour-Banaei, M. Jahanara, F. Mehdizadeh, T-shaped channel drop filter based on photonic crystal ring resonator. Optik 125, 5348–5351 (2014)

    Google Scholar 

  8. M.Y. Mahmoud, G. Bassou, A. Taalbi, Z.M. Chekroun, Optical channel drop filter based on photonic crystal ring resonators. Opt. Commun. 285, 368–372 (2012)

    Article  Google Scholar 

  9. H. Alipour-Banaei, F. Mehdizadeh, S. Serajmohammadi, A novel 4-channel demultiplexer based on photonic crystal ring resonators. Optik 124, 5964–5967 (2013)

    Article  Google Scholar 

  10. M. Djavid, F. Monifi, A. Ghaffari, M.S. Abrishamian, Heterostructure wavelength division multiplexers using photonic crystal ring resonators. Opt. Commun. 281, 4028–4032 (2008)

    Article  Google Scholar 

  11. H. Rostami, A. Banei, F. Nazari, A. Bahrami, An ultra-compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure. Optik 122, 1481–1485 (2011)

    Google Scholar 

  12. T. Ahmadi-Tame, B.M. Isfahani, N. Granpayeh, A.M. Javan, Improving the performance of all optical switching based on nonlinear photonic crystal micro ring resonator. Int. J. Electron. Commun. (AEU) 65, 281–287 (2011)

    Article  Google Scholar 

  13. S. Serajmohammadi, H. Alipour-Banaei, F. Mehdizadeh, All optical decoder switch based on photonic crystal ring resonators. Opt. Quant. Electron. (in press) (2015)

    Google Scholar 

  14. H. Alipour-Banaei, F. Mehdizadeh, S. Serajmohammadi, M. Hassangholizadeh-Kashtiban, A 2 * 4 all optical decoder switch based on photonic crystal ring resonators. J. Mod. Opt. 62, 430–434 (2015)

    Google Scholar 

  15. X. Zhang, Y. Wang, J. Sun, D. Liu, D. Huang, All-optical AND gate at 10 Gbit/s based on cascaded single-port-coupled SOAs. Opt. Express 12, 361–366 (2004)

    Article  Google Scholar 

  16. J. Wang, J. Sun, Q. Sun, Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation. IEEE Photon. Technol. Lett. 19, 541–543 (2007)

    Article  Google Scholar 

  17. Y. Fu, X. Hu, Q. Gong, Silicon photonic crystal all-optical logic gates. Phys. Lett. A 377, 329–333 (2013)

    Article  Google Scholar 

  18. N. Saidani, W. Belhadj, F. Abdel Malek, Novel all-optical logic gates based photonic crystal waveguide using self imaging phenomena. Opt. Quant. Electron. (in press) (2015)

    Google Scholar 

  19. B.M. Isfahani, T. AhamdiTameh, N. Granpayeh, A.M. Javan, All-optical NOR gate based on nonlinear photonic crystal microring resonators. J. Opt. Soc. Am. B 26, 1097–1102 (2009)

    Article  Google Scholar 

  20. A. Taalbi, G. Bassou, M.Y. Mahmoud, New design of channel drop filters based on photonic crystal ring resonators. Optik (2012). https://doi.org/10.1016/j.ijleo.2012.01.045

  21. F. Mehdizadeh, H. Alipour-Banaei, S. Serajmohammadi, Channel-drop filter based on a photonic crystal ring resonator. J. Opt. 15, 075401 (7pp) (2013)

    Google Scholar 

  22. G.V. Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, F. Priolo, Linear and nonlinear optical properties of plasma-enhanced chemical-vapour deposition grown silicon nanocrystals. J. Mod. Opt. 49, 719–730 (2002)

    Google Scholar 

  23. S.D. Gedney, Introduction to Finite-Difference Time-Domain (FDTD) Method for Electromagnetics (Morgan and Claypool, Lexington, KY, 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumya Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Srivastava, S., Shekhawat, S. (2023). Design of Domino Logic-Based NOR Gate Circuit for Reduction of Charge Sharing. In: Biswas, A., Islam, A., Chaujar, R., Jaksic, O. (eds) Microelectronics, Circuits and Systems. Lecture Notes in Electrical Engineering, vol 976. Springer, Singapore. https://doi.org/10.1007/978-981-99-0412-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0412-9_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0411-2

  • Online ISBN: 978-981-99-0412-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics