
Chapter 2 
Mathematical Foundations of 
Hypergraph 

Abstract In this chapter, we introduce the mathematical foundations of hypergraph 
and present the mathematical notations that are used to facilitate deep understanding 
and analysis of hypergraph structure. A hypergraph is composed of a set of vertices 
and hyperedges, and it is a generalization of a graph, where a weighted hypergraph 
quantifies the relative importance of hyperedges or vertices. Hypergraph can also be 
divided into two main categories, i.e., the undirected hypergraph representation and 
the directed hypergraph representation. The latter one further divides the vertices 
in one hyperedge into the source vertex set and the target vertex set to model more 
complex correlations. Additionally, we discuss the relationship between hypergraph 
and graph from the perspective of structural transformation and expressive ability. 
The most intuitive difference between a simple graph and a hypergraph can be 
observed in the size of order and expression of adjacency. A hypergraph can 
be converted into a simple graph using clique expansion, star expansion, and 
line expansion. Moreover, the proof based on random walks and Markov chains 
establishes the relationship between hypergraphs with edge-independent vertex 
weights and weighted graphs. 

2.1 Introduction 

The importance of high-order complex network modeling has been discussed in 
Chap. 1. In this chapter, we introduce the basic knowledge of hypergraph. In a 
hypergraph, the edge degree is usually higher than that of a simple graph, which 
is two for a simple graph. Different from a graph structure that can model pairwise 
connections with its 2-degree edges, a hypergraph can model correlations between 
practical data that are much more complex than pairwise relationships. As a result 
of its versatility and usefulness of modeling complex correlations of data, machine 
learning on hypergraph has attracted increasing attention. 

Machine learning methods on hypergraph have been used in many real-world 
applications due to its advantages. A wide variety of tasks have been performed with 
hypergraph in computer vision, including image retrieval [1] and 3D object classi-
fication [2], video segmentation [3], re-identification of people [4], hyper-spectral 
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image analysis [5], landmark retrieval [6], and visual tracking [7]. It is possible 
to embed a wide range of subjects into a hypergraph structure for these tasks. In 
different tasks, the hypergraph structure can be used to formulate the correlation 
among a variety of subjects. In image retrieval [3], the correlation among different 
images can be modeled in a hypergraph, where each vertex denotes an image and 
the hyperedges can be generated by finding similar image features. In 3D object 
classification [2], the correlation among different 3D objects can be modeled in 
a hypergraph, where each vertex denotes a 3D object and the hyperedges can be 
generated based on the similarity among these 3D objects. In person re-identification 
[4], a hypergraph structure can be constructed, where each vertex represents a 
personal image and the hyperedges can be generated based on the similarities 
in the feature space. Similar modeling attempts have been deployed in medical 
image analysis and bio-informatics studies to identify genes [8, 9], predict diseases 
[10, 11], identify sub-types [12], and analyze functional networks [13]. 

Before detailed introduction of the hypergraph computation paradigm, hyper-
graph modeling, and other related methods and applications, in this chapter, we 
first present preliminary knowledge of hypergraph and multiple representations of 
hypergraph. We also compare the hypergraph structure with the graph structure from 
four aspects. 

2.2 Preliminary Knowledge of Hypergraph 

The basic concepts of hypergraph are hereby briefly discussed. Table 2.1 provides 
the main notations and definitions of hypergraphs throughout this chapter. We 
first introduce undirected hypergraph and directed hypergraph, respectively, and 
then introduce the K-uniform hypergraph, probabilistic hypergraph, the relationship 
between hypergraph and bipartite graph, and the weights on hypergraph. 

2.2.1 Undirected Hypergraph 

Let . G be an indication of a hypergraph (undirected hypergraph), which consists of a 
set of vertices . V and a set of hyperedges . E . In a weighted hypergraph, each hyper-
edge .e ∈ E is assigned with a weight .w(e), symbolizing the importance of the con-
nection relationship throughout the whole hypergraph. Let . W denote the diagonal 
matrix of the hyperedge weights, i.e., .diag(W) = [

w (e1) , w (e2) , . . . , w
(
e|E |

)]
. 

Given a hypergraph .G = (V ,E ,W), the structure of the hypergraph is usually 
represented by an incidence matrix .H ∈ {0, 1}|V |×|E |, with each entry . H(v, e)

indicating whether the vertex v is in the hyperedge e: 

.H(v, e) =
{
1 if v ∈ e

0 if v /∈ e,
(2.1)
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Table 2.1 Notations and definitions of hypergraphs 

Notation Definition 

.G The hypergraph 

.V The set of vertices 

.E The set of hyperedges 

.W The diagonal matrix of the hyperedge weights 

.U The diagonal matrix of the vertex weights 

.X The vertex feature matrix 

.Y The vertex label matrix 

.H The .|V | × |E | incidence matrix of undirected hypergraph structure. . H(v, e)

indicates the connection strength between vertex v and hyperedge e 
.Dv The diagonal matrix of vertex degrees 

.De The diagonal matrix of hyperedge degrees 

.Δ The Laplacian matrix of hypergraph 

.xi The feature vector of vertex . vi

.d(v) The degree of vertex v 

.δ(e) The degree of hyperedge e 

.w(e) The weight of hyperedge e 

.u(v) The weight of vertex v 

where .H(v, e) indicates the possibility of vertex v assigned to hyperedge e or the 
importance of vertex v for hyperedge e. The degree of hyperedge e and the degree 
of vertex v are defined as follows: 

.δ(e) =
∑

v∈V

H(v, e), (2.2) 

and 

.d(v) =
∑

e∈E

w(e) ∗ H(v, e). (2.3) 

The traditional hypergraph structure creates associations among vertices, with a 
single hyperedge connecting multiple vertices that have associations. All vertices on 
the same hyperedge are given a value of 1 in the incidence matrix . H. The adjacency 
matrix . H is calculated as in (2.1), whose elements are valued by 0 or 1. Each row 
represents each vertex in the hypergraph and the columns represent all hyperedges. 
Each column represents the set of vertices on this hyperedge. 

Figure 2.1 shows an undirected hypergraph, including the hypergraph itself, the 
incidence matrix . H, the vertex set . V , the hyperedge set . E , and the weight matrix . W. 
In the illustrated undirected hypergraph, there are 3 hyperedges . e1, . e2, and . e3 with 
6 vertexes. The degree of the hyperedge . e3 is 3, which contains vertices .{v3, v4, v6}. 
By the same token, other elements of . Dv can be inferred. Vertex . v3 belongs to the 
hyperedges . e2 and . e3, and the degree of the vertex is 2. The incidence matrix . H of
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Fig. 2.1 An example of an 
undirected hypergraph 

hypergraph is readily obtained by the rules of construction, which are shown on the 
right side of Fig. 2.1. 

Given the incidence matrix . H as calculated as in Eq. (2.1), all elements are valued 
by either 0 or 1. It is noted that the connection weights of different vertices on a 
hyperedge could be different. For example, some vertices are highly connected in 
the hyperedge and with high weights, while others may be with low weights. That 
is to say, the sum of each column of . H is 1 (or not, due to different applications and 
objectives) and its values represent the vertex importance on this hyperedge. 

There are various rules that can be used to determine whether vertices are 
associated with one another. Hyperedge groups can be generated from the data with 
a graph structure by using pairwise edges and k-hops; for the data without a graph 
structure, they can be generated by using neighbors in feature space. A detailed 
description of these methods is provided in Chap. 4. 

2.2.2 Directed Hypergraph 

The real world is incompatible with traditional undirected hypergraph representation 
in that hyperedges may be directional. Therefore, the representation of directed 
hypergraph structures is important. In each hyperedge, the vertex can be further 
divided into two sets: the source vertex set and the target vertex set. On directed 
hypergraph, a trivial definition [14] for the incidence matrix is defined as follows: 

.Ĥ(v, e) =
⎧
⎨

⎩

−1 if v ∈ T (e)

1 if v ∈ S(e)

0 otherwise,
(2.4)
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Fig. 2.2 An example of a directed hypergraph 

where .T (e) and .S(e) are the target and source vertices for hyperedge e, respectively. 
The incidence matrix . H is split into two matrices, . Hs and . Ht, describing the source 
and target vertices for all hyperedges, respectively. When passing messages with 
these two incidence matrices, it is important to maintain the directional information. 
Two different incidence matrices guide message passing in the directed hypergraph, 
. Hs and . Ht, unlike in the undirected hypergraph. The average aggregation of 
messages is normalized by . Ds and . Dt as two matrices, and it can be formulated 
as follows: 

.

{
Ds = diag(col_sum(Hs))

Dt = diag(col_sum(Ht )),
(2.5) 

where .diag(v) is a function that converts a vector v to a diagonal matrix. The 
.col_sum(·) is a column accumulation function. 

Figure 2.2 shows an example of directed hypergraph including the directed 
hypergraph itself, the incidence matrix . H, the source incidence matrix . Hs , and 
the target incidence matrix . Ht . The illustrated directed hypergraph contains six 
vertices and two hyperedge . e1 and . e2. . e1 connects four vertices and . e2 connects 
three vertices. In hyperedge . e1, the source vertices are . v1 and . v2, and the target 
vertices are . v4 and . v5. As for the hyperedge . e2, the source vertices are . v2 and . v3, 
and the target vertices are only . v6. 

2.2.3 Probabilistic Hypergraph 

In the real-world correlations, the intensity of the connection can not only be a 
binary number but also be a continuous number from zero to one. Consequently, the 
incidence matrix may be a continuous matrix with elements ranging from 0 to 1, 
which is adopted to denote a probabilistic hypergraph. 

As shown in Fig. 2.3, the probabilistic hypergraph consists of six vertices and 
three hyperedges. The hyperedge . e1 connects three vertices . v1, . v2, and . v5. The  
intensity of the connection in this hyperedge is not the same. As shown in the 
right side of the figure, . e1 connects . v1 with an intensity of . 0.3, connects . v2 with
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Fig. 2.3 An example of a probabilistic hypergraph 

an intensity of . 0.8, and connects . v5 with an intensity of . 0.5. The degree of vertex 
and hyperedge in this type of hypergraph is computed by the sum of the row or 
column of the hypergraph incidence matrix . H, as shown in the bottom of Fig. 2.3. 

2.2.4 K-Uniform Hypergraph 

In many applications, hyperedges in a hypergraph may connect the same number of 
vertices, which is known as the k-uniform hypergraph. In the k-uniform hypergraph, 
each hyperedge contains precisely k vertices, as shown in Fig. 2.4. Under this 
definition, a simple can be regarded as a spatial case of hypergraph, a 2-uniform 
hypergraph, where each hyperedge only connects two vertices. 

Figure 2.4 illustrates an example of 3-uniform hypergraph. The hypergraph 
consists of six vertices and three hyperedges, and each hyperedge contains precisely 
3 vertices. Hyperedge . e1 connects vertices . v1, . v2, and . v5. Hyperedge . e2 connects 
vertices . v1, . v2, and . v3. The degree of all hyperedges in this type of hypergraph is 
consistent k. 

2.2.5 Hypergraph and Bipartite Graph 

The bipartite graph can be indicated by .G = {U ,V ,E }. Unlike the simple graph, 
vertices in the bipartite can be divided into two disjoint and independent sets .U
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Fig. 2.4 An example of a 3-uniform hypergraph 

Fig. 2.5 The relationship between hypergraph and bipartite graph 

and . V . Every edge only connects one vertex in set . U and another vertex in set 
. V . Obviously, an undirected hypergraph can be regarded as a bipartite graph if the 
hyperedges are treated as another vertex set, as shown in Fig. 2.5. 

Figure 2.5 illustrates examples of converting hypergraph to bipartite graph. The 
bipartite graph can be generated by two strategies: the vertices and hyperedges 
are treated as vertices in . U and vertices in . V (as illustrated in the left part), and 
the vertices and hyperedges are treated as vertices in . V and vertices in . U (as 
illustrated in the right part). Similarly, a bipartite graph can also be transformed 
to an undirected hypergraph with set . U /. V as the hyperedges. It is not mean 
that the hypergraph is the same as or can be replaced with the bipartite graph. 
The transformation only exists in the undirected hypergraph and the probabilistic 
hypergraph. Confronting more complex hypergraph like directed hypergraph, the 
transformation will be invalid.
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2.2.6 The Weights on Hypergraph 

It is noted that there are different weights on a hypergraph, which provide 
additional information to assign values to a hypergraph structure. This is a more 
semantically preferred way of representing a hypergraph, as different components 
of a hypergraph, such as a vertex, a hyperedge or even a sub-hypergraph, should 
have different impact on the relationship modeling. For example, in a recommender 
system, the weights in the user profile influence the categorization of user attributes. 
If the attributes are not categorized accurately, the accuracy of the recommendations 
and marketing based on the profile could be questionable. The main types of 
weight information on a hypergraph are hyperedge weights and vertex weights, with 
the magnitude of the values indicating the relative importance of hyperedges and 
vertices, respectively. 

First, let us show how the weights on vertex can be used. Different vertices 
may have varying importance on hypergraph modeling, and vertex weights are used 
in a hypergraph to determine the importance of different vertices. If a vertex is 
connected on the hypergraph strongly (with high correlations), it should be with a 
large vertex weight. Otherwise, it should be with a small vertex weight. For those 
vertices which have a 0 weight value in the incidence matrix, it can also be regarded 
as it is connected by the corresponding hyperedge with a weight of 0. Here, the 
diagonal elements of . U to represent the weights of vertices, which are between 0 
and 1, which reveal the relative importance of these hyperedges. Figure 2.6 shows 
an example hypergraph with vertex weights. In this figure, the weight of each vertex 
is denoted by the size of the vertex node. Vertex . v6 has a weight of . 0.9, which is 
larger than all other vertices, and vertex . v2 is the smallest among the six vertices. 

Then, let us focus on the weights on hyperedge. Hyperedge weights reflect the 
importance of different hyperedges in a hypergraph. As different hyperedges may 
have different importance in representing connections among vertices, it is crucial 
that hyperedges be weighted corresponding to their representative capabilities. In 
some cases, a part of hyperedges are more reliable due to its generation method or 
the features employed in this task, and these hyperedges should be given a large 

Fig. 2.6 An example of a 
vertex weighted hypergraph
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Fig. 2.7 An example of a 
hyperedge weighted 
hypergraph 

weight during the learning process. Here, the diagonal element values of . W can 
be used to represent the weights of vertices, which are between 0 and 1, revealing 
the relative importance of these hyperedges. Figure 2.7 shows an example of the 
hyperedge weighted hypergraph. In the illustration, the three hyperedges have the 
weights . 0.3, . 0.9, and . 0.5, respectively. 

2.3 Comparison Between Graph and Hypergraph 

As a generalization of graph, the relationship between graph and hypergraph 
is a fundamental question. In this part, we detailedly introduce the relationship 
between graph and hypergraph from four aspects, i.e., the order of correlations, 
the representation methods, the structure transformation and random work on both 
of them. 

2.3.1 Low-Order Versus High-Order Correlations 

First, we define the interaction as a set .I = [p0, p1, · · · , pk−1] containing k 
basic elements of the system being studied, which can also be called vertices or 
nodes. Various real-world interactions can be described by such interactions, such 
as coauthors of a scientific paper, genes required to perform a specific function, 
neurons co-activating during a specific task, and more. We then denote the order 
(or dimension) of interactions among vertices as an order-0 interaction for a vertex 
interacting with itself only, an order-1 interaction for two vertices interacting 
with each other, an order-2 interaction for three vertices interactions, and so on.



28 2 Mathematical Foundations of Hypergraph

Fig. 2.8 The expressive ability comparison of graph and hypergraph 

Furthermore, high-order interactions are considered k-interactions with .k ≥ 2. Low-
order interactions, on the other hand, are those characterized by .k ≤ 1. 

Figure 2.8 shows the comparison of hypergraph and graph on the modeling 
of different orders of correlations. We notice that a graph can only represent the 
order-1 interactions between two vertices. Different from graph, a hypergraph 
can represent any order-k interactions through its flexible hyperedges. From this 
direction, hypergraph is more effective on modeling high-order correlation among 
subjects compared with graph. 

2.3.2 Adjacency Matrix Versus Incidence Matrix 

A graph with N vertices can be described by an adjacency matrix .A ∈ {0, 1}N×N , 
where .Ai,j = 1 denotes that there is an edge connecting vertex . vi and vertex . vj . In  
most cases, the adjacency matrix . A is a symmetry matrix. 

A hypergraph with N vertices and M hyperedges can be described by an 
incidence matrix .H ∈ {0, 1}N×M , where .Hi,j = 1 denotes that the hyperedge . ej

connects vertex . vi . 
By comparison of adjacency matrix and incidence matrix, a graph can be 

regarded as a 2-uniform hypergraph. In this case, each hyperedge can only connect 
two vertices. Given the possible .N × N order-1 hyperedges . H in the 2-uniform 
hypergraph, they can be directly projected to the .N × N elements in adjacency 
matrix . A. The hypergraph incidence and the simple graph adjacency matrix can be 
bi-transformed as follows: 

.HH� = A + D. (2.6)
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The adjacency matrix for graph and the incidence matrix for hypergraph have 
different processing styles when confronting multi-modal data or multiple types of 
connections. Given m adjacency matrices representing m graphs .G1,G2, . . . ,Gm, 
there are two typical ways to combine these data for graph. The first way is to 
combine different graphs into one graph . G and then conduct other tasks. The second 
way is to conduct the task in each graph individually and then combine all these 
results. Figures 2.9 and 2.10 show these two types of methods. In either method, it 
is required to perform fusion, either in the graph structure part or in the result part. In 
recent years, a series of graph fusion methods [15, 16] have been introduced, while 
it is still a challenging task to optimally combine different graphs. On the other side, 
the multi-modal graph fusion is also with high computational complexity, which 
may limit the applications on multi-modal data. 

Different from the processing method in graph, hypergraph can handle such types 
of different connections in an easy and direct way, due to its flexible hyperedges. 
As shown in Fig. 2.11, when there are multiple types of connections available, 
it is possible to generate multiple hyperedge groups with m incidence matrices 
.H1,H2, . . . ,Hm, and these m incidence matrices can be directly concatenated to 
generate the overall hypergraph structure . H. In this way, all these multi-modal data 
or multiple types of connections can be easily modeled in one hypergraph and all 
further processing can be directly deployed on this hypergraph structure. Under such 
circumstances, it is not required to conduct multi-modal fusion in an explicit way, 
while it could be jointly included in the hypergraph computation process. 

2.3.3 Structure Transformation from Hypergraph to Graph 

A hypergraph can encode high-order data correlation (beyond pairwise) using its 
degree-free hyperedges compared to a simple graph, where the degree for all 
edges has to be 2. In a sense, a simple graph can be viewed as a special case, 
where all hyperedges on a hypergraph are of degree 2. Therefore, hypergraph and 
graph are interconvertible. Currently, there are a number of methods for converting 
a hypergraph to a simple graph. The common ones are clique expansion, star 
expansion, and line expansion, which are shown in Figs. 2.12, 2.13 and 2.14, 
respectively. 

(1) Clique Expansion 
Figure 2.12 shows an example of transforming a hypergraph to a graph with clique 
expansion. The clique expansion algorithm constructs a graph .G x (V , Ex) from 
the original hypergraph .G (V ,E ) by replacing each hyperedge e with edges, whose 
degree is 2, for each pair .(u, v) of vertices in the hyperedge [17]: . E x = {(u, v) :
u, v ∈ e, e ∈ E }. 

It is interesting to note that the vertices in hyperedge e form a clique in the graph 
. G x , exactly where the name comes from. . G x preserves the structure of the vertices 
of . G , so that the information on the edges needs to be reduced as far as possible to
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Fig. 2.10 An example of the results fusion for the multi-modal data 

the higher order associations of the hyperedges. That is, the difference between the 
weights of any two edges that contains both u and v on . G x and the weights of the 
hyperedge connections should be as small as possible. Thus we use the following 
formula when assigning weights .wx(u, v) to edges on . G x : 

.wx(u, v) = argmin
wx(u,v)

∑

e∈E :u,v∈e

(
wx(u, v) − w(e)

)2
. (2.7) 

Hence, clique expansion uses the discriminative model, where every edge in the 
clique of . G x associated with hyperedge e has weight .w(e). This criterion has the 
following minimizer: 

.wx(u, v) = μ
∑

e∈E :u,v∈e

w(e) = μ
∑

e

h(u, e)h(v, e)w(e), (2.8) 

where . μ is a fixed scalar. Equivalently, from the point of view of edges, the weight 
between two vertices u and v is derived from the sum of the weights assigned by 
the hyperedge that contains all of them simultaneously. 

(2) Star Expansion 
Figure 2.13 shows an example of transforming a hypergraph to a graph with 
star expansion. By star expansion, a graph .G ∗ (V ∗,E ∗) can be constructed from 
hypergraph .G (V ,E ) by regarding every hyperedge .e ∈ E as a new vertex, thus 
.V ∗ = V ∪ E [17]. Each vertex in the hyperedge is connected to the new graph 
vertex e, i.e., .E ∗ = {(u, e) : u ∈ e, e ∈ E }.
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Fig. 2.12 An example of transforming a hypergraph to a graph with clique expansion 

Fig. 2.13 An example of transforming a hypergraph to a graph with star expansion 

Fig. 2.14 An example of transforming a hypergraph to a graph with line expansion 

There are different types of vertices in graph .G ∗ and each hyperedge in . E
corresponds to a star in graph G. With star expansion, the scaled hyperedge weight 
is assigned to each graph edge .w∗(u, e) that corresponds to each hyperedge in . E as 
follows: 

.w∗(u, e) = w(e)/δ(e). (2.9)



34 2 Mathematical Foundations of Hypergraph

For each vertex representing a hyperedge, the weights of edges connecting to it are 
equivalent for equally dividing the superside weights into .|δ(e)| parts. 
(3) Line Expansion 
Figure 2.14 shows an example of transforming a hypergraph to a graph with line 
expansion. In the case of line expansion algorithm, the vertices of the graph . G l =(
V l ,E l

)
are constructed by reconstructing the structure of the data stored in the 

vertices of the hypergraph, .G = (V ,E ). Each line vertex .(u, e) in . G l can be viewed 
as a vertex in a context of a hyperedge or a hyperedge in a context of a vertex [18]. 
For each point on each hyperedge, a vertex is created to represent it. The vertex v 
in the line expended graph indicates the property of the vertex in the hyperedge, to 
each vertex in the hyperedge to it, i.e., .V ∗ = {(u, e) : u ∈ e, u ∈ V , e ∈ E }. This  
means that .

∣∣V l
∣∣ = ∑

e δ(e). 
Therefore the vertexes in . G l , which contain the same vertex or the same 

hyperedge, can be defined as the neighborhood. Consider both connections to 
be equally important, so .Wl = diag(1, . . . , 1), .|Wl | = |V l | × |V l |. The  
mapping between a hypergraph . G and its line expansion . G l is bijective under the 
construction. 

2.3.4 Random Walks on Graph and Hypergraph 

Random walks propagate the information stored in the vertices based on the links 
among the vertices in the graph or hypergraph. These links constitute the path of 
different vertices. In the hypergraph, each vertex’s neighbor vertex messages are 
aggregated to update itself based on the “path” between the central vertex and 
each vertex in its neighborhood. A hypergraph’s path between vertices . v1 and . vk

is defined as a sequence, called hyperpath [19]: 

.P(v1, vk) = (v1, e1, v2, e2, . . . , vk−1, ek, vk), (2.10) 

where . vj and .vj+1 are both part of the same vertex subset described by a hyperedge 
. ej . We say that a hyperpath separates two neighboring vertices by a hyperedge. In a 
hypergraph, messages between vertices are propagated through hyperedges, which 
are higher-order relationships than those in graphs. It is first necessary to extend the 
Neighbor Relation definition among vertices to the Inter-Neighbor Relation N over 
vertex set . V and hyperedge set . E for message propagation from vertex to hyperedge 
and hyperedge to hyperedge on the hyperpath. 

Definition 1 The Inter-Neighbor Relation .N ⊂ V × E on a hypergraph . G =
(V ,E ,W) with incidence matrix .H ∈ {0, 1}|V |×|E | is defined as 

.N = { (v, e) | H(v, e) = 1, v ∈ V and e ∈ E }. (2.11)
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The hyperedge inter-neighbor set .Ne(v) of vertex v and the vertex inter-neighbor 
set .Nv(e) of hyperedge e are defined based on the Inter-Neighbor Relation. 

Definition 2 The hyperedge inter-neighbor set of vertex .v ∈ V is defined as 

.Ne(v) = { e | vNe, v ∈ V and e ∈ E }. (2.12) 

Definition 3 The vertex inter-neighbor set of hyperedge .e ∈ E is defined as 

.Nv(e) = { v | vNe, v ∈ V and e ∈ E }. (2.13) 

With hypergraph learning, in contrast to graph learning, data are correlated at 
a higher level, and correlation models are expanded to a high level, resulting in 
improved performance in practice. This is just an apparent part of the nature of 
graph and hypergraph. Next, we delve deeper into the relationship between graphs 
and hypergraph from the point of view of mathematical derivations with the help 
of random walks [20] and Markov chain [21]. We then provide a mathematical 
comparison between hypergraph and graph. The proof concludes that, from random 
walks’ aspect, a hypergraph with edge-independent vertex weights is equivalent to 
a weighted graph, and a hypergraph with edge-dependent vertex weights cannot be 
reduced to a weighted graph. 

Two types of hypergraphs can be constructed to accurately represent real-world 
correlations, that is, hypergraph with vertex weights independent of edge and 
hypergraph with vertex weights dependent on edge. By using the binary hypergraph 
incidence matrix .H ∈ {0, 1}|V |×|E |, where vertices in each hyperedge share the 
same weight, hypergraph with edge-independent vertex weights (.Gin = {V ,E ,W}) 
can model beyond pairwise correlations. Alternatively, the weighted hypergraph 
incidence matrix .R ∈ R

|V |×|E | is used to model the variable correlation intensity 
in each hyperedge for the hypergraph with edge-dependent vertex weights (. Gde =
{V ,E ,W, γ }). We assume that hyperedge e includes vertex v, where .γe(v) denotes 
the connection intensity and .w(e) the weight of hyperedge e. 

In hypergraph with edge-independent vertex weights, the definition of binary 
hypergraph incidence matrix . H, vertex degree  .d(v), and hyperedge degree .δ(e) is 
the same as in Sect. 2.1. In hypergraph with edge-dependent vertex weights, define 
the .d(v) and .δ(e) as follows: 

.

⎧
⎪⎨

⎪⎩

d(v) = ∑

β∈Ne(v)

w(β)

δ(e) = ∑

α∈Nv(e)

γe(α),
(2.14) 

where .Nv(·) and .Ne(·) are defined in Eqs. (2.12) and (2.13), respectively. 
Then, we will introduce the random walks and the Markov chain in hypergraph. 

First, we define the random walk in a hypergraph following papers [20–23]. At time 
t , a random walker at vertex . vt does the following:
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• Pick an edge e containing vertex .vt = v, with probability .pv→e. 
• Pick vertex u from e, with probability .pe→u. 
• Move to vertex .vt+1 = u, at time .t + 1. 

We then define the transition probability .pv,u of the corresponding Markov 
chain on . V as .pv,u = ∑

e∈Ne(v,u) pv→epe→u, where . Ne(v, u) = Ne(v) ∩ Ne(u)

denotes the hyperedge .β ∈ Ne(v, u) containing vertices v and u, simultaneously. In 
hypergraph with edge-independent vertex weights, we have . pv→e = w(e)/d(v)

and .pe→u = 1/δ(e). The transition probability .pv,u can be written as . pv,u =∑
β∈Ne(v,u)

w(β)
d(v)

· 1
δ(β)

. In hypergraph with edge-dependent vertex weights, we have 
.pv→e = w(e)/d(v) and .pe→u = γe(u)/δ(e), and the transition probability .pv,u can 

be written as .pv,u = ∑
β∈Ne(v,u)

w(β)
d(v)

· γβ(u)

δ(β)
. 

The following lemmas and definitions are used to compare the graph and the two 
types of hypergraphs [21]. 

Definition 4 Let M be a Markov chain with state space X and transition probability 
.px,y , for  .x, y ∈ S. It can be said that M is reversible if there exists a probability 
distribution . π over S such that .πxpx,y = πypy,x . 

Lemma 5 Let M be an irreducible Markov chain with finite state space S and 
transition probability .px,y for .x, y ∈ S. M is reversible if and only if there exists a 
weighted undirected graph . G with vertex set S such that random walks on . G and M 
are equivalent. 

Proof of Lemma 5 Note that . π indicates the stationary distribution [21, 24] of a  
given edge-independent/edge-dependent hypergraph. The transition probability . pv,u

of vertices in hypergraph with edge-independent vertex weights is defined as 

.pv,u =
∑

β∈Ne(v,u)

(
w(β)

d(v)

) (
1

δ(β)

)
. (2.15) 

Moreover, the transition probability .pv,u of vertices in hypergraph with edge-
dependent vertex weights is defined as 

.pv,u =
∑

β∈Ne(v,u)

(
w(β)

d(v)

)(
γβ(u)

δ(β)

)
. (2.16) 

“. ⇒”: Suppose M is reversible with transition probability .px,y . We then construct 
a graph . G with vertex set S and edge weights .wx,y = πxpx,y . Because M is 
irreducible, .πx �= 0 and .px,y �= 0 for all states x and y. Thus, the edge weight 
.wx,y �= 0 and the graph . G are a connected graph. Due to the reversibility of M that 
.wx,y = πxpx,y = πypy,x = wy,x , the constructed graph . G is an undirected graph. 
Random walks on . G from x to y in one-time step satisfy the following: 

.
wx,y∑
z∈S wx,z

= πxpx,y∑
z∈S πxpx,z

= px,y∑
z∈S px,z

= px,y, (2.17)
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since .
∑

z∈S px,z = 1. Thus, if  M is reversible, the stated claim holds. 
“. ⇐”: Random walks on an undirected graph are always reversible. 

Definition 6 A Markov chain is reversible if and only if its transition probability 
satisfies 

.pv1,v2pv2,v3 · · ·pvn,v1 = pv1,vnpvn,vn−1 · · ·pv2,v1 (2.18) 

for any finite sequence of states .v1, v2, · · · vn ∈ S. The definition is also known as 
Kolmogorov’s criterion. For more detailed proofs, please refer to [25]. 

Theorem 1 Let .Gin = {V ,E ,W} be a hypergraph with edge-independent weights, 
and then there exists a weighted undirected graph . G such that a random walk on . G
is equivalent to a random walk on . Gin. 

Proof of Theorem 1 The probability .pv,u of .Gin is defined in Eq. (2.15). By  
Definition 6, the following equation can be deduced: 

.pv1,v2pv2,v3 · · ·pvn,v1 (2.19) 

=
∑

β∈Ne(v1,v2)

(
w(β) 
d(v1) 

· 1 

δ(β)

)
· · ·

∑

β∈Ne(vn,v1)

(
w(β) 
d(vn) 

· 1 

δ(β)

)

= 

⎛ 

⎝ 1 

d(v1)

∑

β∈Ne(v1,v2) 

w(β) 
δ(β) 

⎞ 

⎠ · · ·  

⎛ 

⎝ 1 

d(vn)

∑

β∈Ne(vn,v1) 

w(β) 
δ(β) 

⎞ 

⎠ 

= 
1 

d(v2)

∑

β∈Ne(v1,v2) 

w(β) 
δ(β) 

· · ·  
1 

d(v1)

∑

β∈Ne(vn,v1) 

w(β) 
δ(β) 

. 

For any . vi and . vj , .
∑

β∈Ne(vi ,vj )
w(β)
δ(β)

= ∑
β∈Ne(vj ,vi )

w(β)
δ(β)

. Thus, the reversibility 
can be proven by 

.pv1,v2pv2,v3 · · ·pvn,v1 (2.20) 

= 
1 

d(v2)

∑

β∈Ne(v2,v1) 

w(β) 
δ(β) 

· · ·  
1 

d(v1)

∑

β∈Ne(v1,vn) 

w(β) 
δ(β) 

= pv2,v1pv3,v2 · · ·pv1,vn 

= pv1,vnpvn,vn−1 · · ·  pv2,v1 . 

We say that a random walk on . Gin is reversible. Furthermore, by Lemma 5, a random 
walk on . Gin is equivalent to a random walk on a weighted undirected graph . G . 

The proof of Theorem 1 can be processed as follows: 

1. A random walk on . Gin is equivalent to a random walk on a reversible Markov 
chain (according to Definition 6).
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Fig. 2.15 An example of two types of random walks on the hypergraph with edge-independent 
vertex weights and the hypergraph with edge-dependent vertex weights. This figure is from [26] 

2. A random walk on a reversible Markov chain is equivalent to a random walk on 
a weighted undirected graph . G (according to Lemma 5). 

Theorem 2 Let .Gde = {V ,E ,W, γ } be a hypergraph with edge-dependent 
weights, and then there does not exist a weighted undirected graph . G such that 
a random walk on . G is equivalent to a random walk on . Gde. 

Proof of Theorem 2 Figure 2.15 provides an example that a random walk on . Gde
is not equivalent to a random walk on a reversible Markov chain. According to the 
second step of Theorem 1’s proof, Theorem 2 holds. 

A simple illustration is shown in Fig. 2.15 to make it easier to understand. There 
is no difference in the connection structure between the two hypergraphs, but there 
is a difference in the intensity of the connections. For two types of hypergraphs, the 
transition probabilities .pv,u can be computed accordingly. As a consequence, two 
random walks from vertex . v0 are conducted: “.v0 → v1 → v2 → v0” and “. v0 →
v2 → v1 → v0.” Having obtained .pv0,v1 ·pv1,v2 ·pv2,v0 and .pv0,v2 ·pv2,v1 ·pv1,v0 for 
the two paths, the cumulative transition probability can then be calculated. This type 
of hypergraph is reversible according to Theorem 1 and Lemma 5. Thus, from the 
two reversible paths, the same accumulated transition probability can be obtained. 
Alternatively, two different accumulated transition probabilities are obtained from 
two reversible paths in the hypergraph with edge-independent vertex weights. 

2.4 Summary 

In this chapter, we present the mathematical definition of the foundations of 
hypergraph and their interpretation. We then also show the representation of directed
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hypergraph, different from undirected hypergraph, which represents the relation-
ships between vertices within a hyperedge. Finally, we discuss the relationship 
between graph and hypergraph in conversions and expressive ability perspectives. 
The most intuitive differences between graph and hypergraph can be seen in low-
order versus high-order representations and adjacency matrix versus incidence 
matrix. Clique expansion, star expansion, and line expansion are methods for 
converting hypergraph into simple graph. We also show the relationship between 
graph and hypergraph from the random walk view. A hypergraph with edge-
independent vertex weights is equivalent to a weighted graph, and a hypergraph 
with edge-dependent vertex weights cannot be reduced to a weighted graph from 
the information propagation process on graph/hypergraph. 
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