Skip to main content

Pseudotyped Virus for Papillomavirus

  • Chapter
  • First Online:
Pseudotyped Viruses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1407))

Abstract

Papillomavirus is difficult to culture in vitro, which limits its related research. The development of pseudotyped virus technology provides a valuable research tool for virus infectivity research, vaccine evaluation, infection inhibitor evaluation, and so on. Depending on the application fields, different measures have been developed to generate various kinds of pseudotyped papillomavirus. L1-based and L2-based HPV vaccines should be evaluated using different pseudotyped virus system. Pseudotyped papillomavirus animal models need high-titer pseudotyped virus and unique handling procedure to generate robust results. This paper reviewed the development, optimization, standardization, and application of various pseudotyped papillomavirus methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BM:

Basement membrane

BPV:

Bovine papillomavirus

CFP:

Crimson fluorescent protein

CPE:

Cytopathic effect

CRPV:

Cottontail rabbit papillomavirus

DNA:

Deoxyribonucleic acid

FC:

Furin-cleaved

GFP:

Green fluorescent protein

Gluc:

Gaussia luciferase

HPV:

Human papillomavirus

HSPG:

Heparan sulfate proteoglycan

ID50:

50% inhibitory dose

IVIS:

In vivo imaging system

MSD:

Merck Sharp & Dohme

N-9:

Nonoxynol-9

NMIBC:

Nonmuscular invasive bladder cancer

PBNA:

Pseudotyped virus based neutralization assay

PsV:

Pseudotyped virus

RFP:

Red fluorescent protein

RNA:

Ribonucleic acid

SEAP:

Secretory alkaline phosphatase

SFV:

Semliki Forest Virus

VLP:

Viruslike particle

WHO:

World Health Organization

References

  1. McBride, A.A.: Human papillomaviruses: diversity, infection and host interactions. Nat. Rev. Microbiol. 20, 95–108 (2022)

    Article  CAS  PubMed  Google Scholar 

  2. de Villiers, E.M., Fauquet, C., Broker, T.R., Bernard, H.U., zur Hausen, H.: Classification of papillomaviruses. Virology. 324, 17–27 (2004)

    Article  PubMed  Google Scholar 

  3. de Martel, C., Plummer, M., Vignat, J., Franceschi, S.: Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer. 141, 664–670 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Garland, S.M., et al.: Natural history of genital warts: analysis of the placebo arm of 2 randomized phase III trials of a quadrivalent human papillomavirus (types 6, 11, 16, and 18) vaccine. J. Infect. Dis. 199, 805–814 (2009)

    Article  PubMed  Google Scholar 

  5. Doorbar, J., Egawa, N., Griffin, H., Kranjec, C., Murakami, I.: Human papillomavirus molecular biology and disease association. Rev. Med. Virol. 25(Suppl 1), 2–23 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ryndock, E.J., Biryukov, J., Meyers, C.: Replication of human papillomavirus in culture. Methods Mol. Biol. 1249, 39–52 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. Meyers, C., Frattini, M.G., Hudson, J.B., Laimins, L.A.: Biosynthesis of human papillomavirus from a continuous cell line upon epithelial differentiation. Science. 257, 971–973 (1992)

    Article  CAS  PubMed  Google Scholar 

  8. McBride, A.A., Dlugosz, A., Baker, C.C.: Production of infectious bovine papillomavirus from cloned viral DNA by using an organotypic raft/xenograft technique. Proc. Natl. Acad. Sci. U. S. A. 97, 5534–5539 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kirnbauer, R., Booy, F., Cheng, N., Lowy, D.R., Schiller, J.T.: Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc. Natl. Acad. Sci. U. S. A. 89, 12180–12184 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nelson, L.M., Rose, R.C., Moroianu, J.: Nuclear import strategies of high risk HPV16 L1 major capsid protein. J. Biol. Chem. 277, 23958–23964 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. Darshan, M.S., Lucchi, J., Harding, E., Moroianu, J.: The l2 minor capsid protein of human papillomavirus type 16 interacts with a network of nuclear import receptors. J. Virol. 78, 12179–12188 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. El Mehdaoui, S., et al.: Gene transfer using recombinant rabbit hemorrhagic disease virus capsids with genetically modified DNA encapsidation capacity by addition of packaging sequences from the L1 or L2 protein of human papillomavirus type 16. J. Virol. 74, 10332–10340 (2000)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Buck, C.B., Pastrana, D.V., Lowy, D.R., Schiller, J.T.: Efficient intracellular assembly of papillomaviral vectors. J. Virol. 78, 751–757 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Buck, C.B., Thompson, C.D., Pang, Y.Y., Lowy, D.R., Schiller, J.T.: Maturation of papillomavirus capsids. J. Virol. 79, 2839–2846 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou, J., Sun, X.Y., Stenzel, D.J., Frazer, I.H.: Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology. 185, 251–257 (1991)

    Article  CAS  PubMed  Google Scholar 

  16. Roden, R.B., et al.: In vitro generation and type-specific neutralization of a human papillomavirus type 16 virion pseudotype. J. Virol. 70, 5875–5883 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sapp, M., Selinka, H.C.: Generation and applications of HPV pseudovirions using vaccinia virus. Methods Mol. Med. 119, 463–482 (2005)

    CAS  PubMed  Google Scholar 

  18. Liljestrom, P., Garoff, H.: A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology (N. Y). 9, 1356–1361 (1991)

    Article  CAS  PubMed  Google Scholar 

  19. Zhou, J., Liu, W.J., Peng, S.W., Sun, X.Y., Frazer, I.: Papillomavirus capsid protein expression level depends on the match between codon usage and tRNA availability. J. Virol. 73, 4972–4982 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu, X., et al.: Detection of HPV types and neutralizing antibodies in Gansu province, China. J Med Virol. 81, 693–702 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. Wu, X.L., Zhang, C.T., Zhu, X.K., Wang, Y.C.: Detection of HPV types and neutralizing antibodies in women with genital warts in Tianjin City, China. Virol Sin. 25, 8–17 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pastrana, D.V., et al.: Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology. 321, 205–216 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. Zolotukhin, S., et al.: Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther. 6, 973–985 (1999)

    Article  CAS  PubMed  Google Scholar 

  24. Yeager, M.D., et al.: Neutralization of human papillomavirus (HPV) pseudovirions: a novel and efficient approach to detect and characterize HPV neutralizing antibodies. Virology. 278, 570–577 (2000)

    Article  CAS  PubMed  Google Scholar 

  25. WHO Expert Committee on Biological Standardization: Recommendations to assure the quality, safety and efficacy of recombinant human papillomavirus virus-like particle vaccines. World Health Organ. Tech. Rep. Ser. 999, 151–233 (2016)

    Google Scholar 

  26. Frazer, I.H.: Measuring serum antibody to human papillomavirus following infection or vaccination. Gynecol. Oncol. 118, S8–S11 (2010)

    Article  CAS  PubMed  Google Scholar 

  27. Sehr, P., et al.: High-throughput pseudovirion-based neutralization assay for analysis of natural and vaccine-induced antibodies against human papillomaviruses. PLoS One. 8, e75677 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. World Health Organization: Human papillomavirus laboratory manual. First edition. 84–94 (2009)

    Google Scholar 

  29. Nie, J., Huang, W., Wu, X., Wang, Y.: Optimization and validation of a high throughput method for detecting neutralizing antibodies against human papillomavirus (HPV) based on pseudovirons. J. Med. Virol. 86, 1542–1555 (2014)

    Article  CAS  PubMed  Google Scholar 

  30. Wheeler, C.M., et al.: Cross-protective efficacy of HPV-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by non-vaccine oncogenic HPV types: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol. 13, 100–110 (2012)

    Article  CAS  PubMed  Google Scholar 

  31. Nie, J., Liu, Y., Huang, W., Wang, Y.: Development of a triple-color Pseudovirion-based assay to detect neutralizing antibodies against human papillomavirus. Viruses. 8, 107 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ning, T., et al.: Naturally occurring single amino acid substitution in the L1 major capsid protein of human papillomavirus type 16: alteration of susceptibility to antibody-mediated neutralization. J. Infect. Dis. 216, 867–876 (2017)

    Article  CAS  PubMed  Google Scholar 

  33. Godi, A., et al.: Impact of naturally occurring variation in the human papillomavirus 52 capsid proteins on recognition by type-specific neutralising antibodies. J. Gen. Virol. 100, 237–245 (2019)

    Article  CAS  PubMed  Google Scholar 

  34. Godi, A., et al.: Comprehensive assessment of the antigenic impact of human papillomavirus lineage variation on recognition by neutralizing monoclonal antibodies raised against lineage a major capsid proteins of vaccine-related genotypes. J. Virol. 94 (2020)

    Google Scholar 

  35. Godi, A., et al.: Impact of naturally occurring variation in the human papillomavirus 58 capsid proteins on recognition by type-specific neutralizing antibodies. J. Infect. Dis. 218, 1611–1621 (2018)

    Article  PubMed  Google Scholar 

  36. Bissett, S.L., et al.: Pre-clinical immunogenicity of human papillomavirus alpha-7 and alpha-9 major capsid proteins. Vaccine. 32, 6548–6555 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schellenbacher, C., Roden, R.B.S., Kirnbauer, R.: Developments in L2-based human papillomavirus (HPV) vaccines. Virus Res. 231, 166–175 (2017)

    Article  CAS  PubMed  Google Scholar 

  38. Kines, R.C., Thompson, C.D., Lowy, D.R., Schiller, J.T., Day, P.M.: The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc. Natl. Acad. Sci. U. S. A. 106, 20458–20463 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Day, P.M., et al.: In vivo mechanisms of vaccine-induced protection against HPV infection. Cell Host Microbe. 8, 260–270 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Day, P.M., et al.: A human papillomavirus (HPV) in vitro neutralization assay that recapitulates the in vitro process of infection provides a sensitive measure of HPV L2 infection-inhibiting antibodies. Clin. Vaccine Immunol. 19, 1075–1082 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, J.W., et al.: Measurement of neutralizing serum antibodies of patients vaccinated with human papillomavirus L1 or L2-based immunogens using furin-cleaved HPV Pseudovirions. PLoS One. 9, e101576 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang, J.W., et al.: Production of Furin-Cleaved Papillomavirus Pseudovirions and Their Use for In Vitro Neutralization Assays of L1- or L2-Specific Antibodies. Curr Protoc Microbiol. 38(14B 15), 11–26 (2015)

    CAS  Google Scholar 

  43. Roberts, J.N., et al.: Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat. Med. 13, 857–861 (2007)

    Article  CAS  PubMed  Google Scholar 

  44. Cuburu, N., Cerio, R.J., Thompson, C.D., Day, P.M.: Mouse model of cervicovaginal papillomavirus infection. Methods Mol. Biol. 1249, 365–379 (2015)

    Article  CAS  PubMed  Google Scholar 

  45. Ujma, S., et al.: Surfactant protein a impairs genital HPV16 Pseudovirus infection by innate immune cell activation in a murine model. Pathogens. 8 (2019)

    Google Scholar 

  46. Cuburu, N., et al.: Intravaginal immunization with HPV vectors induces tissue-resident CD8+ T cell responses. J. Clin. Invest. 122, 4606–4620 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Christensen, N.D., Budgeon, L.R., Cladel, N.M., Hu, J.: Recent advances in preclinical model systems for papillomaviruses. Virus Res. 231, 108–118 (2017)

    Article  CAS  PubMed  Google Scholar 

  48. Culp, T.D., et al.: Papillomavirus particles assembled in 293TT cells are infectious in vivo. J. Virol. 80, 11381–11384 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mejia, A.F., et al.: Preclinical model to test human papillomavirus virus (HPV) capsid vaccines in vivo using infectious HPV/cottontail rabbit papillomavirus chimeric papillomavirus particles. J. Virol. 80, 12393–12397 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hojeij, R., et al.: Immunogenic human papillomavirus Pseudovirus-mediated suicide-gene therapy for bladder cancer. Int. J. Mol. Sci. 17 (2016)

    Google Scholar 

  51. Cheng, Y.X., Chen, G.T., Yang, X., Wang, Y.Q., Hong, L.: Effects of HPV Pseudotype virus in cutting E6 gene selectively in SiHa cells. Curr Med Sci. 38, 212–221 (2018)

    Article  CAS  PubMed  Google Scholar 

  52. Zhong, Z., Zhai, Y., Bu, P., Shah, S., Qiao, L.: Papilloma-pseudovirus eradicates intestinal tumours and triples the lifespan of Apc(min/+) mice. Nat. Commun. 8, 15004 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the General Program of National Natural Science Foundation of China [grant number 82172244&82073621] and a major project of the Study on Pathogenesis and Epidemic Prevention Technology System [2021YFC2302500].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhui Nie or Youchun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, X., Nie, J., Wang, Y. (2023). Pseudotyped Virus for Papillomavirus. In: Wang, Y. (eds) Pseudotyped Viruses. Advances in Experimental Medicine and Biology, vol 1407. Springer, Singapore. https://doi.org/10.1007/978-981-99-0113-5_5

Download citation

Publish with us

Policies and ethics