Skip to main content

Pseudotyped Viruses for Mammarenavirus

  • Chapter
  • First Online:
Pseudotyped Viruses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1407))

Abstract

Mammarenaviruses are classified into New World arenaviruses (NW) and Old World arenaviruses (OW). The OW arenaviruses include the first discovered mammarenavirus-lymphocytic choriomeningitis virus (LCMV) and the highly lethal Lassa virus (LASV). Mammarenaviruses are transmitted to human by rodents, resulting in severe acute infections and hemorrhagic fever. Pseudotyped viruses have been widely used as a tool in the study of mammarenaviruses. HIV-1, SIV, FIV-based lentiviral vectors, VSV-based vectors, MLV-based vectors, and reverse genetic approaches have been applied in the construction of pseudotyped mammarenaviruses. Pseudotyped mammarenaviruses are commonly used in receptor research, neutralizing antibody detection, inhibitor screening, viral virulence studies, functional analysis of N-linked glycans, and studies of viral infection, endocytosis, and fusion mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMAV:

Amapari virus

BSL:

Biosafety level

CHPV:

Chapare virus

EGFP:

Enhanced green fluorescent protein

FIV:

Feline immunodeficiency virus

Fluc:

Firefly luciferase

FRNT:

Focus reduction neutralization

G:

Glycoprotein

GFP:

Green fluorescent protein

GPC:

glycoprotein precursor

GTOV:

Guanarito virus

HIV:

Human immunodeficiency virus

HS:

Heparan sulfate

HTS:

High-throughput screening

ICTV:

International Committee on Taxonomy of Viruses

IGR:

Intergenic region

JUNV:

Junin virus

L:

Large polymerase protein

LAMP1:

Lysosomal-associated membrane protein-1

LASV:

Lassa virus

LCM:

Lymphocytic choriomeningitis

LCMV:

Lymphocytic choriomeningitis virus

LF:

Lassa fever

LUJV:

Lujo virus

M:

Matrix protein

MACV:

Machupo virus

MLV:

Murine leukemia virus

MOPV:

Mopeia virus

N:

Nucleoprotein

NPC1:

Niemann-Pick C1

P:

Phosphoprotein

PICV:

Pichinde virus

RBD:

Receptor-binding domain

RdRp:

RNA-dependent RNA polymerase

RNP:

Ribonucleic acid protein

S1P:

Cellular Site 1 Protease

SABV:

Sabia virus

SIV:

Simian immunodeficiency virus

SP:

Signal peptide

SSP:

Stable-signal peptide

TAMV:

Tamiami virus

TCRV:

Tacaribe virus

TfR1:

Transferrin receptor 1

VSV:

Vesicular stomatitis virus

WWAV:

Whitewater Arroyo virus

Z:

Zinc-binding protein

α-DG:

α-Dystroglycan

References

  1. Walker, P.J., et al.: Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021). Arch. Virol. 166, 2633–2648 (2021). https://doi.org/10.1007/s00705-021-05156-1

    Article  CAS  PubMed  Google Scholar 

  2. Briese, T., et al.: Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa. PLoS Pathog. 5, e1000455 (2009). https://doi.org/10.1371/journal.ppat.1000455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wiebenga, N.H.: Immunologic studies of Tacaribe, Junin and Machupo viruses. Am. J. Trop. Med. Hyg. 14, 802–808 (1965). https://doi.org/10.4269/ajtmh.1965.14.802

    Article  CAS  PubMed  Google Scholar 

  4. Radoshitzky, S.R., et al.: Past, present, and future of arenavirus taxonomy. Arch. Virol. 160, 1851–1874 (2015). https://doi.org/10.1007/s00705-015-2418-y

    Article  CAS  PubMed  Google Scholar 

  5. McCormick, J.B., et al.: Lassa fever. Effective therapy with ribavirin. N. Engl. J. Med. 314, 20–26 (1986). https://doi.org/10.1056/NEJM198601023140104

    Article  CAS  PubMed  Google Scholar 

  6. Maes, P., et al.: Taxonomy of the order Bunyavirales: second update 2018. Arch. Virol. 164, 927–941 (2019). https://doi.org/10.1007/s00705-018-04127-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Knipe, D.M., Howley, P.M.: Fields Virology, 6th edn. Lippincott Williams & Wilkins (2013)

    Google Scholar 

  8. Jae, L.T., et al.: Virus entry. Lassa virus entry requires a trigger-induced receptor switch. Science. 344, 1506–1510 (2014). https://doi.org/10.1126/science.1252480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McCormick, J.B.: Clinical, epidemiologic, and therapeutic aspects of Lassa fever. Med. Microbiol. Immunol. 175, 153–155 (1986)

    Article  CAS  PubMed  Google Scholar 

  10. Lo Iacono, G., et al.: Using modelling to disentangle the relative contributions of zoonotic and anthroponotic transmission: the case of Lassa fever. PLoS Negl. Trop. Dis. 9, e3398 (2015). https://doi.org/10.1371/journal.pntd.0003398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coyle, A.L.: Lassa fever. Nursing. 46, 69–70 (2016). https://doi.org/10.1097/01.NURSE.0000482873.70955.7b

    Article  PubMed  Google Scholar 

  12. Merson, L., et al.: Clinical characterization of Lassa fever: A systematic review of clinical reports and research to inform clinical trial design. PLoS Negl. Trop. Dis. 15, e0009788 (2021). https://doi.org/10.1371/journal.pntd.0009788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sogoba, N., Feldmann, H., Safronetz, D.: Lassa fever in West Africa: evidence for an expanded region of endemicity. Zoonoses Public Health. 59(Suppl 2), 43–47 (2012). https://doi.org/10.1111/j.1863-2378.2012.01469.x

    Article  PubMed  Google Scholar 

  14. Laposova, K., Pastorekova, S., Tomaskova, J.: Lymphocytic choriomeningitis virus: invisible but not innocent. Acta Virol. 57, 160–170 (2013)

    Article  CAS  PubMed  Google Scholar 

  15. de la Torre, J.C.: Molecular and cell biology of the prototypic arenavirus LCMV: implications for understanding and combating hemorrhagic fever arenaviruses. Ann. N. Y. Acad. Sci. 1171(Suppl 1), E57–E64 (2009). https://doi.org/10.1111/j.1749-6632.2009.05048.x

    Article  CAS  PubMed  Google Scholar 

  16. Fischer, S.A., et al.: Transmission of lymphocytic choriomeningitis virus by organ transplantation. N. Engl. J. Med. 354, 2235–2249 (2006). https://doi.org/10.1056/NEJMoa053240

    Article  CAS  PubMed  Google Scholar 

  17. Andersen, K.G., et al.: Clinical Sequencing Uncovers Origins and Evolution of Lassa Virus. Cell. 162, 738–750 (2015). https://doi.org/10.1016/j.cell.2015.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garnett, L.E., Strong, J.E.: Lassa fever: With 50 years of study, hundreds of thousands of patients and an extremely high disease burden, what have we learned? Curr. Opin. Virol. 37, 123–131 (2019). https://doi.org/10.1016/j.coviro.2019.07.009

    Article  PubMed  Google Scholar 

  19. Whitmer, S.L.M., et al.: New Lineage of Lassa Virus, Togo, 2016. Emerg. Infect. Dis. 24, 599–602 (2018). https://doi.org/10.3201/eid2403.171905

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lukashevich, I.S., Paessler, S., de la Torre, J.C.: Lassa virus diversity and feasibility for universal prophylactic vaccine. F1000Res. 8 (2019). https://doi.org/10.12688/f1000research.16989.1

  21. Raabe, V., Koehler, J.: Laboratory Diagnosis of Lassa Fever. J. Clin. Microbiol. 55, 1629–1637 (2017). https://doi.org/10.1128/JCM.00170-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fornuskova, A., Hiadlovska, Z., Macholan, M., Pialek, J., de Bellocq, J.G.: New Perspective on the Geographic Distribution and Evolution of Lymphocytic Choriomeningitis Virus, Central Europe. Emerg. Infect. Dis. 27, 2638–2647 (2021). https://doi.org/10.3201/eid2710.210224

    Article  PubMed  PubMed Central  Google Scholar 

  23. Albarino, C.G., et al.: High diversity and ancient common ancestry of lymphocytic choriomeningitis virus. Emerg. Infect. Dis. 16, 1093–1100 (2010). https://doi.org/10.3201/eid1607.091902

    Article  PubMed  PubMed Central  Google Scholar 

  24. Martinez-Sobrido, L., de la Torre, J.C.: Reporter-Expressing, Replicating-Competent Recombinant Arenaviruses. Viruses. 8 (2016). https://doi.org/10.3390/v8070197

  25. Rodrigo, W.W., de la Torre, J.C., Martinez-Sobrido, L.: Use of single-cycle infectious lymphocytic choriomeningitis virus to study hemorrhagic fever arenaviruses. J. Virol. 85, 1684–1695 (2011). https://doi.org/10.1128/JVI.02229-10

    Article  CAS  PubMed  Google Scholar 

  26. Wright, E., et al.: Investigating antibody neutralization of lyssaviruses using lentiviral pseudotypes: a cross-species comparison. J. Gen. Virol. 89, 2204–2213 (2008). https://doi.org/10.1099/vir.0.2008/000349-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, Q., et al.: An LASV GPC pseudotyped virus based reporter system enables evaluation of vaccines in mice under non-BSL-4 conditions. Vaccine. 35, 5172–5178 (2017). https://doi.org/10.1016/j.vaccine.2017.07.101

    Article  CAS  PubMed  Google Scholar 

  28. Negre, D., et al.: Characterization of novel safe lentiviral vectors derived from simian immunodeficiency virus (SIVmac251) that efficiently transduce mature human dendritic cells. Gene Ther. 7, 1613–1623 (2000). https://doi.org/10.1038/sj.gt.3301292

    Article  CAS  PubMed  Google Scholar 

  29. Negre, D., Cosset, F.L.: Vectors derived from simian immunodeficiency virus (SIV). Biochimie. 84, 1161–1171 (2002). https://doi.org/10.1016/s0300-9084(02)00036-6

    Article  CAS  PubMed  Google Scholar 

  30. Duisit, G., et al.: Five recombinant simian immunodeficiency virus pseudotypes lead to exclusive transduction of retinal pigmented epithelium in rat. Mol. Ther. 6, 446–454 (2002). https://doi.org/10.1006/mthe.2002.0690

    Article  CAS  PubMed  Google Scholar 

  31. Johnston, J.C., et al.: Minimum requirements for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors. J. Virol. 73, 4991–5000 (1999). https://doi.org/10.1128/JVI.73.6.4991-5000.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, G., et al.: Feline immunodeficiency virus vectors persistently transduce nondividing airway epithelia and correct the cystic fibrosis defect. J. Clin. Invest. 104, R55–R62 (1999). https://doi.org/10.1172/JCI8390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dylla, D.E., Xie, L., Michele, D.E., Kunz, S., McCray Jr., P.B.: Altering alpha-dystroglycan receptor affinity of LCMV pseudotyped lentivirus yields unique cell and tissue tropism. Genet. Vaccines. Ther. 9, 8 (2011). https://doi.org/10.1186/1479-0556-9-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stein, C.S., Martins, I., Davidson, B.L.: The lymphocytic choriomeningitis virus envelope glycoprotein targets lentiviral gene transfer vector to neural progenitors in the murine brain. Mol. Ther. 11, 382–389 (2005). https://doi.org/10.1016/j.ymthe.2004.11.008

    Article  CAS  PubMed  Google Scholar 

  35. Nie, J., et al.: Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2. Emerg. Microbes. Infect. 9, 680–686 (2020). https://doi.org/10.1080/22221751.2020.1743767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fukushi, S., Tani, H., Yoshikawa, T., Saijo, M., Morikawa, S.: Serological assays based on recombinant viral proteins for the diagnosis of arenavirus hemorrhagic fevers. Viruses. 4, 2097–2114 (2012). https://doi.org/10.3390/v4102097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Soneoka, Y., et al.: A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res. 23, 628–633 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Beyer, W.R., Westphal, M., Ostertag, W., von Laer, D.: Oncoretrovirus and lentivirus vectors pseudotyped with lymphocytic choriomeningitis virus glycoprotein: generation, concentration, and broad host range. J. Virol. 76, 1488–1495 (2002). https://doi.org/10.1128/jvi.76.3.1488-1495.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miletic, H., et al.: Retroviral vectors pseudotyped with lymphocytic choriomeningitis virus. J. Virol. 73, 6114–6116 (1999). https://doi.org/10.1128/JVI.73.7.6114-6116.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lay Mendoza, M.F., Acciani, M.D., Levit, C.N., Santa Maria, C., Brindley, M.A.: Monitoring Viral Entry in Real-Time Using a Luciferase Recombinant Vesicular Stomatitis Virus Producing SARS-CoV-2, EBOV, LASV, CHIKV, and VSV Glycoproteins. Viruses. 12 (2020). https://doi.org/10.3390/v12121457

  41. Cai, Y., et al.: Recombinant Lassa Virus Expressing Green Fluorescent Protein as a Tool for High-Throughput Drug Screens and Neutralizing Antibody Assays. Viruses. 10 (2018). https://doi.org/10.3390/v10110655

  42. Fedeli, C., et al.: Axl Can Serve as Entry Factor for Lassa Virus Depending on the Functional Glycosylation of Dystroglycan. J. Virol. 92 (2018). https://doi.org/10.1128/JVI.01613-17

  43. Acciani, M.D., et al.: Ebola Virus Requires Phosphatidylserine Scrambling Activity for Efficient Budding and Optimal Infectivity. J. Virol. 95, e0116521 (2021). https://doi.org/10.1128/JVI.01165-21

    Article  PubMed  Google Scholar 

  44. Lee, A.M., et al.: Unique small molecule entry inhibitors of hemorrhagic fever arenaviruses. J. Biol. Chem. 283, 18734–18742 (2008). https://doi.org/10.1074/jbc.M802089200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Torriani, G., et al.: Identification of Clotrimazole Derivatives as Specific Inhibitors of Arenavirus Fusion. J. Virol. 93 (2019). https://doi.org/10.1128/JVI.01744-18

  46. Tang, K., Zhang, X., Guo, Y.: Identification of the dietary supplement capsaicin as an inhibitor of Lassa virus entry. Acta Pharm. Sin. B. 10, 789–798 (2020). https://doi.org/10.1016/j.apsb.2020.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Herring, S., et al.: Inhibition of Arenaviruses by Combinations of Orally Available Approved Drugs. Antimicrob. Agents Chemother. 65 (2021). https://doi.org/10.1128/AAC.01146-20

  48. Steffens, S., et al.: Transduction of human glial and neuronal tumor cells with different lentivirus vector pseudotypes. J. Neuro-Oncol. 70, 281–288 (2004). https://doi.org/10.1007/s11060-004-6046-8

    Article  Google Scholar 

  49. Zhang, C., Hu, B., Xiao, L., Liu, Y., Wang, P.: Pseudotyping lentiviral vectors with lymphocytic choriomeningitis virus glycoproteins for transduction of dendritic cells and in vivo immunization. Hum. Gene. Ther. Methods. 25, 328–338 (2014). https://doi.org/10.1089/hgtb.2014.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shimojima, M., Kawaoka, Y.: Cell surface molecules involved in infection mediated by lymphocytic choriomeningitis virus glycoprotein. J. Vet. Med. Sci. 74, 1363–1366 (2012). https://doi.org/10.1292/jvms.12-0176

    Article  PubMed  Google Scholar 

  51. Volland, A., et al.: Heparan sulfate proteoglycans serve as alternative receptors for low affinity LCMV variants. PLoS Pathog. 17, e1009996 (2021). https://doi.org/10.1371/journal.ppat.1009996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kunz, S., Rojek, J.M., Perez, M., Spiropoulou, C.F., Oldstone, M.B.: Characterization of the interaction of Lassa fever virus with its cellular receptor alpha-dystroglycan. J. Virol. 79, 5979–5987 (2005). https://doi.org/10.1128/JVI.79.10.5979-5987.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Reignier, T., et al.: Receptor use by pathogenic arenaviruses. Virology. 353, 111–120 (2006). https://doi.org/10.1016/j.virol.2006.05.018

    Article  CAS  PubMed  Google Scholar 

  54. Jemielity, S., et al.: TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLoS Pathog. 9, e1003232 (2013). https://doi.org/10.1371/journal.ppat.1003232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brouillette, R.B., et al.: TIM-1 Mediates Dystroglycan-Independent Entry of Lassa Virus. J. Virol. 92 (2018). https://doi.org/10.1128/JVI.00093-18

  56. Radoshitzky, S.R., et al.: Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature. 446, 92–96 (2007). https://doi.org/10.1038/nature05539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tani, H., et al.: Analysis of Lujo virus cell entry using pseudotype vesicular stomatitis virus. J. Virol. 88, 7317–7330 (2014). https://doi.org/10.1128/JVI.00512-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Beyer, W.R., Popplau, D., Garten, W., von Laer, D., Lenz, O.: Endoproteolytic processing of the lymphocytic choriomeningitis virus glycoprotein by the subtilase SKI-1/S1P. J. Virol. 77, 2866–2872 (2003). https://doi.org/10.1128/jvi.77.5.2866-2872.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vela, E.M., Zhang, L., Colpitts, T.M., Davey, R.A., Aronson, J.F.: Arenavirus entry occurs through a cholesterol-dependent, non-caveolar, clathrin-mediated endocytic mechanism. Virology. 369, 1–11 (2007). https://doi.org/10.1016/j.virol.2007.07.014

    Article  CAS  PubMed  Google Scholar 

  60. Hulseberg, C.E., Feneant, L., Szymanska, K.M., White, J.M.: Lamp1 Increases the Efficiency of Lassa Virus Infection by Promoting Fusion in Less Acidic Endosomal Compartments. MBio. 9 (2018). https://doi.org/10.1128/mBio.01818-17

  61. Bulow, U., Govindan, R., Munro, J.B.: Acidic pH Triggers Lipid Mixing Mediated by Lassa Virus GP. Viruses. 12 (2020). https://doi.org/10.3390/v12070716

  62. Markosyan, R.M., Marin, M., Zhang, Y., Cohen, F.S., Melikyan, G.B.: The late endosome-resident lipid bis(monoacylglycero)phosphate is a cofactor for Lassa virus fusion. PLoS Pathog. 17, e1009488 (2021). https://doi.org/10.1371/journal.ppat.1009488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jahrling, P.B.: Protection of Lassa virus-infected guinea pigs with Lassa-immune plasma of guinea pig, primate, and human origin. J. Med. Virol. 12, 93–102 (1983). https://doi.org/10.1002/jmv.1890120203

    Article  CAS  PubMed  Google Scholar 

  64. Cashman, K.A., et al.: Enhanced Efficacy of a Codon-Optimized DNA Vaccine Encoding the Glycoprotein Precursor Gene of Lassa Virus in a Guinea Pig Disease Model When Delivered by Dermal Electroporation. Vaccine. 1, 262–277 (2013). https://doi.org/10.3390/vaccines1030262

    Article  Google Scholar 

  65. Zapata, J.C., et al.: Genetic variation in vitro and in vivo of an attenuated Lassa vaccine candidate. J. Virol. 88, 3058–3066 (2014). https://doi.org/10.1128/JVI.03035-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Geisbert, T.W., et al.: Development of a new vaccine for the prevention of Lassa fever. PLoS Med. 2, e183 (2005). https://doi.org/10.1371/journal.pmed.0020183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lukashevich, I.S., Pushko, P.: Vaccine platforms to control Lassa fever. Expert Rev. Vaccines. 15, 1135–1150 (2016). https://doi.org/10.1080/14760584.2016.1184575

    Article  CAS  PubMed  Google Scholar 

  68. Jiang, J., et al.: Immunogenicity of a protective intradermal DNA vaccine against Lassa virus in cynomolgus macaques. Hum. Vaccin. Immunother. 15, 2066–2074 (2019). https://doi.org/10.1080/21645515.2019.1616499

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wang, M., et al.: Construction and Immunological Evaluation of an Adenoviral Vector-Based Vaccine Candidate for Lassa Fever. Viruses. 13 (2021). https://doi.org/10.3390/v13030484

  70. Jiang, J. et al. Multivalent DNA Vaccines as A Strategy to Combat Multiple Concurrent Epidemics: Mosquito-Borne and Hemorrhagic Fever Viruses. Viruses 13, https://doi.org/10.3390/v13030382 (2021)

  71. Heinrich, M.L., et al.: Antibodies from Sierra Leonean and Nigerian Lassa fever survivors cross-react with recombinant proteins representing Lassa viruses of divergent lineages. Sci. Rep. 10, 16030 (2020). https://doi.org/10.1038/s41598-020-72539-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Basu, A., Mills, D. M. & Bowlin, T. L. High-throughput screening of viral entry inhibitors using pseudotyped virus. Curr. Protoc. Pharmacol. Chapter 13, Unit 13B 13, https://doi.org/10.1002/0471141755.ph13b03s51 (2010)

  73. Lee, A.M., Pasquato, A., Kunz, S.: Novel approaches in anti-arenaviral drug development. Virology. 411, 163–169 (2011). https://doi.org/10.1016/j.virol.2010.11.022

    Article  CAS  PubMed  Google Scholar 

  74. Larson, R.A., et al.: Identification of a broad-spectrum arenavirus entry inhibitor. J. Virol. 82, 10768–10775 (2008). https://doi.org/10.1128/JVI.00941-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Madu, I.G., et al.: A potent Lassa virus antiviral targets an arenavirus virulence determinant. PLoS Pathog. 14, e1007439 (2018). https://doi.org/10.1371/journal.ppat.1007439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, P., et al.: Screening and Identification of Lassa Virus Entry Inhibitors from an FDA-Approved Drug Library. J. Virol. 92 (2018). https://doi.org/10.1128/JVI.00954-18

  77. Zhang, X., Tang, K., Guo, Y.: The antifungal isavuconazole inhibits the entry of Lassa virus by targeting the stable signal peptide-GP2 subunit interface of Lassa virus glycoprotein. Antivir. Res. 174, 104701 (2020). https://doi.org/10.1016/j.antiviral.2019.104701

    Article  CAS  PubMed  Google Scholar 

  78. Takenaga, T., et al.: CP100356 Hydrochloride, a P-Glycoprotein Inhibitor, Inhibits Lassa Virus Entry: Implication of a Candidate Pan-Mammarenavirus Entry Inhibitor. Viruses. 13 (2021). https://doi.org/10.3390/v13091763

  79. Bederka, L.H., Bonhomme, C.J., Ling, E.L., Buchmeier, M.J.: Arenavirus stable signal peptide is the keystone subunit for glycoprotein complex organization. MBio. 5, e02063 (2014). https://doi.org/10.1128/mBio.02063-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shankar, S., et al.: Small-Molecule Fusion Inhibitors Bind the pH-Sensing Stable Signal Peptide-GP2 Subunit Interface of the Lassa Virus Envelope Glycoprotein. J. Virol. 90, 6799–6807 (2016). https://doi.org/10.1128/JVI.00597-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, J., et al.: A comparative high-throughput screening protocol to identify entry inhibitors of enveloped viruses. J. Biomol. Screen. 19, 100–107 (2014). https://doi.org/10.1177/1087057113494405

    Article  CAS  PubMed  Google Scholar 

  82. Yang, Y., et al.: A cell-based high-throughput protocol to screen entry inhibitors of highly pathogenic viruses with Traditional Chinese Medicines. J. Med. Virol. 89, 908–916 (2017). https://doi.org/10.1002/jmv.24705

    Article  CAS  PubMed  Google Scholar 

  83. Kumar, N., et al.: Characterization of virulence-associated determinants in the envelope glycoprotein of Pichinde virus. Virology. 433, 97–103 (2012). https://doi.org/10.1016/j.virol.2012.07.009

    Article  CAS  PubMed  Google Scholar 

  84. Zhu, X., et al.: Effects of N-Linked Glycan on Lassa Virus Envelope Glycoprotein Cleavage, Infectivity, and Immune Response. Virol. Sin. 36, 774–783 (2021). https://doi.org/10.1007/s12250-021-00358-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youchun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Q., Huang, W., Wang, Y. (2023). Pseudotyped Viruses for Mammarenavirus. In: Wang, Y. (eds) Pseudotyped Viruses. Advances in Experimental Medicine and Biology, vol 1407. Springer, Singapore. https://doi.org/10.1007/978-981-99-0113-5_15

Download citation

Publish with us

Policies and ethics