Skip to main content

A Review of Solving Non-IID Data in Federated Learning: Current Status and Future Directions

  • Conference paper
  • First Online:
Artificial Intelligence and Machine Learning (IAIC 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2058))

Included in the following conference series:

  • 154 Accesses

Abstract

Federated learning (FL), as a machine learning framework, has garnered substantial attention from researchers in recent years. FL makes it possible to train a global model through coordination by a central server while ensuring the privacy of data on individual edge devices. However, the data on edge devices that participate in FL training are not independently and identically distributed (IID), resulting in challenges related to heterogeneity data. In this paper, we introduce the challenges generated by non-IID data to FL and provide a detailed classification of non-IID data. Then, we summarize the existing solutions to non-IID data in FL from the perspectives of data and process. To the best of our knowledge, despite the considerable efforts achieved by many researchers in solving the non-IID problem, some issues remain unsolved. This paper provides researchers with the latest findings and analyzes the potential future directions for solving non-IID in FL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abouelnaga, Y., Ali, O.S., Rady, H., Moustafa, M.: CIFAR-10: KNN-based ensemble of classifiers. In: 2016 International Conference on Computational Science and Computational Intelligence (CSCI), pp. 1192–1195. IEEE (2016)

    Google Scholar 

  2. Antunes, R.S., André da Costa, C., Küderle, A., Yari, I.A., Eskofier, B.: Federated learning for healthcare: systematic review and architecture proposal. ACM Trans. Intell. Syst. Technol. (TIST) 13(4), 1–23 (2022)

    Google Scholar 

  3. Banabilah, S., Aloqaily, M., Alsayed, E., Malik, N., Jararweh, Y.: Federated learning review: fundamentals, enabling technologies, and future applications. Inf. Process. Manage. 59(6), 103061 (2022)

    Article  Google Scholar 

  4. Cheng, J., Luo, P., Xiong, N., Wu, J.: AAFL: asynchronous-adaptive federated learning in edge-based wireless communication systems for countering communicable infectious diseasess. IEEE J. Sel. Areas Commun. 40(11), 3172–3190 (2022)

    Article  Google Scholar 

  5. Chiaro, D., Prezioso, E., Ianni, M., Giampaolo, F.: FL-enhance: a federated learning framework for balancing Non-IID data with augmented and shared compressed samples. Inf. Fusion 98, 101836 (2023)

    Article  Google Scholar 

  6. Cohen, G., Afshar, S., Tapson, J., van Schaik, A.: EMNIST: anextension of MNIST to handwritten letters. arXiv preprint: arXiv:1702.05373 (2017)

  7. Dinh, C.T., Vu, T.T., Tran, N.H., Dao, M.N., Zhang, H.: A new look and convergence rate of federated multitask learning with Laplacian regularization. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  8. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 4052, pp. 1–12. Springer, Berlin (2006). https://doi.org/10.1007/11787006_1

    Chapter  Google Scholar 

  9. Hanzely, F., Richtárik, P.: Federated learning of a mixture of global and local models. arXiv preprint: arXiv:2002.05516 (2020)

  10. Itahara, S., Nishio, T., Koda, Y., Morikura, M., Yamamoto, K.: Distillation-based semi-supervised federated learning for communication-efficient collaborative training with Non-IID private data. IEEE Trans. Mob. Comput. 22(1), 191–205 (2021)

    Article  Google Scholar 

  11. Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., Kim, S.L.: Communication-efficient on-device machine learning: federated distillation and augmentation under Non-IID private data. arXiv preprint: arXiv:1811.11479 (2018)

  12. Jiang, J.C., Kantarci, B., Oktug, S., Soyata, T.: Federated learning in smart city sensing: challenges and opportunities. Sensors 20(21), 6230 (2020)

    Article  Google Scholar 

  13. Jiang, Y., et al.: Model pruning enables efficient federated learning on edge devices. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  14. Jin, H., et al.: Personalized edge intelligence via federated self-knowledge distillation. IEEE Trans. Parallel Distrib. Syst. 34(2), 567–580 (2022)

    Article  Google Scholar 

  15. Kairouz, P., et al.: Advances and open problems in federated learning. Found. Trends® Mach. Learn. 14(1–2), 1–210 (2021)

    Google Scholar 

  16. Lakhan, A., et al.: Federated-learning based privacy preservation and fraud-enabled blockchain IoMT system for healthcare. IEEE J. Biomed. Health Inform. 27(2), 664–672 (2022)

    Article  Google Scholar 

  17. Li, L., Fan, Y., Tse, M., Lin, K.Y.: A review of applications in federated learning. Comput. Ind. Eng. 149, 106854 (2020)

    Article  Google Scholar 

  18. Li, Q., Diao, Y., Chen, Q., He, B.: Federated learning on Non-IID data silos: an experimental study. In: 2022 IEEE 38th International Conference on Data Engineering (ICDE), pp. 965–978. IEEE (2022)

    Google Scholar 

  19. Li, X., Huang, K., Yang, W., Wang, S., Zhang, Z.: On the convergence of FedAvg on Non-IID data. arXiv preprint: arXiv:1907.02189 (2019)

  20. Li, X.C., Zhan, D.C., Shao, Y., Li, B., Song, S.: FedPHP: federated personalization with inherited private models. In: Oliver, N., Perez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds.) Machine Learning and Knowledge Discovery in Databases. Lecture Notes in Computer Science(), vol. 12975, pp. 587–602. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86486-6_36

    Chapter  Google Scholar 

  21. Lin, T., Kong, L., Stich, S.U., Jaggi, M.: Ensemble distillation for robust model fusion in federated learning. In: Advances in Neural Information Processing Systems , vol. 33, pp. 2351–2363 (2020)

    Google Scholar 

  22. Liu, T., Ding, J., Wang, T., Pan, M., Chen, M.: Towards fast and accurate federated learning with Non-IID data for cloud-based IoT applications. J. Circuits, Syst. Comput. 31(13), 2250235 (2022)

    Article  Google Scholar 

  23. Liu, X., Deng, Y., Mahmoodi, T.: Wireless distributed learning: a new hybrid split and federated learning approach. IEEE Trans. Wireless Commun. 22(4), 2650–2665 (2022)

    Article  Google Scholar 

  24. Lo, S.K., Lu, Q., Wang, C., Paik, H.Y., Zhu, L.: A systematic literature review on federated machine learning: from a software engineering perspective. ACM Comput. Surv. (CSUR) 54(5), 1–39 (2021)

    Article  Google Scholar 

  25. Ma, X., Zhu, J., Lin, Z., Chen, S., Qin, Y.: A state-of-the-art survey on solving Non-IID data in federated learning. Futur. Gener. Comput. Syst. 135, 244–258 (2022)

    Article  Google Scholar 

  26. Mahini, H., Mousavi, H., Daneshtalab, M.: GTFLAT: game theory based add-on for empowering federated learning aggregation techniques. arXiv preprint: arXiv:2212.04103 (2022)

  27. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  28. McMahan, H.B., Moore, E., Ramage, D., y Arcas, B.A.: Federated learning of deep networks using model averaging, vol. 2, p. 2. arXiv preprint: arXiv:1602.05629 (2016)

  29. Mills, J., Hu, J., Min, G.: Multi-task federated learning for personalised deep neural networks in edge computing. IEEE Trans. Parallel Distrib. Syst. 33(3), 630–641 (2021)

    Article  Google Scholar 

  30. Qin, Z., Li, G.Y., Ye, H.: Federated learning and wireless communications. IEEE Wirel. Commun. 28(5), 134–140 (2021)

    Article  Google Scholar 

  31. Sannara, E., Portet, F., Lalanda, P., German, V.: A federated learning aggregation algorithm for pervasive computing: evaluation and comparison. In: 2021 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 1–10. IEEE (2021)

    Google Scholar 

  32. Sattler, F., Müller, K.R., Samek, W.: Clustered federated learning: model-agnostic distributed multitask optimization under privacy constraints. IEEE Trans. Neural Netw. Learn. Syst. 32(8), 3710–3722 (2020)

    Article  MathSciNet  Google Scholar 

  33. Sattler, F., Wiedemann, S., Müller, K.R., Samek, W.: Robust and communication-efficient federated learning from Non-IID data. IEEE Trans. Neural Netw. Learn. Syst. 31(9), 3400–3413 (2019)

    Article  Google Scholar 

  34. Shin, M., Hwang, C., Kim, J., Park, J., Bennis, M., Kim, S.L.: XOR Mixup: privacy-preserving data augmentation for one-shot federated learning. arXiv preprint: arXiv:2006.05148 (2020)

  35. Shu, J., et al.: Clustered federated multitask learning on Non-IID data with enhanced privacy. IEEE Internet Things J. 10(4), 3453–3467 (2022)

    Article  Google Scholar 

  36. Song, J., Wang, W., Gadekallu, T.R., Cao, J., Liu, Y.: EPPDA: an efficient privacy-preserving data aggregation federated learning scheme. IEEE Trans. Netw. Sci. Eng. (2022)

    Google Scholar 

  37. Tanner, M.A., Wong, W.H.: The calculation of posterior distributions by data augmentation. J. Am. Stat. Assoc. 82(398), 528–540 (1987)

    Article  MathSciNet  Google Scholar 

  38. Voigt, P., Von dem Bussche, A.: The EU General Data Protection Regulation (GDPR). A Practical Guide, vol. 10, no. 3152676, p. 10–5555, 1st Ed. Springer International Publishing, Cham (2017)

    Google Scholar 

  39. Wang, X., Garg, S., Lin, H., Kaddoum, G., Hu, J., Hossain, M.S.: A secure data aggregation strategy in edge computing and blockchain-empowered internet of things. IEEE Internet Things J. 9(16), 14237–14246 (2020)

    Article  Google Scholar 

  40. Wei, B., Li, J., Liu, Y., Wang, W.: Non-IID federated learning with sharper risk bound. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  41. Xu, J., Glicksberg, B.S., Su, C., Walker, P., Bian, J., Wang, F.: Federated learning for healthcare informatics. J. Healthc. Inf. Res. 5, 1–19 (2021)

    Article  Google Scholar 

  42. Xue, B., He, Y., Jing, F., Ren, Y., Jiao, L., Huang, Y.: Robot target recognition using deep federated learning. Int. J. Intell. Syst. 36(12), 7754–7769 (2021)

    Article  Google Scholar 

  43. Yang, L., Huang, J., Lin, W., Cao, J.: Personalized federated learning on non-IID data via group-based meta-learning. ACM Trans. Knowl. Discov. Data 17(4), 1–20 (2023)

    Article  Google Scholar 

  44. Yang, Z., Chen, M., Wong, K.K., Poor, H.V., Cui, S.: Federated learning for 6G: applications, challenges, and opportunities. Engineering 8, 33–41 (2022)

    Article  Google Scholar 

  45. Yin, X., Zhu, Y., Hu, J.: A comprehensive survey of privacy-preserving federated learning: a taxonomy, review, and future directions. ACM Comput. Surv. (CSUR) 54(6), 1–36 (2021)

    Article  Google Scholar 

  46. You, X., Liu, X., Jiang, N., Cai, J., Ying, Z.: Reschedule gradients: temporal Non-IID resilient federated learning. IEEE Internet Things J. 10(1), 747–762 (2022)

    Article  Google Scholar 

  47. Yu, H., Wu, C., Yu, H., Wei, X., Liu, S., Zhang, Y.: A federated learning algorithm using parallel-ensemble method on Non-IID datasets. Complex Intell. Syst., 1–13 (2023)

    Google Scholar 

  48. Yu, T., Bagdasaryan, E., Shmatikov, V.: Salvaging federated learning by local adaptation. arXiv preprint: arXiv:2002.04758 (2020)

  49. Zhang, C., Yuan, X., Zhang, Q., Zhu, G., Cheng, L., Zhang, N.: Toward tailored models on private AIoT devices: federated direct neural architecture search. IEEE Internet Things J. 9(18), 17309–17322 (2022)

    Article  Google Scholar 

  50. Zhang, K., Song, X., Zhang, C., Yu, S.: Challenges and future directions of secure federated learning: a survey. Front. Comp. Sci. 16, 1–8 (2022)

    Google Scholar 

  51. Zhang, W., et al.: R \(^2\) Fed: resilient reinforcement federated learning for industrial applications. IEEE Trans. Ind. Inform. (2022)

    Google Scholar 

  52. Zhang, Z., Zhang, Y., Guo, D., Zhao, S., Zhu, X.: Communication-efficient federated continual learning for distributed learning system with Non-IID data. Sci. China Inf. Sci. 66(2), 122102 (2023)

    Article  Google Scholar 

  53. Zhao, L., Huang, J.: A distribution information sharing federated learning approach for medical image data. Complex Intell. Syst., 1–12 (2023)

    Google Scholar 

  54. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with Non-IID data. arXiv preprint: arXiv:1806.00582 (2018)

  55. Zheng, W., Yan, L., Gou, C., Wang, F.Y.: Federated meta-learning for fraudulent credit card detection. In: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pp. 4654–4660 (2021)

    Google Scholar 

  56. Zhu, H., Xu, J., Liu, S., Jin, Y.: Federated learning on Non-IID data: a survey. Neurocomputing 465, 371–390 (2021)

    Article  Google Scholar 

  57. Zhu, Z., Hong, J., Zhou, J.: Data-free knowledge distillation for heterogeneous federated learning. In: International Conference on Machine Learning, pp. 12878–12889. PMLR (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Youth Foundation Project of Hainan Natural Science Foundation(621QN211), National Natural Science Foundation of China (NSFC) (Grant No. 62162022, 62162024), the Major science and technology project of Hainan Province (Grant No. ZDKJ2020012), Hainan Provincial Natural Science Foundation of China (Grant No. 620MS021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jieren Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, W., Cheng, J., Li, X., He, J. (2024). A Review of Solving Non-IID Data in Federated Learning: Current Status and Future Directions. In: Jin, H., Pan, Y., Lu, J. (eds) Artificial Intelligence and Machine Learning. IAIC 2023. Communications in Computer and Information Science, vol 2058. Springer, Singapore. https://doi.org/10.1007/978-981-97-1277-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1277-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1276-2

  • Online ISBN: 978-981-97-1277-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics