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Chapter 1 ®)
Introduction Check for

Deliang Chen®, Junguo Liu®, and Qiuhong Tang

1.1 The Region

The Lancang-Mekong River Basin (LMRB) is one of the most important trans-
boundary river basins in the world, with a river length of 4,880 km and a total area
of 795,000 km? (Fig. 1.1a) (Liu et al., 2022). The Lancang-Mekong River (LMR)
originates from the Tibetan Plateau in the Qinghai Province in China. It flows from
north to south through the Yunnan Province and the Tibet Autonomous Region,
and is called the Lancang River within China. After entering the lower portion, the
river is known as the Mekong River, and finally enters into the South China Sea.
The Lancang-Mekong River is the 10th largest river in the world with an annual
streamflow at the river mouth in the Mekong Delta of about 475 km3/a (Liu et al.,
2022). The upper Lancang River Basin accounts for 21% of the total basin area, and
water supply here mainly comes from rainfall and snowmelt. The lower Mekong
River Basin is shared by Laos (accounting for 25% of the total basin area), Thailand
(23%), Cambodia (20%), Vietnam (8%) and Myanmar (3%), while streamflow in
the lower basin comes mainly from precipitation and upstream flow. On average, the

D. Chen (X)

Department of Earth Sciences, University of Gothenburg, Medicinaregatan 7B, Box 460, 405 30
Gothenburg, Sweden

e-mail: deliang@gvc.gu.se

J. Liu

School of Environmental Sciences and Technology, Southern University of Science and
Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
e-mail: liujg@sustech.edu.cn

Q. Tang

Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences,
No. 11A, Datun Road, Chaoyang District, Beijing 100101, China

e-mail: tanggh@igsnrr.ac.cn

© The Author(s) 2024 1
D. Chen et al. (eds.), Water Resources in the Lancang-Mekong River Basin:

Impact of Climate Change and Human Interventions,
https://doi.org/10.1007/978-981-97-0759-1_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0759-1_1&domain=pdf
http://orcid.org/0000-0003-0288-5618
http://orcid.org/0000-0002-5745-6311
http://orcid.org/0000-0002-0886-6699
mailto:deliang@gvc.gu.se
mailto:liujg@sustech.edu.cn
mailto:tangqh@igsnrr.ac.cn
https://doi.org/10.1007/978-981-97-0759-1_1

2 D. Chen et al.

[ @ 1 I (b)

30N
30°N

15°N
218N
T

Myanmar

0N
0N
T

- @ Stations ; W 4
- — River S N 1
. == TeTes A, ] .
- . | Boundary ¥ X
“l - wl . § b
=L = Reservoir b
i |+ Commission o _nj i |
| Altitude (m) | = Inplan s raticgl ¥ i
6214 L Under construction ” " 4
z z 2
& = — — -
= 0 s : I‘> i
i i L i i i -s L i i L i L i i i i ]
95°E 100° E 105°E 95°F 100° E 105°E

Fig. 1.1 a The Lancang-Mekong River Basin (LMRB). b The dams and major streamflow gauging
stations in LMRB

countries’ share of water flows in the basin is: China, 16%; Myanmar, less than 2%;
Laos, 35%; Thailand, 18%; Cambodia, 18%; and Vietnam, 11%.

Located in the monsoon climate zone, the basin is affected alternately by the
southwest monsoon and the northeast monsoon, resulting in the uneven precipitation
distribution in time and space, and great volatility in the seasonal streamflow. The
wet season (from June to November) is mainly controlled by the southwest monsoon
rich in water vapour, and more than 80% of the precipitation is concentrated in this
season. The dry season (from December to May) is mainly affected by the northeast
monsoon, and from December to February is the cool season and from March to May
is the hot season. In general, 75% of the total annual streamflow of the basin flows
through the lower Mekong Delta from July to October, and affects the ecosystem and
human activities in the downstream area with the rhythmic floods. The alternation
of dry and wet seasons leads to seasonal reversal of streamflow in the lower Mekong
basin: the river flows back into the Tonle Sap Lake (the largest lake in Southeast
Asia) to be stored in wet seasons, while the Tonle Sap supplies the Mekong River
in dry seasons. This is one of the most unique hydrological processes in the world
(Wang et al., 2021).

The LMRB has complex natural conditions: the elevation difference in this basin
is more than 5060 m from the river source in the Tibetan Plateau to the Mekong
River estuary, with an average slope of 1.04%o. The northern part of the Lancang
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River Basin is an alpine valley with average altitude of 3,500-5,000 m; and the
southern part is a wide valley with an altitude between 1,000 and 3,500 m. As for
the upstream of the Mekong River Basin, Myanmar and the northern part of Laos
have a large area of mountains. The terrain of midstream in Thailand and Laos is a
transition region from mountain to plain. The downstream located in Cambodia and
southern Vietnam is mostly plains. In addition, the downstream Mekong Delta has
a large area of floodplains, including the central floodplain from Kratie town to the
border of Vietnam, the Tonle Sap floodplain with the Tonle Sap Lake and surrounding
tributaries, and the Vietnamese Mekong Delta floodplains.

Over 70 million people live in the LMRB. Since the Angkor period (approximately
the ninth to fifteenth centuries) or even earlier times, the LMRB has fed a large
population with abundant water resources. Until now, riparian countries still highly
rely on this commonly shared river.

After the agricultural reforms in the late 1980s, Vietnam has become one of the
largest rice exporters in the world, with 90% of the rice exported from the Mekong
Delta. The rural economy based on rain-fed agriculture provides 65% of the economic
income of the Mekong River Basin. At the same time, the LMRB is one of the most
biologically diverse basins in the world, second only to the Amazon. Rich species
diversity in the LMRB has created the world’s largest inland freshwater fishery, which
provides a vital, and often only, source of animal protein for people in this basin. The
residents in the lower Mekong River Basin depend on fish and other aquatic animals
for 47-80% of their required protein intake, more than any other major basins in
the world (Hecht et al., 2019; Hortle, 2007). The Tonle Sap Lake produces 60% of
Cambodia’s fish catches and solves the survival problem of nearly 10 million people
(Burbano et al., 2020).

With the rapid urbanization and the population explosion, water resource conflicts
in the LMRB are increasing. At the same time, the uneven distribution of precipitation
has also exacerbated the problem of water disputes. All in all, the two important issues
facing the LMRB are how to tackle increasing extreme events under climate change
and how to manage water under increasing pressure from rapidly growing demands.
The lower part of the basin is mainly located in the plains and deltas with flat terrain,
which is vulnerable to flood disasters. Meanwhile, the increasing drought incidents
also threaten the water security of the basin. According to the Emergency Events
Database (EM-DAT, https://www.emdat.be/), the LMRB has recorded 173 floods
and 23 droughts between 1990 and 2016, affecting 148.5 million people and causing
a total of 61.4 billion US dollars of economic losses.

In order to tackle the increasing frequency and intensity of extreme events and
meet the increasing energy demands in the LMRB, a large number of reservoirs have
been constructed in the past decades. Before 2008, the basin was one of the least
affected major river basins by human activity in the world with the effective reservoir
capacity accounting for only 2% of the annual streamflow. By the end of 2021, the
total storage capacity of the 103 reservoirs under operation in the basin had reached
a staggering number of 100.3 km?, accounting for 23% of the annual streamflow
(Fig. 1.1b, according to GMDD, the Greater Mekong Dam Database, https://wle-
mekong.cgiar.org/maps/). Among these dams, 23 are located in China, producing
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18,081 MW of electricity annually, while 80 dams are located downstream generating
15,034 MW of electricity annually (Hecht et al., 2019). These reservoirs have brought
huge social and economic benefits to the countries in the basin, including mitigating
extreme events, increasing energy supply, improving river navigation conditions, and
ensuring agricultural irrigation (Yun et al., 2021). On the other hand, reservoir expan-
sion has also aroused many criticisms. For example, reservoir operation changes the
streamflow and affects the flood characteristics in the river, which might affect the
aquatic ecosystem and vegetation distribution (Yang et al., 2019). Further, decline in
river network connectivity due to dams may hinder the migration and reproduction
of fish and lead to a decline in food security (Anh et al., 2018). Also, the interception
of sediment by the reservoirs may reduce the supply of soil nutrients and increase
the erosion of the Mekong Delta (Schmitt et al., 2019).

1.2 Background and Context

The complex climate in the LMRB is of high spatiotemporal variability, shifting
from plateau climate at the upper basin to temperate monsoon and tropical monsoon
climates in the middle and lower basin. Tropical cyclones mainly influence the basin
during the wet seasons, and it can partly cause the second peak of seasonal streamflow
in September—November (Chen et al., 2019). The incursion of tropical cyclones into
the LMRB is a major factor in the development of regional flood events (MRC,
2015). Tropical cyclones also play a vital role in mobilizing sediment of the Mekong
River (Darby et al., 2016), where the river delta is threatened by land subsidence
(~1.6 cm yr~!) and sea level rise (Erban et al., 2014).

Over 80% of the people live close to the river, making the lower basin one of the
world’s largest inland fisheries (Ziv et al., 2012). There is increasing vulnerability
of riparian countries to floods, which tends to cause fatalities and property damage,
especially for those who live on the margins of economic development (MRC, 2015).

Under future climate change conditions, more frequent precipitation brought by
the intensifying water cycle will greatly change the streamflow. Meanwhile, large-
scale hydropower development would also profoundly change the way people live
in this basin. In order to adapt to the changing environment and requirements of the
society, a number of questions have been raised in recent decades which need to be
dealt with properly. The important concerns include (1) trends of regional climate
change in the past and future, (2) water resources change in terms of quantity and
quality, (3) water usages for various sectors and their linkage to food and energy secu-
rity, (4) impacts of climate change and dam construction on water-related hazards,
(5) transboundary river management and governance. To address these concerns, it
is necessary to comprehensively assess the combined impacts of climate change and
human interventions on water resources in the LMRB.
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1.3 Motivation and Framing of the Assessment

The LMRB is extremely sensitive to climate change. The warming rate here is
higher than the mean global warming rate (Liu et al., 2022). Despite rich water
resources (~8,000 m3/cap/yr), the high temporal and spatial variabilities in runoff
create frequent seasonal droughts. In the past few decades, the hydrological system
within the LMRB has been significantly influenced by climate change, consequently
exacerbating extreme events, e.g., droughts and floods. The climate change and
human intervention induced impacts on water have been projected to be intensified in
the near future, bringing unprecedented threats to human societies and ecosystems.
To this point, we proposed this report entitled “Water resources assessment in the
Lancang-Mekong River Basin: Impact of climate change and human interventions” to
support socio-economic development through sustainable use of water by providing
accurate and updated information on climate and water resource changes presented
in a consistent way. It provides implications to support decisions and stakeholders at
all levels.

This report provides a comprehensive, up-to-date picture of the current state of
knowledge based on published articles and recent research from the author team.
New evidence of past, present and projected future changes in climate and water
resources is based on many independent scientific analyses from observations and
simulations using models.

The report is an assessment similar to the Intergovernmental Panel on Climate
Change (IPCC) assessment report. Itis not a review or a textbook of climate and water
sciences, but is based on the published scientific and technical literature available.
Underlying all aspects of the report is a strong commitment to assessing the science
comprehensively, without bias and in a way that is relevant to policy but not policy
prescriptive.

1.4 Approach and Processes

Like many other environmental issues, climate change and water resources are
complex, which poses a challenge to provide authoritative scientific evidence for
policy makers to take actions. Over the past decades, it became clear that scien-
tific assessment is a powerful tool to meet this challenge. It is particularly useful in
reaching a consensus among a group of experts when there are diverse and sometimes
contradictory evidences from a variety of indicators and perspectives, which can be
demonstrated by the success of IPCC assessment reports.

This assessment followed the essential principles used in the above-mentioned
global assessments. Specifically, we tried to involve experts who are active
researchers and come from different countries as authors and review editors. Further,
this assessment focuses on summarizing and evaluating the existing literature
published in peer-reviewed journals, although occasionally official governmental
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documents and reports from regional and international organizations were also
mentioned.

The assessment was designed and edited by Deliang Chen, Junguo Liu and
Qiuhong Tang, and managed by Yuehan Dou and Kai Wang. A group of lead authors
was appointed to lead each theme (chapter), and to invite and engage contributing
authors to contribute to specific aspects of the assessment. When an expert on a
specific topic was missing during the assessment process, an additional expert was
invited to act also as contributing author. An important step in the process is the
multiple reviews of the assessment. While the lead authors constantly reviewed the
writings of the lead authors and contributing authors for their chapters, the editors
commented on the drafts in several phases of the project. Finally, the complete
chapter drafts were reviewed by review editors. The whole process took three years
to complete.

1.5 Structure of the Report

This report consists of a short introduction and 8 thematic chapters covering climate
change, surface water change, arsenic pollution, water utilization, water-food-energy
nexus, water related hazards, water management, and water governance. In order to
facilitate the accessibility of the findings of this report for a wide readership and
to enhance their usability for stakeholders and users, each thematic chapter has an
executive summary (abstract) highlighting major findings within the chapter. These
executive summaries (abstracts) can be particularly useful for local government and
stakeholders for water management towards sustainability.

Introduction (This Chapter): This chapter provides basic information on climate
and water in the region, and introduces the framing, scope, process, and structure of
the assessment.

Climate variability and climate change: Past and future (Chap. 2): This chapter
assesses climate change in the past decades and projects future changes until the end
of this century by using observed records and model simulations.

Surface water (Chap. 3): This chapter analyzes river network geometric features,
assesses past and future changes in runoff, baseflow, and discharge, reveals the
dynamics of the inundation area and turbidity in the Tonle Sap Lake.

Arsenic in Hydro-Geo-Biospheres of the Mekong River Delta: Implications for
human health (Chap. 4): This chapter investigates arsenic cycling in Hydro-Geo-
Biospheres in the Mekong River Delta and assesses the environmental impacts of
groundwater arsenic as well as its health effects and exposure from drinking water
and food. It also provides policy recommendations for arsenic mitigation.

Water utilization and the link to food and energy (Chaps. 5 and 6): These 2 chapters
assess the water demand and utilization in the basin. It covers the relevant aspects from
irrigation, hydropower generation, domestic water uses within the water-food-energy
nexus.
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CHAPTER 1 INTRODUCTION
+ Basic information on the current status of climate and water
+ Currant understanding of the water and climate change in the Lancang-Mekong River Basin
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Fig. 1.2 The structure and contents of the chapters

Water hazards: drought and flood (Chap. 7): This chapter describes the character-
istics of water related hazards including drought and flood in the basin. The impacts
of climate change and human interventions on flood and drought are assessed to
support the local risk mitigation and adaptation.

River basin management and governance (Chaps. 8 and 9): These chapters
summarise the tradeoff between economic development and resource conservation
in the basin, and present the major challenges for water resources management
and governance. It also highlights the importance of international cooperation for
transboundary water management.

A graphic presentation of the structure and contents of all chapters is provided in
Fig. 1.2.
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Chapter 2
Climate Variability and Climate Change: oo
Past and Future

Xuejie Gao, Qingyun Duan, Tinghai Ou, Yuanhai Fu, Xuewei Fan, Zhu Liu,
Chiyuan Miao, and Chenwei Shen

Abstract The LMRB (LMRB) has experienced significant climate change, particu-
larly over the last 50 years. An increase in the annual precipitation but with significant
seasonal differences in the changes, and a remarkable warming are observed over the
Basin. The region also experienced more frequent extreme events, such as an increase
in extreme precipitation, as well as hot days and warm nights, a decrease in cold days
and cold nights, and a more frequent occurrence of droughts. The future climate over
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the Basin is projected to be continuous warming, which is most significant by the end
of the twenty-first century. A general wetting is projected over the region with the
spatial pattern of the projected annual total precipitation change show consistencies
with the present day condition. Differences are found between the global and regional
climate model projections in the precipitation, indicating the uncertainties existing in
the projections, and also the importance of the model resolution in projecting future
climate.

2.1 Introduction

The region encompassing the Lancang-Mekong River has a plateau climate in its
source region, but a typical monsoonal climate in most of the basin, with the
monsoons often accompanied by the extreme events of heatwaves, droughts and
floods, and tropical cyclones, (e.g. Chang et al., 2012; Ding & Chan, 2005; Tang-
gang et al., 2007). Many studies have shown that significant climate change has been
observed over the region during the last century, particularly over the last 50 years.
Since the middle of the twentieth century, the average surface temperature and heat
wave frequency have increased for the region. During 1952-2015, the annual precipi-
tation trend was 0.5 mm/10 yr. However, there exists a significant difference between
the dry and wet season. On the basin scale, a significant (p < 0.05) trend of wetting by
3.4 mm/10 yr was found in the dry season during water years 1952-2015, whereas
in the wet season, there was a drying trend of —3.0 mm/10 yr (Irannezhad et al.,
2020). The temperature in the LMRB has risen at a rate of 0.76 °C/10 yr during
1980-2010 (Fan & He, 2015). Extreme temperature events show also an upward
trend (Thirumalai et al., 2017) with an increase in hot days and warm nights, and
a decrease in cold days and cold nights (Ma et al., 2013).

Observations and model-based analysis form an important basis for gaining a
scientific understanding of the climate variability and change that have occurred in
the past, what are occurring right now, and what are going to happen in the future.
Unfortunately, this region has a relatively sparse climate observational network. In
climate studies, global datasets like the Global Precipitation Climatology Centre
(GPCC) data (Adler et al., 2017) and gridded precipitation and other meteorological
variables developed by the Climate Research Unit (CRU) of the University of Anglia
(Harris et al., 2013) have often been used to investigate the observed climate change
in the LMRB (Fan & He, 2015; Irannezhad et al., 2020). The dataset of Asian
Precipitation-Highly Resolved Observational Data Integration Toward Evaluation of
water resources (APHRODITE), generated by the Research Institute for Humanity
and Nature and the Meteorological Research Institute of the Japan Meteorological
Agency, is a long term regional daily-scale gridded precipitation dataset, generated
by utilizing a dense network of in situ gauge records in Asia and, therefore, is better
suited for climate studies in the LMRB (Irannezhad et al., 2020; Yatagai et al., 2009).

It is necessary to resort to climate models to gain insights into future climate
change. As the primary tools in climate change studies, global climate models
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(GCMs) have been widely used to simulate and project climate change at the global
scale. The Intergovernmental Panel on Climate Change (IPCC) gathers and evaluates
GCMs as part of the international climate change Assessment Reports (AR). IPCC
has so far published six Assessment Reports (ARs). In each AR, the IPCC relies
on the outputs of the GCMs participating in the Climate Model Intercomparison
Projects (CMIPs). Archives of GCM outputs from different CMIPs offer opportuni-
ties to assess the climate model performance in simulating past climate and to analyse
the projections for 21st-century climate change under different emission scenarios,
and the potential effects of the changes at either global or regional scales (Bannister
etal., 2017; Su et al., 2013).

The current phase of CMIP is the sixth (CMIP6). The GCMs in CMIP6 have
significant improvements in the physical parameterisations (e.g. in representing the
clouds), spatial resolution, and inclusion of additional Earth system components (e.g.
ice sheets) and processes (e.g. the nutrient limitations in terrestrial carbon cycle),
compared to those of the previous CMIPs (Eyring et al., 2016, 2019). In CMIP6,
a new conceptual framework had been developed. It uses a diverse range of socio-
economic and technological development scenarios, i.e. the Shared Socioeconomic
Pathways (SSPs). SSPs are distinguished on the basis of anticipated challenges to
adaptation and mitigation, which is different from the emissions pathways concluded
in the IPCC Special Report on Emissions Pathways/Scenarios (Moss et al., 2010;
O’Neill et al., 2016). The two main axes of the scenario matrix architecture are firstly,
the future climate radiative forcing level which is characterized by the Representative
Concentration Pathways (RCPs), and secondly, a set of alternative plausible trajec-
tories for future global development (the SSPs) (Kriegler et al., 2014). The SSPs are
based on five narratives describing the alternative pathways of socioeconomic devel-
opment, including SSP1 for sustainable development, SSP2 for middle-of-the-road
development, SSP3 for regional rivalry, SSP4 for inequality, and SSP5 for fossil-
fueled development (Calvin et al., 2017; Fricko et al., 2017; Fujimori et al., 2017;
Kriegler et al., 2017; van Vuuren et al., 2017). This new generation of pathways/
scenarios will facilitate the understanding of plausible socioeconomic and climate
futures for the society.

While GCMs have contributed greatly to our understanding of climate variability
and climate change at the global scale, they generally have rough spatial resolu-
tion and cannot capture the spatial climate change features at regional scales. To
understand climate change at regional and local scales, one can use high-resolution
regional climate models (RCMs), which are the limited area climate models forced by
specified lateral conditions from GCMs or reanalysis. RCMs simulate atmospheric
and land surface conditions, including Greenhouse Gas (GHG) and aerosol forcings.
RCMs apply a dynamic downscaling approach to fill the gap between the coarse esti-
mates of GCMs, which have practical requirements in the regional and locale scale
impact studies, e.g. the finer spatial distribution of precipitation needed in hydro-
logic operations over small basins under global warming. RCMs have provided data
for the impact studies and policymakers since the last three decades, and helped to
increase knowledge of the present-day climate and future changes at regional levels,
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thus making them an important tool for investigating climate change in the LMRB
(Tapiador et al., 2020).

This chapter describes the space—time features of climate variability and climate
change over the LMRB based on climate observations and the GCM outputs from
CMIP6 and the RCM outputs that are driven by GCMs from CMIP5. It is organized
as follows. In Sect. 2.2, the climate change that has occurred in the LMRB over
the last century is examined based on climate observations. Section 2.3 presents the
simulations of the past climate and projections of future climate changes based on
simulation and projection results from RCMs. In Sect. 2.4, a multi-model analysis of
climate change in the LMRB is presented using the latest GCM outputs from CMIP6.

2.2 Past Climate Change from Observations
and Simulations

There are a few rain gauges and stations with both temperature and precipitation
records available over the LMRB (e.g., Wang et al., 2016). The data quality, in terms
of continuity, is also quite low. Only very few stations have high quality data covering
the latest 20-year period of model historical simulation, i.e., 1995-2014. Most of
the stations with high quality data are located above the LMRB. To analyse the
long-term (1961-2015) spatial-temporal variation of temperature and precipitation
over the whole LMRB, gridded data sets interpolated from station data have been
used in this work. For this purpose, gridded near-surface air temperature (T2m) and
daily precipitation from the APHRODITE (http://aphrodite.st.hirosaki-u.ac.jp/index.
html) during 1961-2015 are adopted (Yasutomi et al., 2011; 2012). The horizontal
resolution of the APHRODITE data sets is 0.25° x 0.25° (latitude x longitude).
Annual mean T2m and total precipitation are calculated based on the daily data sets.
The average during 1961-2015 and 1995-2014 is to be shown together with their
difference to illustrate the climate change during the recent 20 years which has been
used for model evaluation. Empirical Orthogonal Function (EOF) analysis is also
performed to show the major spatial-temporal variation patterns over the LMRB
during 1961-2015.

Four extreme indices are investigated to illustrate the changes in extremes over
the LMRB (Table 2.1). The two precipitation extreme indices (Rx5day and CDD)
are calculated based on the gridded daily precipitation and temperature from the
APHRODITE. Since there are no maximum and minimum temperatures avail-
able in APHRODITE, the two temperature extreme indices (TXx and TNn) from
HadEX 3.0.3 (Dunn et al., 2020) are adopted. The HadEX data, with horizontal
resolution 1.25° x 1.875° (latitude x longitude), have been interpolated to the
APHRODITE data grid covering the LMRB using the inverse distance weighting
(power 2) interpolation method.
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Table 2.1 Definitions of the extreme temperature indices used

Index Definition Units

Rx5day | Annual maximum consecutive 5-day precipitation mm

CDD Annual maximum length of dry spell: maximum number of consecutive days | Days
with RR < 1 mm

TXx Annual maximum value of daily maximum temperature °C

TNn Annual minimum value of daily minimum temperature °C

2.2.1 Near-Surface Air Temperature Change and Variability

The spatial variations in the annual mean T2m are quite large over the LMRB. The
annual mean T2m increases from the northern to the southern river Basin, with the
annual mean T2m lower than 0 °C over the northernmost of the headwater region
and close to 30.0 °C over the southern Mekong Delta (Fig. 2.1a).

The annual mean T2m has significantly increased since 1950 when averaged over
the whole Basin (Liu & Wang, 2020), which is higher than the mean global warming
rate (Liu et al., 2021). Except for the southern Tonle Sap region, there is an overall
significant warming trend over the LMRB. (Fig. 2.1b). The spatial pattern of the
annual mean T2m during the recent 20 years, i.e. during 1995-2014, is similar to
that during 1961-2015 but with an overall warm anomaly (Fig. 2.1c). The anomaly
pattern of 1995-2014 with reference to 1961-2015 is similar to the linear trend of
the annual mean T2m during 1961-2015 (Fig. 2.1d).

There are also regional and seasonal differences in the warming trend over the
LMRB. For example, the warming is obvious during May and August compared to
other months when averaging the whole basin (Liu & Wang, 2020), while winter
T2m rise does the largest contribution to the annual T2m increase over the upper
Lancang River (Wang et al., 2020). There is also obvious inter-decadal variation in
the annual mean T2m. Even though there has been a general warming during the
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Fig. 2.1 Spatial distribution of a annual mean 2-m air temperature (T2m; °C) and its linear trend
(°C/10 yr) during 1961-2015 (b), ¢ annual mean T2m during 1995-2014 (°C), d the differ-
ence between mean T2m during 1995-2014 and 1961-2015 (°C) based on daily T2m from the
APHRODITE (Yasutomi et al., 2011) (Areas with crosses show the region where the trend is
significant at 0.05 level)
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Fig. 2.2 Spatial distribution of a EOF1 and b EOF2 (°C) of annual mean T2m, and the coefficient
time series of EOF1 (¢) and EOF2 (d) during 1961-2015 based on daily T2m from the APHRODITE

past 60 years, there is a decrease in the annual T2m over some areas, especially over
the middle and lower reaches of the Basin after 2008 (Liu & Wang, 2020). Wu et al.
(2011) also show a decreasing trend in the annual T2m of Vientiane, Chaiyaphum,
and Ho Chi Minh stations during 1980-2009, especially after around 2000.

The spatial variation in the warming trend is well illustrated in the first two EOF
patterns, which explain 75% of the total variance of annual mean T2m (Fig. 2.2).
Overall, there is a significant increase in the annual mean T2m over most of the Basin
as shown in EOF1 and the related coefficient time series. There is also a change in
the coefficient time series of EOF2 around 2000, centered over the middle and lower
reaches of the Basin. This is related to the above-mentioned temperature decrease
over these regions. The explained covariance of EOF1 is 63%, while it is only 12%
for EOF2 (Fig. 2.2). The warming trend shown in Fig. 2.1b is largely explained by
the EOF1 with a linear increase (Fig. 2.2¢). Besides, there is a linear increase in the
time series of EOF2 during the whole period which emphasize the warming covering
a large part of the study area (Fig. 2.2d). Combining the first two EOFs, the warming
is large over the middle to lower reaches of the river basin, with less warming over
the southeast area.

In general, both GCMs and RCMs are more accurate in space than time (Huang
et al., 2014; Sun et al., 2020), with a good ability to simulate the spatial distribution
pattern of temperature. Models tend to underestimate the annual mean temperature
in the upper and lower reaches of the Mekong River Basin, with a larger cold bias in
the cold season than in the warm season (Ruan et al., 2019). Models can capture the
warming characteristics in the basin, but the accuracy of the simulation is not good
enough (Huang et al., 2014).
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2.2.2 Precipitation Change and Variability

The climate of the LMRB belongs to the tropical monsoon (MRC, 2010). About 80—
90% of the annual total precipitation falls from May to October (Costa-Cabral et al.,
2008). The precipitation over the region is affected by Indian summer monsoon,
East Asian summer monsoon, South Asian Summer Monsoon, as well as El Nifio-
Southern Oscillation (ENSO) (Dang et al., 2020; Fan & Luo, 2019; Hasson et al.,
2013; Irannezhad et al., 2020; Résédnen & Kummu, 2013; Wang et al., 2022; Yang
et al., 2019). Tropical Cyclones also have large effects on the total precipitation,
especially in the southwest Basin (Chen et al., 2019), where GCMs have shown
reliable skill in realistically simulating the track densities of Tropical Cyclones (Chen
et al., 2020a, 2020b). On average, the northern headwater region is relatively dry
with annual total precipitation of around 500 mm, while the southeastern region is
relatively wet with annual total precipitation of more than 2000 mm (Fig. 2.3a).
Changes in annual precipitation are small during the period 1951-2017 when
averaged over the whole Basin (Liu & Wang, 2020). A large spatial-temporal varia-
tion is obvious in the changes in precipitation. There is a decreasing trend in June and
August and a small increasing trend in other months during 1951-2017 (Liu & Wang,
2020). Fan and He (2015) also show an increase in spring precipitation. Spatially,
annual precipitation has slightly increased during 1960-2009 over the upper reach of
the Mekong River, while a significantly decreasing trend has been found since 2000
(Wu et al., 2016). There are significant wetting and drying trends in annual total
precipitation over the northeastern and most westerly parts of the Mekong River
Basin during 1952-2015 (Irannezhad et al., 2020). A similar spatial pattern of the
trend in annual precipitation can be found during 1961-2005 (Fig. 2.3b). In general,
the rainy season precipitation contributes a large part to the annual total precipitation
over the Basin (Chen et al., 2018). The spatial pattern of the interannual variability
in the rainy season precipitation is highly correlated with the Indian monsoon and
Western North Pacific monsoon co-variability (Yang et al., 2019). Asian monsoon
circulation has weakened since the end of the 1970s due to the rapid warming in the
Indian Ocean (Sooraj et al., 2015), which leads to a reduction of monsoon precipita-
tion over the Basin. The less frequent tropical cyclones (Chen et al., 2019) may also
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Fig. 2.3 Same as Fig. 2.1, but for annual total precipitation (Precip; mm) from the APHRODITE
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Fig. 2.4 Same as Fig. 2.2, but for annual total precipitation from the APHRODITE

lead to a decrease in wet-season precipitation over the region. The regional increase
in precipitation can be attributed to the increase in extreme precipitations as shown
by Li et al. (2022).

The spatial pattern of the annual precipitation during 1995-2014 is similar to
that during 1961-2015 but with an overall wet difference (Fig. 2.3c). The difference
pattern between 1995-2014 and 1961-2015 is similar to the linear trend of the annual
precipitation during 1961-2015 (Fig. 2.3d).

The spatial-temporal variations of the annual precipitation over the River Basin
can be clearly seen in the two EOF patterns and the related coefficient time series
(Fig. 2.4). As can be seen in the first EOF pattern and the related coefficient time
series, there is a general increase in the annual precipitation for the whole basin
before 2009, while a decreasing trend is obvious afterwards. There is also a clear
inter-annual dipole variation in the annual precipitation between the south and middle
to the north Basin as can be seen from the second EOF pattern.

The observed spatial pattern and seasonal variation of the mean precipitation are
well captured by GCMs (Ruan et al., 2018; Wang et al., 2017). A large part of GCMs
evaluated have overestimated precipitation over the River Basin, especially during
the monsoon season (Hasson et al., 2016; Ruan et al., 2018). Ruan et al. (2018) also
pointed out that GCMs have a general failure in capturing observed trends in the wet
season (53% of GCMs failed) and the dry season (65% of GCMs failed), as well as
for annual total precipitation (44% of GCMs failed) over the lower Mekong Basin.

2.2.3 Variations and Changes in Weather and Climate
Extreme Events

The LMRB is affected by increasing frequency both in extreme precipitation and
drought, especially over the lower Mekong Basin (Liu et al., 2020; Tian et al.,
2020). Extreme precipitation has generally decreased in the upper Mekong Basin but
increased in the lower Mekong Basin during 1951-2015 (Irannezhad et al., 2021;
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Liu et al., 2020). As can be seen from Fig. 2.5, the maximum extreme precipita-
tion, maximum consecutive 5-day precipitation (Rx5day), is located over the east
of the lower Mekong Basin. There are some regions with a significant increasing or
decreasing trend in Rx5day over the lower or middle Mekong Basin respectively. The
spatial pattern of mean Rx5day during 1961-2015 is similar to that of 1995-2014,
with the anomaly pattern of 1995-2014 to 1961-2015 similar to the linear trend
during 1961-2015. There is a general increase and decrease in the spatial-temporal
variations of Rx5day over the upper/lower and middle Mekong Basin respectively
as shown in Fig. 2.6.

There is a high agreement in the trend of drought frequency over the lower Mekong
Basin. Adamson and Bird (2010) point out that Thailand, Cambodia, Laos, and
Vietnam over the lower Mekong Basin, are vulnerable to increasing droughts. Guo
etal. (2017) found an increasing trend in the frequency of drought over the north and
south parts of the lower Mekong Basin during 1981-2016, with the Mekong Delta
tending to have more long-term and extreme drought events. Lee and Dang (2019)
also show that even though there is a decrease in the frequency of drought over the
Mekong Delta during 1984-2015, there was a tendency to increase in the spatial
distribution of drought with moderate and severe droughts over the region. Tian et al.
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Fig. 2.5 Same as Fig. 2.1, but for Rx5day (mm) calculated based on daily precipitation from the
APHRODITE
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Fig. 2.6 Same as Fig. 2.2, but for Rx5day calculated based on daily precipitation from the
APHRODITE
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(2020) analyzed the temporal trend of drought over the LMRB during 1901-2019.
They found that severe and exceptional droughts occurred more frequently during
1961-2019 compared to 1901-1960 with drought hotspots located in the middle and
upper parts of the Lancang River Basin. About half of the lower reach of the LMRB
has experienced an increase in severe and exceptional droughts, which are located
principally in Thailand, east Cambodia, and part of Vietnam. The spatial distribution
of mean and linear trend in the maximum length of dry spell: maximum number of
consecutive days with RR < 1 mm (CDD) is shown in Fig. 2.7. There are two peak
centres of CDD, one over the upper and the other over the center of the Mekong Basin.
There is an increasing trend in CDD over the lower, middle and upper river basins.
There is no significant trend in CDD during 1961-2015, but with clear inter-annual
and inter-decadal variation in the CDD as shown by the EOF patterns (Fig. 2.8).

Changes in temperature extremes are shown by the maximum value of daily
maximum temperature (TXx) and the minimum value of daily maximum temperature
(TNn) (Figs. 2.9, 2.10, 2.11 and 2.12). Overall, there is an increase in both TXx and
TNn, with the increases in TNn is robust than TXx. There is even a decrease in TXx
over the southeast of the lower Mekong Basin.
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Fig. 2.7 Same as Fig. 2.1, but for CDD (days) calculated based on daily precipitation from the
APHRODITE
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Fig. 2.8 Same as Fig. 2.2, but for CDD calculated based on daily precipitation from the
APHRODITE
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Fig. 2.9 Same as Fig. 2.1, but for TXx (°C) from gridded extremes indices, HadEX 3.0.3 (Dunn
et al., 2020), which has been interpolated to the APHRODITE grid
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Fig. 2.10 Same as Fig. 2.2, but for TXx from HadEX 3.0.3 which has been interpolated to the
APHRODITE grid
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Fig. 2.11 Same as Fig. 2.9, but for TNn (°C) from HadEX 3.0.3 which has been interpolated to
the APHRODITE grid
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Fig. 2.12 Same as Fig. 2.11, but for TNn from HadEX 3.0.3 which has been interpolated to the
APHRODITE grid

2.3 Projected Future Changes by the Ensemble of RCM
Simulations

As shown in Sect. 2.2, the LMRB has experienced significant changes in climate
in the last few decades. Understanding future climate change is crucial for the
region to implement proper adaptation and mitigation measures. Application of high-
resolution RCMs is particularly important over the Basin, which is characterized by
unique weather/climate systems, complex coast lines and topography.

In this section, we report the projected climate change over the Basin based on an
ensemble of twenty-first century projections with an RCM, the RegCM4 (Fu et al.,
2021b). RegCM4 is developed and maintained by the Abdus Salam International
Center for Theoretical Physics (Giorgi et al., 2012), and is one of the most widely
used RCMs in the world.

RegCM4 was driven by five different CMIP5 GCMs and run over the CORDEX
Phase II East Asia region, covering the whole of the Basin in the simulations.
The GCMs are CSIRO-Mk3-6-0, EC-EARTH, HadGEM2-ES, MPI-ESM-MR, and
NorESM1-M. The model is run at a grid-spacing of 25 km with the simulations
covering 1971-2005, the historical period, using GHG concentrations, and 2006—
2098, the future period under the RCP4.5 pathway (Gaoetal.,2018). Here 1995-2014
is used as the reference period (present day), 2041-2060 and 2079-2098 as the mid-
and end of the twenty-first century, respectively, following the periods used in the
IPCC Sixth Assessment Report (IPCC AR6) (Lee et al., 2021).

The observation datasets of temperature and precipitation used to validate the
present day simulations are the gridded observational dataset CN05.1 (Wu & Gao,
2013) over the Lancang River Basin, together with the APHRODITE (Yatagai et al.,
2012) over the Mekong River Basin. The daily mean maximum and minimum temper-
atures employ also CNO5.1 over the Lancang River Basin, but the Climate Prediction
Center (CPC) Global Daily Temperature dataset (https://psl.noaa.gov/data/gridded/
data.cpc.globaltemp.html) over the Mekong River Basin. The model outputs and the
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CPC dataset are all bilinearly interpolated to the same grids of 0.25° (latitude) x
0.25° (longitude) as in CNO5.1 and APHRODITE.

This section focuses on the ensemble mean of temperature and precipitation during
the dry/cold season of November to March (NDJFM), the wet/warm season of May
to September (MJJAS), and the whole year. Validation and inter-comparison of the
models for both the present day period simulation and future changes between the
driving GCMs and RegCM4 are provided. Two temperature extreme indices of TXx
and TN, and two precipitation extreme indices of CDD and Rx5day are used to assess
the simulation and projections in extremes by RegCM4.

2.3.1 Validation of the Present day Simulation

Surface air temperatures from the model simulations is compared against observa-
tions for the present day period of 1995-2014. Temperatures from the ensemble of
the five GCM (ensG) and five RegCM4 (ensR) simulations along with observations
in the dry and wet season, and the whole year, are shown in Fig. 2.13. In the observa-
tions (Fig. 2.13a—c), the lower reaches of the Basin is dominated by tropical climate,
with prevailing temperatures warmer than 25.0 °C throughout the year. In the upper
reaches in the north, both latitudinal and topographic dependences are found, with the
lowest temperatures (<—10.0 °C) found during the dry season, and reaching >0 °C
during the wet season. Regional mean temperatures in the dry and wet seasons, and
the whole year are 19.9, 24.2, and 22.3 °C, respectively, over the Basin.

The broad pattern of the temperature from observation is reproduced in general
by both ensG and ensR over the region of mainland Southeast Asia (MSEA), while
ensR provides much finer spatial details, thus in better agreement with the observa-
tions (Fu et al., 2021b), although to a less extent in the River Basin (Fig. 2.13g-1).
The temperature gradient due to the steep topography over MESA is realistically
reproduced by ensR but not by ensG (Fu et al., 2021b). General cold biases prevail
in both ensG and ensR during all seasons and the annual mean, greater in the dry
than the wet season (not shown for brevity). Some small scattered warm biases are
found along the eastern edge of the lower reach of the River Basin during the wet
season and the whole year. Regional mean biases in the dry, wet seasons, and the
whole year over the Basin are —2.9, —1.0, and —1.8 °C in ensG, and —2.7, —1.3,
and —1.9 °C for ensR, respectively.

For precipitation, it is generally quite dry in the dry season over the Basin in
observations, with less than 200 mm of precipitation over most places (Fig. 2.14a).
With the monsoon dominating in the wet season, precipitation greater than 400 mm,
with maxima reaching up to 1000 mm over the eastern part, is observed (Fig. 2.14b).
The annual mean precipitation shows a similar pattern as the wet season but with
larger values (Fig. 2.14c). The mean precipitation over the Basin in the dry season,
the wet season, and the whole year are 118, 1018, and 1342 mm, respectively.

Similar to temperature, the general pattern, magnitude, and seasonal evolution
of the observed precipitation are well reproduced over MSEA and LMRB by both
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Fig. 2.13 Distribution of the present day (1995-2014) temperature over the LMRB. Observation
in the dry season (a), the wet season (b), and the whole year (c¢); simulation by the ensemble of
GCMs (ensG) in the dry season (d), the wet season (e), and the whole year (f); simulation by the
ensemble of RegCM4 (ensR) in the dry season (g), the wet season (h), and the whole year (i). Unit:
°C
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Fig. 2.14 Same as Fig. 2.13, but for precipitation. Unit: mm

ensG and ensR, while more regional details are provided by ensR compared to ensG
(Fu et al., 2021b) (Fig. 2.14d-i). In addition, the ensR even exhibits finer spatial
structure compared to the observation over the region, a result not surprising with
the sparse distribution of observation sites there. A general overestimation is found
for precipitation simulations in the model for both the dry and wet seasons, and the
annual mean, more significant in ensR. Underestimation over places of the middle
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Basin by both ensG and ensR in the dry season, and eastern part of the Basin by
ensG in the wet season and the whole year, is found. Note that the “observational”
precipitation may well underestimate the precipitation over the mountainous ranges
due to the lack of observing sites in the high altitudes, and lack of the gauge undercatch
corrections (Adam & Lettenmaier, 2003). Regional mean precipitation over the Basin
in the dry and wet seasons, and the whole year, are 126, 1123, and 1432 mm for ensG,
and 182, 1547, and 1982 mm for ensR, respectively.

The observated and the ensR simulated (ensG is not shown for brevity) extreme
indices of TNn and TXx are presented in Fig. 2.15. For the TNn observation
(Fig. 2.15a), the coldest temperatures are found over the head of the Basin (<—20 °C).
Above zero temperatures are found in other places, and reach 15 °C in southern end of
the Basin. The observed spatial pattern of TNn is well reproduced by ensR, although
with general cold biases (Fig. 2.15b). The bias is the largest, >—9.0 °C, over the
head regions, but this may be related to the sparse distribution of observing stations
there. The bias is much smaller over the lower Basin (—3.0 °C). The regional mean
values of TNn from the observation and ensR over the Basin are 7.6 and 3.3 °C,
respectively.

The values of TXx (Fig. 2.15c¢, d) range from 20 to 30 °C over the upper and 30 to
35 °C over the lower Basin. Cold biases >5 °C exist over the head regions, and a mix
of cold and warm biases within £2 °C is found over other places. Regional mean
values of TXx over the Basin for the observations and ensR are 35.5 and 34.5 °C,
respectively.

The observed CDD shows the smallest values (30—40 d) along the eastern edge
of the Basin (Fig. 2.16a). Values >50 d are located over the head regions, most of
Cambodia, and eastern Thailand. The general CDD spatial pattern is reproduced
well in ensR, but with prevailing underestimations (Fig. 2.16b), likely due to the too
many days of drizzle as commonly found in climate models. The regional mean from
observation is 46 d, while in ensR it is 30 d over the Basin.

The spatial distributions of Rx5day shows strong topographic dependences, with
greater values >150 mm mostly along the mountain ranges over the border areas
of Vietnam and Laos (Fig. 2.16¢). The topographic effect is more pronounced in
ensR, characterised by greater values, and more extended areas along the Truong
Son Mountain (Fig. 2.16d). A general overestimation of Rx5day is simulated (figure
not shown for brevity), consistently with the mean precipitation. The average over
the Basin for ensR is 177 mm, greater than the 114 mm in the observations.

2.3.2 Future Changes

Figure 2.17 shows the projected temperature change over the Basin in the dry and
wet seasons, and the whole year by the end of the twenty-first century. Substantial
warming is found, more significant in the dry compared to the wet season and over the
upper compared to the lower Basin. In the dry season, the warming in ensG is evenly
distributed, with values >2.2 °C over most of the Basin (Fig. 2.17a), while in ensR,
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Fig. 2.15 Distribution of present day (1995-2014) TNn over the LMRB in observation (a) and
simulated by ensR (b); ¢, d same as a, b, but for TXx. Unit: °C

large sub-regional variability is found, with >3.0 °C values over the source regions
with high altitudes, and <2.0 °C values over the lower Basin (Fig. 2.17d). This effect
of warming amplification with elevation has been found in previous studies, mostly
due to the response to the reduction of snow cover (e.g. Giorgi et al., 1997; Fu et al.,
2021a). The values of regional mean warming over the Basin for ensG and ensR are
2.3 °C (with inter-model spread of 1.4-3.6 °C) and 1.9 °C (0.7-2.7 °C), respectively
(Table 2.2). Thus lower region-mean warming and inter-model spread are found in
RegCM4, likely due to the same physics schemes used in all runs, which modulate
the effect of lateral boundary forcings.

The warming is lower in the wet season (Fig. 2.17b, e) for both ensG and ensR.
Again, lower warming is simulated in ensR in general compared to ensG. In ensG,
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Fig. 2.16 Same as Fig. 2.15, but for CDD and Rx5day. Units are d for a, b and mm for ¢, d

the least warming values <1.6 °C is found over the lower Basin (Fig. 2.17b). The
warming is greater over the mid- and upper-Basin, with values ranges from 2.0 to
2.4 °C. For ensR, lower than 1.6 °C warming are simulated over most of the Basin,
except in the head regions (Fig. 2.17e). The regional mean warming over the Basin
is 1.9 °C (1.4-2.5 °C) and 1.4 °C (1.0-2.2 °C) for ensG and ensR, respectively.
The projected annual mean temperature changes, either the magnitude or distri-
bution, lie between the dry and wet seasons (Fig. 2.17c, f). In ensG, the warming
ranges mostly from 2.1 to 2.4 °C over the whole Basin (Fig. 2.17¢). In ensR, more
pronounced warming in the north, with the largest values >2.4 °C, and lower in
the south, in the range of 1.4-1.6 °C, are found (Fig. 2.17f). The projected mean
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Fig. 2.17 The projected changes of temperature by the end of the twenty-first century (2079-2098)
under RCP4.5 over the LMRB. By ensG in the dry (a) and wet (b) seasons, and the whole year (c);
by ensR in the dry (d) and wet (e) seasons, and the whole year (f). The sign of the changes for the
inter-models and cross simulations are in good agreements, thus not shown for brevity. Unit: °C

Table 2.2 Regional mean changes temperature and precipitation for the dry (NDJFM), wet
(MIJJAS) seasons, and the annual mean over LMRB projected by ensR and ensG under RCP4.5 in
the mid- (2041-2060) and end (2079-2098) of the twenty-first century (relative to the present day
of 1995-2014)

Variable NDJFM MIJJAS ANN
(ensG/ensR) (ensG/ensR) (ensG/ensR)
Temperature 2041-2060 1.5/1.3 1.3/0.9 1.4/1.1
°C) (0.9-2.3/0.7-1.7) (1.1-1.6/0.5-1.5) (1.1-1.9/0.9-1.6)
2079-2098 2.3/1.9 1.9/1.4 2.1/1.6
(1.4-3.6/0.7-2.7) (1.4-2.5/1.0-2.2) (1.5-3.0/1.0-2.4)
Precipitation | 20412060 | 5/4 2/-2 3/1
(%) (=10-30/-3-12) (=2-7/—4-1) (=2-7/-2-3)
2079-2098 9/7 4/-2 6/1
(—16-33/—3-15) (—4-9/—-5-0) (2-13/—2-4)

Note Values in the brackets are the minimum-maximum in the five GCMs/RegCM4 simulations
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changes of annual temperature for ensG and ensR are 2.1 °C (1.5-3.0 °C) and 1.6 °C
(1.0-2.4 °C), respectively, over the Basin.

The regional averaged warming and the inter-model/cross simulation spreads of
ensG and ensR during the mid- twenty-first century over the Basin are also presented
in Table 2.2. The changes are in general consistent with the end of the century but
to smaller values, and with greater warming during the dry season, and in ensG
compared to ensR.

Figure 2.18 presents the precipitation changes at the end of the twenty-first century.
For ensG during the dry season, a prevailing increase over the basin is found except
in the southeastern corner (Fig. 2.18a). Values of the increase are mostly >15%, with
maxima reaching over 20%. The inter-model agreement of the sign of change is high
in the mid- and upper Basin, with greater increases there. The change of ensR shows
consistencies, except for the finer spatial detail (Fig. 2.18d). Regional changes of
precipitation for ensG and ensR are 9% (—16 to +33%) and 7% (—3 to +15%),
respectively, over the Basin (Table 2.2).

During the wet season, general increases of precipitation in ensG, with the largest
increase by >10% over the Mekong Delta are found (Fig. 2.18b), excerpt the slight
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Fig. 2.18 Same as Fig. 2.17, but for precipitation. The cross indicates at least four out of the five
GCMs/RegC4 simulations agree on the sign of change. Unit: %
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decreases by <5% in eastern part of the Basin. The changes show low inter-model
agreements in most places, except over the Mekong Delta with larger increases.
Meanwhile, the projected precipitation exhibits a general decrease in ensR over
almost all the places, with good agreement in the change sign over the places with
larger changes (>—5%) (Fig. 2.18e). The largest decrease by 10-15% is mainly
located in southeastern Thailand. The regional mean change is positive, by 4% (—4
to +9%) over the Basin in ensG, but negative by —2% (—5 to 0%) in ensR (Table 2.2).
Itis difficult to ascertain the cause of the difference, but previous studies have shown,
that models with higher resolution tend to represent the dynamics of the East Asia
monsoon better (Gao et al., 2006, 2012), and this may have an effect on the changes
projected.

In general, the pattern of annual mean precipitation change is consistent with
those in the wet season. For ensG, a general increase is found over the Basin, with
the largest increase greater than >5%, and good inter-model agreements over the
southwestern edge of the Basin (Fig. 2.18c). For ensR, a mix of positive/negative
changes within ~ £5% are found, with low coress-simulation agreements over almost
all of the region (Fig. 2.18f). The regional mean changes in annual mean precipitation
for ensG and ensR are 6% (+2 to +13%) and 1% (—2 to +4%), respectively, over
the Basin (Table 2.2).

The projected regional mean precipitation changes over the Basin during the mid-
twenty-first century are about half as large as by the end of the century for ensG, and
during the dry season for ensR. Closer values for the changes in ensR between the
mid- and end of the century during the wet season and the whole year (Table 2.2).

Figure 2.19a, b show the distributions of projections in the temperature extreme
indices, TNn and TXx, at the end of the twenty-first century from ensR. The change
of both TNn and TXx show significant increases under the warming, indicating
fewer cold events and more frequent heat waves in the future. For TNn, the increases
are greater over the high-latitude and high-altitude regions, with values of increase
>3.0 °C (Fig. 2.19a). This is possibly caused by the reduction in snow cover and thus
the snow albedo feedback effect. The increase tend to be much lower to the south,
range from ~1.0 to 2.0 °C. The increases in TXx show inhomogeneously distributions
(Fig. 2.19b), with values greater than 2.0 °C found over the upper and middle Basin,
and less than 1.4 °C over the Mekong Delta in the south. Regional mean changes for
TXx and TNn are 1.8 °C (0.9-2.6 °C) and 2.1 °C (1.7-2.9 °C), respectively, over the
Basin (Table 2.3).

Changes in CDD and Rx5day by the end of the twenty-first century are shown
in Fig. 2.19c, d, respectively. For CDD, a pronounced increase over a broad area in
the middle and lower Basin, including northern Laos, eastern Thailand, and most of
Cambodia, is found, with increases ranges from 2 to 4 days (10-25%) in correspon-
dence with the generally decreased precipitation in the wet season and consequently
the whole year (Fig. 2.18), although with low cross simulation agreements. Mean-
while, CDD is projected to decrease by 2—4 days over the upper Basin and the eastern
part of middle Basin.



30

(a) TNn, ensR

35N

25N

20N

90E 95€

35N

100E  105E

(e) CDD, ensR

110E

30N 1

25N

20N

15N 1

10N

90E 95E

100E

105E

110E

X. Gao et al.
o (b) TXx, ensR
30N
3.5
25N 3
25
20N 4 2
1.5
15N 1 1
10N+
90E 95E  100E 105  110E
= (d) RxSday, ensR
20
30N 1
15
25N 19
5
20N 1 0
-5
15N 1 -10
-15
10N 4
90E 95E  100E 105  110E

Fig. 2.19 The projected changes of TNn (a), TXx (b), CDD (c¢) and RX5day (d) by the end of
the twenty-first century under RCP4.5 over the MRB in ensR. The cross indicates at least four out
of five GCMs/RegCM4 simulations agree on the sign of change. Units are: °C, °C, day, and %,

respectively

Table 2.3 Projected regional mean changes of TNn, TXx, CDD, and Rx5day over LMRB by ensR
at the mid- (2041-2060) and end (2079-2098) of the twenty-first century under RCP4.5

Periods/variable TNn (°C) TXx (°C) CDD (days) Rx5day (%)

2041-2060 1.3 1.5 0.4 5.6
(1.1-1.8) (1.1-2.0) (—0.8-1.8) (0.2-14.5)

2079-2098 1.8 2.1 -0.3 8.4
(0.9-2.6) (1.7-2.9) (—1.8-1.4) (—1.1-16.8)

Note The values in brackets are the minimum-maximum in the five GCMs/RegCM4 simulations
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The Rx5day is projected to increase by 10-25% over the upper and lower Basin,
with the largest increase >50% found over the Mekong Delta with good cross simu-
lation agreements (Fig. 2.19d). For the middle Basin, the change is a decrease by
5-15%. Comparison with change of CDD (Fig. 2.19c¢), both increases in CDD and
Rx5day are found over lower Basin, suggesting the greater risk of the increase in
both flood and drought disasters over the area in the future. Regional mean changes
of CDD and Rx5day are —0.3 d (—1.8 to +1.4 d) and 8.4% (—1.1 to +16.8%),
respectively, over the LMRB (Table 2.3).

2.4 Multi-model Simulations, Projections and Uncertainty
Analysis

2.4.1 Evaluations of Historical Simulations

The spatial distributions of annual total precipitation and annual mean tempera-
tures from the 16 CMIP6 models (Table 2.4) and APHRODITE observations over
the LMRB are shown in Figs. 2.20 and 2.21. Generally, both the observed annual
total precipitation and annual mean temperature exhibit an increasing gradient from
the north to south of the Basin. Most CMIP6 models can reproduce the spatial
distribution of annual temperature over the LMRB, despite there being slightly
consistent cold biases for most models. The multi-model mean results are notably
similar to observations in most regions, and the biases are relatively smaller than
those of most individual models. In contrast, precipitations estimated by various
CMIP6 models exhibit larger differences, and most models overestimate the precipi-
tation compared with the APHRODITE observations. The BCC-CSM2-MR, CESM-
WACCM, CESM2, CanESM5, GFDL-ESM4, UKESM1-0-LL models especially
overestimate the annual total precipitation in the southern part of the LMRB.
Similarly, CMIP6 model mean precipitation estimation behaves better than most
individual models.

The agreement between model-simulated and observed precipitation and temper-
ature was further evaluated through the Taylor diagrams, considering their spatial
correlations, root-mean-square differences, and the amplitude of their variations
(represented by their standard deviation). Figure 2.22 shows the precipitation and
temperature Taylor diagram for the climatology of the period 1995-2014 for indi-
vidual CMIP6 models and model mean over the LMRB. Based on the Taylor
diagrams, most models show good performance for temperature, with a correlation
coefficient typically >0.9 and a close match to the APHRODITE observations. Also,
most of the models exhibit a ratio of the standard deviations that is close to 1, and the
centred pattern RMSE difference range was 0.2-0.3. Comparatively, CAMS-CSM1-
0, CESM2-WACCM, CESM2, and UKESM1-0-LL perform better over the LMRB.
IPSL-CM6A-LR and FGOALS-g3 present relatively poor performance compared to
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Table 2.4 List of 16 CMIP6 models in this study and their spatial resolution
Model name Modeling center Spatial
resolution
BCC-CSM2-MR | Beijing Climate Center, China 320 x 160
CAMS-CSM1-0 Chinese Academy of Meteorological Sciences, China 320 x 160
CESM2-WACCM | National Center for Atmospheric Research, Climate and 288 x 192
Global Dynamics Laboratory, United States
e National Center for Atmospheric Research, Climate and 288 x 192
Global Dynamics Laboratory, United States
CNRM-CM6-1 National Centre for Meteorological Research, France 256 x 128
CNRM-ESM2-1 National Centre for Meteorological Research, France 256 x 128
CanESM5 Canadian Centre for Climate Modelling and Analysis, 128 x 64
Environment and Climate Change Canada, Canada
EC-Earth3-Veg EC-Earth Consortium, Europe 512 x 256
EC-Earth3 EC-Earth Consortium, Europe 512 x 256
FGOALS-g3 LASG, Institute of Atmospheric Physics, Chinese Academy | 180 x 80
of Sciences, China
GFDL-ESM4 National Oceanic and Atmospheric Administration, 288 x 180
Geophysical Fluid Dynamics Laboratory, United States
IPSL-CM6A-LR Institut Pierre Simon Laplace, France 144 x 143
MIROC-ES2L JAMSTEC (Japan Agency for Marine-Earth Science and 128 x 64
Technology), AORI (Atmosphere and Ocean Research
Institute, The University of Tokyo), NIES (National Institute
for Environmental Studies) and R-CCS (RIKEN Center for
Computational Science), Japan
MIROC6 JAMSTEC, AORI, NIES and R-CCS, Japan 256 x 128
MRI-ESM2-0 Meteorological Research Institute, Japan 320 x 160
UKESM1-0-LL Met Office Hadley Centre, United Kingdom 192 x 144

other models. In contrast, most CMIP6 models do not perform very well in repre-
senting historical precipitation. The correlation coefficient is between 0.2 and 0.7,
RMSE is between 0.9 and 1.5 and the standard deviation is around 1. The corre-
lation coefficients of only three models including EC-Earth3, EC-Earth3-Veg, and
IPSL-CM6A-LR are greater than 0.6. These three models along with CMIP6 mean
were taken out for future investigation as shown in Fig. 2.23. It shows that the annual
total precipitation of the APHRODITE is around 1200 mm whereas the annual total
precipitation of three CMIP6 models and model mean are around 1450-1550 mm.
This indicates that even the best CMIP6 models overestimate precipitation by more
than 25% and most CMIP6 models do not perform well in precipitation estimation in
the southeast Asian region. Therefore, in this study, precipitation projections are not
further evaluated for the future scenarios for the LMRB. Dynamic downscaling or
bias correction techniques can be applied to derive better precipitation simulations
in the future but they are beyond the scope of this study.
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Fig. 2.20 Spatial distributions of annual total precipitation from 16 CMIP6 models, ensemble
averages, and APHRODITE observations over the LMRB for the 1995-2014 average

Figure 2.24 shows 10-year moving average values for annual mean temperature
for the ensemble of the 16 models and for the observations. The analysis shows
that the observed annual mean temperature lies within the 5th-95th percentile range
of CMIP6 multi-model ensembles, implying that there is consistency between the
observed record and the CMIP6 models. Additionally, the CMIP6 historical simula-
tions can reproduce the observed annual temperature warming trends in the LMRB,
although with a slight positive bias.
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Fig. 2.21 Spatial distributions of annual mean temperatures from 16 CMIP6 models, ensemble
averages, and APHRODITE observations over the LMRB for the 1995-2014 average

2.4.2 Projected Changes in Temperature for the Twenty-First
Century

2.4.2.1 Annual Mean Temperatures

In this section, future changes in temperature over LMRB in the twenty-first century
under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 pathways were presented.
Figure 2.25 depicts the spatial patterns of climatological changes in mean tempera-
ture, utilizing multi-model ensemble averages for two distinct periods, mid-century
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Fig. 2.22 Taylor diagrams for climatological of annual precipitation and temperature over the
LMRB comparing each of the CMIP6 models and the observations for the period 1995-2014. The
radial coordinate is the magnitude of the standard deviation (denoted by black arcs). The concentric
green semi-circles denote root-mean-square difference (RMSD) values. The angular coordinate
shows the correlation coefficient (denoted by dotted black lines)
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Fig. 2.23 Annual total precipitation for the three best models (correlation coefficient >0.6), CMIP6
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Fig. 2.24 Time series of 10-year moving average annual surface mean temperature from the CMIP6
models and APHRODITE observational dataset during 1961-2014 (blue line and shading: CMIP6;
black line: APHRODITE). The trends are calculated for the observations and the CMIP6 ensemble
mean during 1961-2014. The shading indicates the ensemble spread (range between the Sth and
95th quantiles). The liner trends are given on top of the time series

(2041-2060) and end of the century (2081-2100), relative to the baseline (1995—
2014). The multi-model ensemble mean has been developed for assessing the
projected changes.
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Fig. 2.25 Spatial distribution of changes in annual mean temperature over the LMRB in mid-
(2041-2060) and long-term (2081-2100) periods of the twenty-first century, relative to 1995-2014,
under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. Unit: °C
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Projections from the CMIP6 ensemble mean indicate a persistent trend of temper-
ature elevation across the LMRB. In the simulations, the Lancang River Basin will
undergo the greatest absolute temperature increases, while the Southern Mekong
River Basin will experience weaker warming. Throughout the mid-term period
(2041-2060), different scenarios do not lead to dramatically changed temperature
responses under SSP1-2.6, SSP2-4.5, and SSP3-7.0, with most regions observing
a temperature elevation lesser than 1.5 °C. However, under the SSP5-8.5 scenario,
the temperature increase is generally about 2.0 °C over the Basin, and the increase
exceeds 2.0 °C in the Lancang River. By the end of the this century (2081-2100),
the projected annual mean temperature increase is significantly larger than the
increase for the mid-term period (2041-2060) in all four scenarios. Meanwhile,
the increasing temperatures under the SSP5-8.5 and SSP3-7.0 scenarios are more
pronounced than under SSP2-4.5 and SSP1-2.6. The temperature changes under the
low-forcing sustainability pathway (SSP1-2.6 scenario) are relatively small, with
increases generally remaining within 2.0 °C. Compared with SSP1-2.6, ubiquitous
temperature increases of 0.7-1.7 and 1.7-3.5 °C are apparent under the SSP2-4.5
and SSP3-7.0 projections, respectively. Additionally, under the SSP5-8.5 scenario,
the increase exceeds 4.0 °C over most of the LMRB, and it exceeds 6.0 °C over the
Lancang River Basin.

Temporal evolution from 1901 to 2100 of the annual mean temperature changes
derived from the multi-model mean over the LMRB is shown in Fig. 2.26, together
with their inter-model spreads. All the scenarios exhibit significantly increasing
temperatures during the twenty-first century. The SSP5-8.5 scenario exhibits the
largest increasing trend, at a rate of 0.06 °C/yr. The SSP3-7.0 and SSP2-4.5 scenarios
each show a smaller increasing trend, at a rate of 0.04 and 0.03 °C/yr, respectively.
As the lowest-pathways scenario, the SSP1-2.6 experiment projects the lowest rate
(0.02 °C/yr) of temperature increase.
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Fig. 2.26 Time series of changes in annual mean temperature over the LMRB during 1961-2100
relative to the period 1995-2014. The black, green, blue, red, and purple curves represent the results
of the CMIP6 ensemble mean for the historical period and for the SSP1-2.6, SSP2-4.5, SSP3-7.0,
and SSP5-8.5 scenarios, respectively. The shaded areas are the spreads from the 25th to the 75th
percentiles of the annual mean temperatures
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2.4.2.2 Projected Changes in Seasonal Temperatures

To further quantify the seasonal temperature changes with respect to the historical
period for mid- and long-term periods of the twenty-first century under SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, the seasonal temperature changes were
summarized and compared by boxplots (Fig. 2.27), where the inter-model range is
represented by the vertical whiskers in the box. In general, the seasonal temperature
changes show a large and continuous increase with the increase of future emissions,
and the uncertainty ranges also gradually increase. For both mid-term and long-term
periods, spring (March—May, around 5.6 °C under SSP5-8.5) and summer (June—
August, around 5.1 °C under SSP5-8.5) show greater temperature changes than winter
(December—January, around 4.5 °C under SSP5-8.5) and fall (September—November,
around 3.9 °C under SSP5-8.5) relative to historical periods. Under the scenarios of
SSP2-4.5, SSP3-7.0, and SSP5-8.5, the temperature changes of the four seasons in
the long-term period will increase significantly compared with that in the mid-term
period. For SSP1-2.6, the CMIP6 models exhibit few temperature increases between
the long-term period and the mid-term period. And in winter and summer, CMIP6
models show a smaller model range of temperature increases in the long-term period
than mid-term period, which indicates a smaller uncertainty in long-term projections
under SSP1-2.6.

Figure 2.28a, b show the pattern of the CMIP6 mean inter-seasonal temperature
changes for the mid- and long-term period, respectively. For RCP4.5, the CMIP6
mean displays the possibility of large temperature increases during December,
January, April, and May under four future scenarios, and smaller increases during
July and August. The CMIP6 mean projects quite a large increase in temperature
during the long-term period under SSP2-4.5, SSP3-7.0, and SSP5-8.5. It can be seen
from Fig. 2.28b that the largest increase in temperature (greater than 4.5 °C under
SSP5-8.5) is projected for April and May, while temperatures increase by smaller
amounts (around 4.0 °C under SSP5-8.5) in July and August. In the SSP1-2.6 case,
the CMIP6 mean shows the possibility of a lower increase in temperature than those
under the medium and high future scenarios.

2.4.2.3 Projected Changes in Temperature Extremes

Four temperature extremes indices (Table 2.5), as recommended by the Expert Team
on Climate Change Detection and Indices (ETCCDI), have been chosen to evaluate
future changes in daily maximum (TX) and daily minimum (TN) temperatures from
1951 to 2099. These encompass three hot indices (annual maximum value of TX,
TXx; the percentage of warm days, TX90p; and the percentage of warm nights,
TN90p) and one cold index (annual minimum value of TN, TNn), which together
can characterize the intensity and frequency of temperatures extremes.

Figures 2.29 and 2.30 depict the spatial distributions of projected changes in
indices of temperature extremes over the LMRB during the mid- and long-term
periods of the twenty-first century. Each index of extreme temperatures is are
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Fig. 2.27 The box and whisker plots show seasonal temperature changes for mid-term (2041-2060)
and long-term (2081-2100) periods of the twenty-first century with respect to the base period 1995—
2014 under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. Boxes indicate the interquartile
model spread (25th and 75th quantiles), with the horizontal line indicating the ensemble median
and the whiskers showing the total inter-model range. The ensemble means are indicated using red
and blue crosses
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Fig. 2.28 Inter-seasonal temperature changes illustrated by the multi-model ensemble for a mid-
term (2041-2060) and b long-term (2081-2100) periods of the twenty-first century, relative to
1995-2014, under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. Unit: °C

projected to show prominent increases over the LMRB, exhibiting more intense
warming in the SSP5-8.5 scenario. For TXx, The most remarkable warming is
predominantly projected in the Lancang River Basin. Relative to the reference period,
the mid-term and long-term warming of TXx in SSP5-8.5scenario increased by
around 2.5 and 5.0 °C, respectively. Regarding TNn, the most intense warming
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Table 2.5 Definitions of the extreme temperature indices employed in this section

Label |Index |Index definition Units
name

TXx Max | Annual maximum value of daily maximum temperature °C
TX

TNn Min | Annual minimum value of daily minimum temperature °C
TN

TX90p | Warm | Percentage of days when the daily maximum temperature is above the | %
days | 90th percentile for the base period 1961-1990

TN9Op | Warm | Percentage of days when the daily minimum temperature is above the | %
nights | 90th percentile for the base period 1961-1990

also occurs in the Lancang River Basin in the future scenarios, with magnitudes of
around 3.5 and 8.0 °C under the SSP5-8.5 scenario during the middle and end parts
of this century, exceeding the increases in TXx. A pronounced increase in warm days
(TX90p) and warm nights (TN90p) is projected to increase greatly over the southern
Mekong River Basin under all SSP scenarios (around 80 and 100% for SSP5-8.5,
respectively) by the end of the twenty-first century. The robust projected increases
of these four indices over the LMRB suggests a potential risk of intensified temper-
ature extremes adversely affecting natural and social systems, in light of accelerated
emission trajectories. Nevertheless, consistent with the changes in mean tempera-
tures previously discussed, the indices of extreme temperatures also appear to exhibit
minimal variations over time under the SSP1-2.6 scenario, reflecting the potential
efficacy of anticipated climate mitigation and adaptation strategies associated with
this scenario.

To identify the inter-annual variability under different scenarios, Fig. 2.31 show
the temporal evolution of regional average annual temperature extremes indices
over the LMRB during 1961-2099. Generally, the CMIP6 models exhibit increasing
trends in annual TXx, TNn, TX90p, and TN90p throughout the twenty-first century.
Across all scenarios, a more pronounced enhancement is observed in TXx relative to
TNn. By twenty-first century end, the multi-model mean projected increases in TXx
and TNn are, respectively, 0.01 and 0.01 °C/yr in SSP1-2.6, 0.03 and 0.03 °C/yr in
SSP2-4.5,0.05 and 0.05 °C/yr in SSP3-7.0, and 0.07 and 0.06 °C/yr in SSP5-8.5. The
increasing trends of TN90p are greater than that of warm days (TX90p), likely due to
amplified water vapour and radiative feedbacks at lower air temperatures. Towards
the end of the twenty-first century, the warming trends for TX90p and TN90p over
the Basin are 0.15 and 0.20%/yr for SSP1-2.6, 0.38 and 0.45%!/yr for SSP2-4.5, 0.57
and 0.57%/yr for SSP3-7.0, and 0.69 and 0.72%/yr for SSP5-8.5.

It is noticed that the observed trend of TNn is larger than that of TXx (Figs. 2.9b
and 2.11b), but the simulated future changes of TXx are higher than those of TNn
(Fig. 2.13). In fact, the observed warming is much faster in TN (homogeneously) than
the TX, which is similar to the observed change in global temperature as shown in
I[PCC ARG (Fig. 11.2 in Chap. 11 of IPCC ARG6). This is associated with a decrease in
the diurnal temperature range (DTR). Various localized factors such as cloud cover,
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Fig. 2.29 Spatial distributions of projected changes in annual mean max TX (TXx), min TN (TNn),
warm days (TX90p), and warm nights (TN90p) for the mid-term (2041-2060) period relative to
the reference period 1995-2014 under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios.
Note that TX90p and TN90p are displayed as absolute exceedance rates
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Fig. 2.30 Spatial distributions of projected changes in annual mean max TX (TXx), min TN (TNn),
warm days (TX90p), and warm nights (TN90p) for the long-term (2081-2100) period relative to
the reference period 1995-2014 under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios.
Note that TX90p and TN90p are displayed as absolute exceedance rates

soil moisture, and precipitation significantly influence the DTR variations (Davy
et al., 2017). Future projections imply that modifications in these local conditions
could potentially amplify the DTR, marking a reversal from the current observed

patterns.
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Fig. 2.31 Time series of changes in annual mean max TX (TXx), min TN (TNn), warm days
(TX90p), and warm nights (TN90p) over the LMRB during 1961-2100 relative to the period 1995—
2014. (Note that the time series for TX90p and TN90p are displayed as an absolute exceedance
rate). The black, green, blue, red, and purple curves represent the results for the CMIP6 ensemble
mean for the historical period and the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios,
respectively. The shaded areas are the spreads from the 25th to the 75th percentiles of the annual
mean temperature extreme indices
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Abstract This chapter assesses surface water changes due to climate change
and human activities, by particularly examining runoff and streamflow. Changes
in the hydrological cycle due to climate change and human intervention can lead to
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diverse environmental impacts and risks. Fresh water is the agent that delivers many
of the impacts of climate change on society. As the major component of fresh-
water systems, surface water has been significantly altered across basins in terms of
spatial and temporal characteristics. The comprehensive understanding of the current
status of surface water in the LMRB, such as the distributions and patterns of runoff
changes across the Lancang-Mekong River Basin was completed through the high-
resolution river network extraction and sophisticated hydrological models. Signif-
icant but different trends were found in the seasonal and annual runoff from
the LMRB due to different reasons. Over the period of 1971-2010, the annual
streamflow shows a general downward trend due to the continued enhancement
of human activities. Runoff in the dry season is found to increase faster than the
mean annual runoff. As for the spatial distribution, significant trends in streamflow
were observed mainly in the middle basin and east of the lower basin. Superim-
posed on the substantial seasonal cycles is the noticeable lake shrinkage in recent
years, especially the Tonle Sap Lake. Evidently decreased inundation was found in
most years in the recent two decades from 2000 to 2018. An evident decreasing
trend in runoff caused by climate change in the high correlation zone of the Tonle
Sap Lake, mainly due to the precipitation decreasing, indicates that climate change
contributed to the decrease in water level in the Tonle Sap Lake in addition to human
activities. In addition to the decreases in the runoff, streamflow and water level in
the Tonle Sap Lake, a significant (p < 0.05) downward trend in the baseflow was
also found from 1980 to 2007. Unlike the historical changes in runoff, previous
studies projected with high confidence an increasing trend for streamflow in the
LMRB, regardless of the climate forcings and models used. However, the flow
regime is highly susceptible to a variety of drivers, e.g., dam construction, irrigation
expansion, land-use change and climate change. Substantial changes are expected
in both annual and seasonal flow, along with a generally increasing trend. Although
hydropower development exhibits a limited influence on total annual flows, it has
the largest seasonal impact on streamflow, with an increase in the dry season and a
decrease in the wet season, by outweighing those of the other drivers.

3.1 Introduction

Despite rich water resources (~8,000 m*/cap/yr), the LMRB faces significant chal-
lenges due to the high variability in runoff, both in terms of timing and location
(MRC, 2010). It is imperative to comprehend how runoff patterns respond to the
impacts of climate change and human interventions. This understanding is crucial
for ensuring the availability of water, food, and energy resources in the region, as
well as for achieving long-term sustainability. Therefore, a thorough assessment of
changes in the runoff regime of the LMRB is necessary to assist in understanding
the influence of regional climate changes and human activities on water availability.

The LMR originates in the Tibetan Plateau, a region that is extremely sensitive to
climate change (Chen et al., 2015; Kuang & Jiao, 2016). Climate change has already
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left a significant imprint on the hydrology of the LMRB in recent decades (Lyon et al.,
2017; Phi Hoang et al., 2016). Over the past half century, the basin has experienced
increased temperatures as well as increased rainfall during the flood period and
reduced rainfall during the dry period. Additionally, the rapid economic growth,
rising food demands, and increasing energy requirements in riparian countries have
driven substantial changes in land use and land cover, especially due to extensive
agricultural expansion and hydropower development across the basin (Johnston &
Kummu, 2012). Climate change and human interventions have substantially reshaped
the basin’s runoff patterns, resulting in more frequent extreme events and extended
dry periods (Thilakarathne & Sridhar, 2017). The lack of upstream inflow during
the dry season exacerbates the risk of saltwater intrusion, impacting downstream
delta ecosystems, domestic water supplies, and agricultural production (Smajgl et al.,
2015). Simultaneously, intense and widespread precipitation events have led to severe
flooding, causing damage to crops and infrastructure, and disrupting the functions
of the downstream delta (Cosslett & Cosslett, 2014).

The changes in the runoff regime of the basin have led to the degradation of
essential natural resources in the region, including fish, water, and land, upon which
millions of people depend (Chea et al., 2016). In addition, the climate change impact
on water has been projected to intensify in the near future, and the spatial and
year-to-year distribution will be more uneven in the basin (Hoang et al., 2019).
Superimposed by the effects of human activities, thereby challenging sustainable
development in the region. Therefore, there is an urgent need to deepen our under-
standing of changing runoff patterns to facilitate collaborative efforts across borders
and synthesize scientific advancements for the benefit of the region’s sustainable
future.

3.2 Runoff Changes in the Basin

3.2.1 River Networks Geometry in the Basin

The geometry of river networks fundamentally constrains the discharge process and
thus has prominent impacts on water resource distribution. An expanded role for river
networks is increasingly recognized due to more evidence that small streams process
and store considerably more terrestrial materials than previously thought. However,
the attempts to elucidate changes in terrestrial materials, including runoff, in a basin
have been limited by modelling and observation at coarse resolutions. With Earth
Observation (EO) data increasingly available, this section presents a novel imagery-
based methodology to measure the geometry of river networks at finer resolutions
and of more dimensions. Using the proposed methodology, the high-resolution river
network geometric features including river networks, surface area, width, and depth
have been delineated, which contribute to a more complete understanding of the
distributions and patterns of the runoff changes across the LMRB.
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3.2.1.1 River Networks

The extraction of river networks plays a pivotal role in addressing fundamental
inquiries pertaining to the hydrological dynamics of a watershed’s surface. This prac-
tice, deeply rooted in the field of hydrology, has traditionally been employed for the
purpose of river flow modeling (David et al., 2011; Lin et al., 2018; Yamazaki et al.,
2013). Nevertheless, the utilization of high-resolution drainage networks has seen
a steady rise, finding applications not only in the realm of large-scale hydrological
predictions but also in spatially comprehensive research endeavors. These include
the evaluation of flood inundation, dam failure scenarios, and reservoir operations
(Lehner & Grill, 2013; Shin et al., 2020; Yamazaki et al., 2019). Such applications
hold particular significance in enhancing our comprehension of runoff patterns and
water resource management within the watershed.

To extract high-resolution river networks for the LMRB that further facilitate
surface water assessments, a new method is proposed, namely Remote Sensing
Stream Burning (RSSB) (Wang et al., 2021). Enabled by RSSB, the basin-scale
drainage networks are extracted at the highest 10-m resolution with the integration
of Sentinel-2 imagery (Fig. 3.1). Compared to river networks, drainage networks
provide additional flow information, such as flow direction and flow accumulation.

Table 3.1 illustrates the distribution of river length and river network density for
drainage networks extracted using the RSSB method. It is observed that both river
length and network density exhibit a general adherence to the conventional power
law pattern, as documented by Leopold and Maddock (1953). Of particular note is
the high-resolution approach, which successfully delineates nine stream orders (w
= 9) in contrast to the coarse-resolution method. This observation underscores the
efficacy of the newly proposed technique, as it not only enhances the accuracy of
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Fig. 3.1 Lancang-Mekong River networks extracted by RSSB (r represents the curvature radius of
a meander). The river order is shown in Strahler stream order
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Table 3.1 Statistics of Lancang-Mekong River networks, including stream order w (in Strahler
order), number n,, mean length Lyean, total length Lo, and the river networks density D

Order Lancang-Mekong river networks
@) ne Linean Liotal D
(km) (km) (km km~2)
1 516,095 0.19 97,756 0.815
2 239,744 0.19 44,963 0.375
3 132,648 0.18 23,922 0.199
4 77,973 0.17 13,073 0.109
5 42,178 0.16 6,891 0.057
6 21,331 0.16 3,450 0.029
7 10,623 0.16 1,676 0.014
8 5,152 0.14 744 0.006
9 2,331 0.15 431 0.004
Total 1,048,575 0.18 192,907

flowline representation but also substantially augments the level of detail within the
network.

3.2.1.2 Surface Water Area

Surface water area is one of the most perceivable indicators of water resources,
offering a means to conduct quantitative assessments of human-induced modifica-
tions within a watershed, such as the linkage between river engineering and lake
losses, and the coupling of water loss with long-term droughts (Pekel et al., 2016).
Such applications aid in categorizing transitions in land surfaces, including conver-
sions from land to water, water to land, the permanence of land, or the enduring
presence of water, as described by Donchyts et al. (2016). These analyses provide
essential support for research and evaluations related to flood inundation, land recla-
mation, and sea-level rise, particularly in regions of environmental and societal signif-
icance (Miiller et al., 2016). Additionally, the detection of water plays a pivotal role
as an initial step in numerous applications, including the mapping of land-use and
land-cover (Arino et al., 2012; Chen et al., 2014), predicting waterborne epidemic
disease (Smith et al., 2013), managing flood hazards, estimating water scarcity and
assessing water quality (Dottori et al., 2016; Liu et al., 2016; Olmanson et al., 2016;
Vanham et al., 2018).

The surface water area of the basin is highly fluctuating (Fig. 3.2). The total surface
water area estimated by MuWI method based on both Landsat and Sentinel-2 data
(Wang et al., 2018) is approximately between 20,000 and 30,000 km?. Variations
in surface water area are generally synchronized with the flood and drought cycle
in the basin. For example, a devastating flood occurred in 2000 when the surface
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Fig. 3.2 The total monthly surface water area in Lancang-Mekong River basin

water area was high, while the 2015 drought, the most severe drought in the past
three decades, coincided with a low surface water area. The frequency of the cycle
appears to have decreased and stabilized in the past decade, which may imply that
the regulation capacity of the increasing number of dams has come into effect.

Surface water areas are disproportionally distributed in the six countries within
the transboundary basin (Fig. 3.3). Although more than one fifth (21.5%) of the basin
lands are located in China, China shares an insignificant portion of the total surface
water area (3—5%). In contrast, the downstream country, Cambodia, holds less basin
land than China, but accounts for the most surface water area (55-60%) among the
six countries.
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Fig. 3.3 The yearly average surface water areas of six countries in the Lancang-Mekong River
basin
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3.2.1.3 River Width and Bathymetry

The river width and river bathymetry (depth) are the two fundamental geometric
dimensions of the river networks. The river expands geometrically downstream due
to erosion from the accumulated flow. This geometric expansion with the increasing
flow often follows a power-law relationship, which is recognized as the well-known
theory of hydraulic geometry (Leopold & Maddock, 1953). The river width and
depth of the LMR (Fig. 3.4) follow the pattern of expansion in general where the
magnitude of the major stem is considerably larger than tributaries.

In particular, the LMRB is characterised by diverse fluvial geomorphology with
valley-constrained regions upstream and bedrock-constrained areas downstream
(Meshkova & Carling, 2012). The gradient of the upper Lancang River is approxi-
mately 2 m/km, more than ten times that of the lower Mekong River, indicating that
more convergent topography exists upstream while divergent but well-defined banks
are prevalent downstream (Pokhrel et al., 2018a, 2018b). Therefore, the upstream
river channels are relatively narrow but deep.

River width (m)

™

Fig. 3.4 Width and depth of the Lancang-Mekong River
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3.2.2 Runoff Modelling in the Basin

3.2.2.1 Runoff Simulation with WAYS

Hydrological models are the most common tools for runoff simulation. They simplify
the characterisation of real-world systems and describe the rainfall-runoff relations.
Hydrological components and water storage in land surface, soil, and groundwater
reservoirs are idealised in the model (Bierkens, 2015). In the basin considered here,
the runoff is simulated by a sophisticated large-scale hydrological model, WAYS
(Water And ecosYstem Simulator) that considers the spatial heterogeneity of the
root zone during the hydrological simulation (Mao & Liu, 2019). The WAY'S model
is developed by the core members of the Strategic Priority Research Program of the
Chinese Academy of Sciences “Climate Change and Water Resources in the Great
River Regions in Southeast and South Asia” (project number XDA 20060400), and
is tailored for the hydrological processes modelling in the basin.

WAYS is a process-based hydrological model, implemented in Python, which
assumes water balance at the grid cell level and simulates the hydrological processes
in a fully distributed way. The WAYS model works on a daily time step, and the
model structure consists of five conceptual reservoirs: the snow reservoir Sw (mm)
representing the surface snow storage, the interception reservoir Si (mm) expressing
the water intercepted in the canopy, the root zone reservoir Sr (mm) describing
the root zone water storage in the unsaturated soil, the fast response reservoir Sf
(mm), and the slow response reservoir Ss (mm). Two lag functions are applied to
describe the lag time from the storm to peak flow (TlagF) and the lag time of recharge
from the root zone to the groundwater (TlagS). In addition to the water balance
equation, each reservoir also has process functions to connect the fluxes entering
or leaving the storage compartment (so-called constitutive functions). A schematic
representation of how the hydrological processes are modeled in WAYS is shown
in Fig. 3.5. Traditional hydrological models simulated soil hydrology with a layer-
based scheme that cannot reflect the influence of the heterogeneity in the root zone,
but the WAY'S model assimilates the separately derived root zone storage capacity
and thus is able to consider the impacts of the spatial heterogeneity of root zone in
soil hydrology. More details about WAY'S can be found in Mao and Liu (2019).

Using the newly developed WAY S model, some basic hydrological variables, such
as precipitation, temperature, and specific humidity, were simulated from 1971 to
2010. The WAYS model depicts the dynamics of the hydrological variables every
day at a spatial resolution of 0.5°, which allows for an in-depth understanding of the
changes in the hydrological system, including the runoff changes. In order to more
intuitively represent the dynamics of the simulated hydrological variables in the
entire basin, the variables are averaged from a daily scale to a monthly scale, which
is shown in Fig. 3.6. In addition, the spatial pattern of the hydrological variables can
also be revealed based on the simulations (see Fig. 3.7).
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Fig. 3.5 Model structure of the WAYS model (Mao & Liu, 2019)
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Fig. 3.6 The observed (precipitation) and simulated (Runoff, Evaporation, and Root Zone Water
Storage (RZWS)) time series of fundamental hydrological variables at a monthly scale

3.2.2.2 Runoff Simulation with a Multi-model Framework

In addition to the WAYS model, nine other state-of-the-art large-scale models
(CLM4, DBH, HO8, LPImL, MATSIRO, MPI-HM, PRC-GLOBWB, VIC, and
WaterGAP2) were applied to simulate the runoff for uncertainty assessment.
Including the WAY S model, all the selected models participated in the second phase of
the Inter-Sectoral Impact Model Inter-Comparison Project, which offers a framework
for consistently investigating the impacts of climate change across affected sectors
and spatial scales (ISIMIP2a) (Warszawski et al., 2014). All models were driven by
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Fig. 3.7 The spatial pattern of the observed and simulated annual hydrological variables:
a precipitation, b runoff, ¢ root zone water storage, d evaporation

the same climate forcing (Global Soil Wetness Project Phase 3 data) (GSWP3) using
aspatial resolution of 0.5° from 1 January 1971 to 31 December 2010 on a continuous
run on a daily scale. The GSWP3 dataset was generated based on the 20th Century
Reanalysis Project, and has been widely used in several studies conducting hydrolog-
ical simulations (Masaki et al., 2017; Tangdamrongsub et al., 2018; Veldkamp et al.,
2017). The WaterGAP and WAY'S models were calibrated prior to the hydrological
simulation (Alcamo et al., 2003; Mao & Liu, 2019), while the other eight models
were not calibrated specifically for the ISIMIP2a simulations, and their default model
parameters were therefore used in the runoff simulations. All models were treated as
independent, although many of them shared similar structures and parameterisations:
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for example, some were similar with respect to their fundamental approach to simu-
lating evapotranspiration, representing water exchanges in soil across the basin, and
modelling snow melting. The basic differences in the models with respect to simu-
lating land-surface hydrological processes are presented in Table 3.2, and detailed
descriptions of the models applied in this work are provided by references associated
with each model cited in the table.

To assess the accuracy of the hydrological models, a rigorous verification process
was conducted. Monthly runoff data from the International Satellite Land Surface
Climatology Project Initiative IT University of New Hampshire/Global Runoff Data
Centre (ISLSCP I UNH/GRDC) were employed for validation purposes. These data,
available at a spatial resolution of 0.5° and spanning the period from 1986 to 1995,
served as a benchmark for evaluating the performance of model simulations within
the basin. The ISLSCP II UNH/GRDC dataset, often referred to as UNH-GRDC,
is a composite of runoff data generated through a combination of water balance

Table 3.2 Technical description of the ten evaluated global-scale hydrological models

Model Model | Snow melt Evapotranspiration | Number of | References
type scheme scheme soil layers

CLM4 LSM Physically Monin—-Obukhov 15 Lawrence
based snow | similarity theory etal. (2011)
module

DBH LSM Energy Energy balance 3 Tang et al.
balance model (2006)
method

HO8 HM Energy Bulk approach 1 Hanasaki
balance et al. (2008)
method

LPJmL DVM | Degree-day | Priestley—Taylor 6 Gerten et al.
method (2004)

MATSIRO LSM Energy Monin—-Obukhov 13 Takata et al.
balance similarity theory (2003)
method

MPI-HM HM Degree-day | Penman—Monteith 1 Stacke and
method Hagemann

(2012)

PRC-GLOBWB | HM Degree-day | Hamon 2 van Beek
method etal. (2011)

VIC HM Energy Penman—Monteith 3 Liang et al.
balance (1994)
method

WaterGAP2 HM Degree-day | Priestley—Taylor 1 Alcamo
method et al. (2003)

WAYS HM Degree-day | Penman—Monteith 1 Mao and Liu
method (2019)

LSM Land surface model, HM Hydrological model, DVM Dynamic vegetation model
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model estimates and the assimilation of observed discharge data from gauge stations.
While it retains the spatial characteristics of the water balance, it is influenced and
constrained by observed records from these monitoring stations (Fekete et al., 2011).
Importantly, the UNH-GRDC dataset serves as a standardized reference dataset in
the ISIMIP2a initiative for model validation purposes, as established by Warszawski
et al. (2014).

Prior to examining changes in runoff patterns, an evaluation of the hydrological
models used for runoff simulation was conducted against reference runoff data. This
evaluation commenced with an analysis of the models’ performance through the
simulation of monthly runoff time series. Subsequently, the models’ capabilities in
replicating runoff at various return periods were assessed. Results indicated that
all models were able to replicate the observed monthly runoff time series, and the
seasonal runoff cycles were particularly well duplicated by the models. However,
relatively large uncertainties were observed in high-value runoff simulations during
summer seasons (with a wider spread among the models) in comparison with the
low-value simulations (as depicted in Fig. 3.8). Although uncertainties existed in the
model simulations, the multi-model ensemble mean agreed well with the reference
runoff data. During the evaluation process, the performances of the models were
further evaluated using a set of transferrable benchmarks. In order to overcome the
problem that, generally, different metrics are only suitable for assessing individual
characteristics of a simulated time series, and to enable consistent comparisons,
six commonly used metrics were applied (the relative bias, normalised root mean
square difference (RMSD), correlation coefficient, normalised standard deviation,
centered RMSD, and the Nash—Sutcliffe coefficient of efficiency (NSE)), and some
were standardised prior to conducting comparisons. These metrics were then used
to assess the relative performance of each model in different aspects, and the results
were presented in three types of diagrams (a target, a radar, and a Taylor diagram).

300
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Fig. 3.8 Simulated basin-average monthly runoff time series by ISIMIP2a models (dashed lines),
model ensemble mean (solid blue line), and UNH-GRDC runoff reference data (solid black line)
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The ten selected models and the multi-model ensemble were evaluated to deter-
mine their ability to reproduce the observed monthly runoff time series. In addition,
the model simulated monthly runoff time series and the corresponding ensemble
mean were compared with reference data (UNH-GRDC runoff data) for the period
from 1986 to 1995 (see Fig. 3.8). Results indicated that all models were able to repli-
cate the observed monthly runoff time series, and the seasonal runoff cycles were
particularly well duplicated by the models. However, relatively large uncertainties
were observed in high-value runoff simulations during summer seasons (with a wider
spread among the models) in comparison with the low-value simulations (as depicted
in Fig. 3.8). Although uncertainties existed in the model simulations, the multi-model
ensemble mean agreed well with the reference runoff data.

Detailed model evaluations revealed that the ensemble mean of the model was
better than that of the single model in terms of monthly time series, seasonal cycles,
and runoff at different return periods. Particularly, the model ensemble mean was also
capable of modelling variability in the runoff time series. Accordingly, the model
ensemble mean was used to analyse runoff regime changes in the basin, and then
quantify the uncertainty associated with the model based on ten model simulations
(Fig. 3.9).

The comprehensive model evaluations unveiled that the model ensemble mean
displayed superior performance compared to the individual models in replicating
monthly time series, capturing seasonal cycles, and estimating runoff across various
return periods. Notably, the model ensemble mean exhibited a remarkable capacity
for modeling the variability within the runoff time series. Consequently, the analysis
of runoff regime changes within the basin was carried out using the model ensemble
mean. Subsequently, assessments were based on the results of the ten individual
model simulations to quantify the uncertainties associated with the modeling process.

3.2.3 Historical Changes in Runoff

The changes in watershed runoff in the LMRB are firstly analysed by using hydro-
logical simulations of the ten models. Based on five hydrological indicators, the
characteristics of runoff changes within the basin from 1971 to 2010 were investi-
gated. Mean Annual Runoff (MAR) was used to assess the overall runoff changes on
a yearly scale and during the wet and dry seasons, respectively. The 95th percentile
runoff (Q95) and the 5th percentile runoff (Q5) were applied to assess the high value
and low value of runoff changes in the basin, respectively, and the annual 7-day
maxima runoff (MAX-7) and annual 7-day minima runoff (MIN-7) were used to
appraise the runoff regime changes relating to extreme events (Danneberg, 2012).
Based on the model ensemble mean, the average MAR in the LMRB was approxi-
mately 655 mm/yr for the period 1971-2010 and MAR increased by 8.0% (52.61 mm)
during this period (Fig. 3.10). However, there was only a slight annual increase in
MAR, at an average rate of 0.2% (1.32 mm/yr) and the trend detected was not
significant. For the entire basin, different hydrological indicators showed different
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Fig. 3.9 Diagrams showing statistics used in model evaluations: a target diagram for relative bias
and normalised root mean square difference, b radar diagram showing the Nash—Sutcliffe coefficient
of efficiency, ¢ Taylor diagram showing the correlation coefficient, normalised standard deviation
of errors, and centered RMSD

change ratios for the period 1971-2010. All hydrological indicators from all models
demonstrated an increasing change trend for the basin, with the exception for MIN7
and Q95 indicators, which exhibited lower runoff values. However, some models
demonstrated decreased trends with the median value of multiple models indicating
an increasing trend. Models also showed relatively high agreements for change trend
detections of MAR, MAX7, Q5, and runoff in the wet season. The highest model
agreement was observed with respect to the MAR trend detection, where the smallest
spread range was found among model estimates. In contrast, large uncertainties in
model estimates were observed for change trend detections of low runoff values
(MIN7 and Q95) and runoff in the dry season, particularly the trend in the dry season,
which ranged from 7.6 to 34.9%. Overall, although uncertainties existed, the model
ensemble mean based estimates indicated that runoff in the basin increased during the
period 1971-2010 with respect to low values, high values, MAR, and runoff in both
dry and wet seasons. The change in MAR (8.1%) exhibited an increasing magnitude,
similar to the changes in MAX7 (8.5%), and Q5 (8.0%), indicating higher runoff. For
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Fig. 3.10 Changesindifferent hydrological indicators from the ten hydrological model simulations.
The box-whiskers represent the Oth, 25th, 50th, 75th, and 100th percentiles of the distribution in
changes for each hydrological indicator

the model average, low flow with respect to minimum runoff over seven consecutive
days (MIN7) and runoff that exceeded 95% of the time series (Q95) exhibited the
lowest increasing ratio with change values of 2.2 and 1.7%. Runoff during the dry
season showed the greatest increase (17.7%) for the period 1971-2010, while runoff
during the wet season increased slightly (approximately 6.2%).

Spatially, the trend in Mean Annual Runoff (MAR) exhibited a distinct gradient
across the basin, with a pronounced increasing trend in both the upper and lower basin
areas, which contrasted with the prevailing decreasing trend observed in the middle
basin. Additionally, a small region within the lower basin displayed a decreasing trend
(see Fig. 3.11). The trends observed in Maximum 7-Day Runoff (MAX7) and the 5th
percentile runoff (Q5) displayed broadly similar patterns to those of MAR. However,
when it comes to trends in low flow, specifically for Minimum 7-Day Runoff (MIN7)
and the 95th percentile runoff (Q95), there were slight variations in spatial distribution
compared to other hydrological indicators. Notably, more pronounced negative trends
were evident in the middle and lower basin regions, albeit with relatively lower local
variability.

Significant trends were observed mainly in regions that showed positive trends for
annual runoff and high flow, particularly in the lower basin. In contrast, there was a
significant negative trend for low flow and a less significant positive trend throughout
the domain, which was particularly visible in the middle and lower basin. In addition
to the differences in the significance tests, large differences were also observed in
the model agreements for trend detection with respect to annual runoff, low flow,
and high flow. For most of the region, the models consistently detected trends in
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annual runoff and high flow, aligning with the trend direction indicated by the model
ensemble mean. This alignment encompassed both positive and negative trends, with
all models demonstrating the same directional consistency. However, for low flow,
there were more noticeable inconsistencies between the model estimates of trends.
Throughout the entire domain, the models only agreed in a few pixels (mostly with
respect to a negative trend), while the disagreement among models for low flow
trends was widespread across the upper and lower basin.

In addition to our multi-model analysis of runoff changes, we provide a summary
from the literature regarding streamflow patterns. It was observed that, during the
time span from 1960 to 2010, there existed a general downward trend in annual
streamflow within the basin. However, after 2010, no clear trend was detectable,
although the confidence level associated with such a trend was low, as indicated
by Ruiz-Barradas and Nigam (2018). Most of the studies conducted on historical
streamflow in the basin reported a decreasing trend, while a minority of studies
indicated the opposite—an increasing trend in streamflow. These discrepancies in
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findings can be attributed to variations in data sources and methodologies employed
in each study, as summarized in Table 3.3.

Studies have indicated that the drivers behind streamflow alterations vary across
different regions and time periods. Climate change emerged as a primary catalyst
for changes in streamflow within the Lancang-Mekong River Basin (LMRB) before
2010, whereas human activities, particularly dam construction, became more influen-
tial after 2010. Climate change predominantly governed alterations in annual stream-
flow during the transitional period from 1992 to 2009, accounting for 82.3% of the
changes, while human activities contributed to 61.9% of the streamflow changes in
the post-impact period from 2010 to 2014, as outlined by Li et al. (2017). When
considering annual streamflow and water-level variations, the hydrological response
within the Lancang River Basin is observed to be more sensitive to climate factors
than to human activities, especially when compared to the Mekong River Basin (Li &
He, 2008). This discrepancy underscores the escalating impact of intensive human
activities on hydrological processes, particularly within the Mekong River Basin in
recent years (Shin et al., 2020).

3.2.4 Historical Impacts of Dams on Streamflow

Streamflow in the Mekong River has been altered by dams, both in the mainstream
and tributaries (Han et al., 2019; Pokhrel et al., 2018a; Ridsdnen et al., 2017; Shin et al.,
2020). Specifically, upstream flow regulation by dams has resulted in reduced peak
flow and increased low flow, attenuating the flood pulse amplitude. Such changes in
streamflow patterns at various mainstem and tributary locations within the Mekong
River Basin have been investigated by numerous studies using either observed stream-
flow records or basin-wide hydrological modelling. For example, Li et al. (2017)
examined the observed streamflow at five gauging stations for the pre-development
(1960-1991), transition (1992-2009), and post-development (2010-2014) periods
and found that the dam filling and operation reduced streamflow in the upper portion
of the basin, but such an impact was relatively small at the Stung Treng station in the
downstream. Importantly, they reported that dam operations, especially the cascade
dams in the Lancang River in China, reduced wet season flow and increased dry
season flow resulting in a unique seasonal variation compared to the pre-development
period. Numerous other studies have conducted similar analysis suggesting that the
impact of upstream dams have already been felt in terms of alterations in stream-
flow signatures even in the mainstream Mekong (e.g., Campbell, 2007; Cochrane
et al., 2014; Han et al., 2019; Résénen et al., 2017; Zhao et al., 2012). These studies
have used different statistical techniques to detect the changes in streamflow in a
particular year or during a given period and attribute the change to dam construc-
tion. For example, the changes in streamflow during 2010-2014 period have been
linked primarily to the construction of large dams (i.e., the Jinghong, Xiaowan,
Gongguoqiao, and Nuozhadu) in the Lancang River by assuming that filling of new
reservoirs with high storage capacity directly affected downstream flows (Li et al.,
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2017). Such effects of Lancang cascade dams have been felt the most in the imme-
diate downstream regions; the effects tend to decrease downstream because of larger
flow accumulation from the tributaries and relatively small storage compared to the
high flow volume in the far downstream.

The observation-based studies have provided crucial insights into the changes in
streamflow and its seasonal signatures. However, it is challenging to attribute the
recorded changes explicitly to climate variability or dam construction by using only
observational data. Hydrological modelling can fill this gap by providing a frame-
work where simulations can be conducted with and without considering dams—
given the same climate conditions—such that the direct impacts of dams can be
estimated by using the difference between two such simulations. However, very
limited such studies have been conducted to date because of the challenges in simu-
lating the complex and interconnected river-floodplain-reservoir processes over the
entire basin. Among few such studies is that by Shin et al. (2020) that used a newly
developed, high-resolution (~5 km grid) hydrodynamic model called the CaMa-
Flood-Dam to explicitly simulate the effects of climate variability and dams over
the entire Mekong basin. The model is based on the global hydrodynamics model
CaMa-Flood (Yamazaki et al., 2014) and a new reservoir inundation and release
scheme (Shin et al., 2019).

The study found that the impact of dams significantly increased after 2010 because
the basin-wide reservoir storage capacity doubled from 2010 to recent years. In partic-
ular, river flows at various mainstem locations in the middle and lower reaches have
been increasingly altered by dams in recent years (Fig. 3.12). This rapid increase
in storage capacity came primarily from the completion of the Lancang cascade
dams (Hecht et al., 2019; Pokhrel et al., 2018a). The study by Shin et al. (2020)
also explicitly simulated water levels across the basin and inundation both the
upstream and downstream of dams. Consistent with the changes in streamflow, the
study reported a noticeable change in water levels downstream of dams, primarily
after 2010 (Fig. 3.13). Their model explicitly simulated inundation dynamics in the
natural rivers and floodplains as well as the upstream of dams. The model realistically
captured the flood occurrence behind the major dams across the basin (Figs. 3.14
and 3.15) that depicted the influence of dam regulation at different levels on the
flood besides climate change. Another study analysed the changes in streamflow
due to climate change and dams by combining a hydrological model and observed
discharges (Han et al., 2019); however, their model did not explicitly simulate reser-
voir operation. They quantified the impact of climate change and dams, reporting that
during the 1987-2014 period the mean annual streamflow declined by ~ 6% compared
to the 1980-1986 period. During the 1987-2007 period, only 43% of these changes
were attributed to dams (~57% to climate change), but the contribution of dams rose
drastically to 95% during the 2008-2014 period.

These findings suggest that the impacts of dams on streamflow were rather small
until the late 2000s but have substantially increased in recent times since the comple-
tion of cascade dams in the Lancang river. Indeed, the total basin-wide active dam
storage before 2010 amounts to only about 2% of the mean annual flow volume
(Hecht et al., 2019), which increased rapidly after 2010 (Shin et al., 2020) and is
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Fig. 3.12 River discharge simulated by CaMa-Flood-Dam model for three selected stations in the
mainstem Mekong. Seasonal average for the periods of a 1979-2009 and b 2010-2016, and two dry
years ¢ before and d after basin-wide reservoir storage capacity doubled in 2010. NAT, DamIND-full,
DamIND-low, and DamIND-opt denote simulations without dams (i.e., natural setting), considering
dams with reservoirs at full level, considering dams with reservoirs at low level, and considering
dams with reservoirs at the optimised regulation level, respectively. Figure modified after Shin et al.
(2020)

expected to rise further to about 19% of annual mean flow volume by the mid-2020s
(Hecht et al., 2019). This increase is expected to come not only from the continued
dam construction in the Lancang river but also from the construction of several
large dams in the lower basin including the recently completed Xayabouri Dam
(Stone, 2011, 2016) and controversial Luang Prabang dam that is under construc-
tion (Fumagalli, 2020). Dam construction in the Laos and Cambodia portions of the
Mekong Basin remains a highly contested issue and whether and how many of the
proposed dams will be constructed in the coming decades remains highly uncertain.
However, hydrological and hydrodynamic simulations clearly suggest that the fear
of killing the Mekong by altering the magnitude, timing and duration of the Mekong
flood pulse is a reality if many of the dams were to be built (Pokhrel et al., 2018b).
If the mainstream flow were to be regulated by upstream dams, the hydrology of
the Tonle Sap Lake—including the flow reversal in the Tonle Sap River—could be
largely disrupted, also bringing major changes in flood dynamics in the Mekong Delta
(Pokhrel et al., 2018b) and directly impacting fisheries across the Lower Mekong,
especially in the Tonle Sap Lake region (Burbano et al., 2020). Some approaches have
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Fig. 3.13 Same as in Fig. 3.12 but for water level

been suggested to minimise downstream impacts, especially on fisheries (Sabo et al.,
2017), but the practical aspects of such engineering approaches remain unexplored
(Williams, 2018).

3.2.5 Projected Changes in Streamflow

Unlike historical streamflow changes, previous studies have consistently projected
an increasing trend in streamflow within the Lancang-Mekong River Basin (LMRB),
regardless of the climate forcings and models employed. However, it is important
to note that the flow regime in this basin is highly susceptible to various drivers,
including dam construction, irrigation expansion, land-use changes, and climate
change. Substantial changes are anticipated in both annual and seasonal flow patterns,
with an overall increasing trend (Hecht et al., 2019; Hoang et al., 2019). Notably,
hydropower development, while exerting a limited influence on total annual flow,
has the most significant seasonal impact on streamflow, leading to an increase in the
dry season and a decrease in the wet season, surpassing the effects of other drivers
(Hoang et al., 2019). Furthermore, studies suggest that climate change may lead to a
15% increase in annual streamflow, while irrigation expansions could result in a slight
decrease of 3% in annual streamflow over the period from 2036 to 2065 compared to
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Fig. 3.14 Simulated flood occurrence at 3-arcsec (~90 m) resolution for the entire MRB (Shin
et al., 2020). Labeled black boxes indicate regions for which a zoomed-in view is presented in
Fig. 3.15. Red circles indicate the locations of dams simulated in the CaMa-Flood-Dam model

the period from 1971 to 2000. These projections were based on statistically down-
scaled data from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and
utilized a distributed hydrological model, VMod, with a spatial resolution of 5 km x
5 km (Hoang et al., 2019). Taking future dam development into account, the change
ratio in the dry season (70% increase) surpasses that in the wet season (15% decrease).
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Fig. 3.15 Comparison of inundation dynamics simulated by CaMa-Flood-Dam model (left; 1979—
2016 period) with the Global Surface Water (GWS) data (right; Pekel et al. (2016); 1984-2018
period). Results are shown as flood occurrence for the regions indicated in Fig. 3.14. Red circles
indicate dam locations. Figure modified after Shin et al. (2020)

In the 3S tributary, streamflow is projected to increase by 96% in the dry season and
decrease by 25% in the wet season, highlighting higher streamflow sensitivity to
climate change and human activities in the 3S system compared to the entire LMRB
(Shrestha et al., 2016).

It is important to note that scenarios for streamflow changes exhibit spatial vari-
ability, especially within the Mekong River Basin (Liu et al., 2022). While an
increasing streamflow trend is projected for the future of LMRB, uncertainties remain
substantial. For instance, studies have reported varying projections, including an
annual runoff increase ranging from 4 to 90% by the 2030s compared to the histor-
ical period (1951-2000), based on different global climate models (GCMs) (Eastham
et al., 2008). Other studies, using CMIP5 datasets for the near future (2036-2065),
have reported relatively modest changes in mean annual flow, ranging from 3 to 10%
in the LMRB (Phi Hoang et al., 2016; Vistild et al., 2010).

Furthermore, projections indicate that the magnitude and frequency of extreme
high-flow events are expected to increase, while low-flow events are anticipated to
become less frequent, primarily due to the impacts of climate change (Phi Hoang
et al., 2016). This shift could potentially heighten flood risks within the basin.
However, it’s worth noting that the massive construction of hydropower facilities,
which has altered discharge patterns, is expected to exert a more substantial influence
on hydrography in the next few decades compared to climate change (Lauri et al.,
2012). Additionally, different patterns of hydrological changes may be observed in
different subbasins of the basin, and the expected change ratios vary by location (Phi
Hoang et al., 2016). Moreover, the number of wet days is projected to increase by the
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end of the twenty-first century (2080-2099), potentially increasing flood risk while
benefiting water utilization during dry periods (Kiem et al., 2008).

3.2.6 Uncertainties in Streamflow Simulation

Due to the constraints of time and cost associated with large-scale and long-term field
observations, hydrological models (HMs) and land surface models (LSMs) are valu-
able tools for simulating and managing water resources. Uncertainties in a hydrolog-
ical simulation are inevitable due to the difference between the natural hydrological
processes and model descriptions. Thus, uncertainties must be considered to reflect
the reliability of models.

To assess uncertainties in model simulation in the Lancang-Mekong River Basin,
observed discharge data from seven hydrological stations were used to evaluate
ten HMs and LSMs from the Inter-Sectoral Impact Model Intercomparison Project
(ISI-MIP2a). The simulated discharge data forced by Global Soil Wetness Project
3 (GSWP3) data in the ISI-MIP2a simulation round were selected. To capture the
diverse aspects of hydrological regimes and their associated uncertainties, we consid-
ered simulated discharge series at various percentiles, including the 5th percentile
(QS5), 25th percentile (Q25), 50th percentile (Q50), 75th percentile (Q75), and 95th
percentile (Q95). These percentiles provide insights into extremely low discharge
(Q5), the median discharge (Q50), high flow conditions (Q95), and additional
discharge information in the form of Q25 and Q75, contributing to a comprehensive
evaluation of the uncertainties inherent in different hydrological scenarios (Fig. 3.16;
Table 3.4).

For Q5 (Fig. 3.17), large deviations occurred between the simulated and observed
discharge series. Discharge curves simulated by different models were more divergent
than that of high flow (Fig. 3.18). The model ensemble discharge and the observed
discharge displayed high consistency at most stations for all percentiles. Systematic
errors occurred at Q5 for CLM4, HO8 and LPJmL, where these models simulated a
much smaller discharge than the observed and other models. As for high discharge
percentiles, the simulated curves were more concentrated, which indicated more
realistic simulations and smaller uncertainties.

Dispersion of the simulated discharge series reflects the uncertainties in discharge
simulations among different models. The large deviations between the selected
models indicated that uncertainties in discharge simulation for lower percentiles
were much greater than that for higher percentiles.

The analysis of statistical metrics consistently revealed a pattern of decreasing
model uncertainty as we moved from lower percentiles to higher percentiles
(Fig. 3.19). Furthermore, all the models exhibited significant correlations with the
observed discharge series, with most models achieving an R-squared (R2) value
greater than 0.60 for all stations. Notably, several models surpassed an R2 value of
0.80 for stations located downstream of the river, including WaterGAP2, MPI-HM,
HO08, MATRISO, and WAYS (Table 3.5). These results signify that the simulated
discharge series produced by all the models satisfactorily replicate the observed
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Fig. 3.16 Location of the seven hydrological stations

75

series. In contrast to the single model series, the model ensemble series consis-
tently outperformed at all stations. Generally, R2 values tended to increase as we
moved closer to the river’s estuary but exhibited a decline for stations in proximity
to the estuary, such as Stung Treng and Kratie. Figure 3.19b demonstrated that
the majority of Nash—Sutcliffe Efficiency (NSE) values exceeded 0.40, indicating
that the model simulations could be considered reliable. Similar to R2, the model
ensemble displayed higher NSE values than the individual models at most stations.
WaterGAP2 emerged as the top-performing model across all stations based on NSE
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and even outperformed the model ensemble at stations in Luang Prabang, Pakse,
and Kratie. Additionally, A represented negative deviations at Chiang Saen and
Luang Prabang stations, while positive deviations were observed at Nang Khai and
Kratie stations for most of the models. Ao indicated deviations from the standard
deviation between the simulated discharge series and the observed data. Notably,
HO8 and ORCHIDEE exhibited significantly different Ac values compared to other
models. HOS displayed larger Ao values than the other models at all stations, while
ORCHIDEE demonstrated the opposite performance. The DBH model exhibited a
substantial positive deviation in Ap but performed well in Ao.

In terms of model performance rankings based on the scoring system, WaterGAP2
secured the top position, followed by WAYS, PCR-GLOWBW, MPI-HM, and
MATRISO, which ranked 2nd, 3rd, 4th, and 5th, respectively. On the other hand,
ORCHIDEE received the lowest ranking, primarily due to its poor performance in
Ap. The CLM4 model exhibited less favorable performance, particularly in terms
of Nash—Sutcliffe Efficiency (NSE), with values of 0.18 at Chiang Saen and 0.24
at Kratie. Additionally, the CLM4 model displayed negative deviations for A
at Chiang Saen (—0.46) and Luang Prabang (—0.39). These results indicated that
the simulated discharge series for the CLM4 model diverged significantly from
the outcomes of other models. As we moved closer to the estuary, both NSE and
R2 values for most models approached 1, indicating improved model performance.
However, there was a decline in these values at the Kratie station. Furthermore, nega-
tive Al values were observed for most models at Chiang Saen, Luang Prabang, and
Pakse, suggesting that these models consistently underestimated the magnitude of
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discharge series at these stations. Nevertheless, as the stations moved closer to the
estuary, models with negative A values decreased in number, and only two models
(MATRISO and ORCHIDEE) displayed negative values for Ap at the Kratie station.
This shift underscores the enhancement in model performances as we moved closer
to the estuary.

The models had poor performances for low discharge percentiles, although the
simulated performances improved as discharge percentiles increased. The model
performances in terms of discharge simulations generally improved with the distance
to the estuary for all discharge percentiles. For the Lancang-Mekong River Basin,
the discharge increases from upstream to downstream, which can partly explain the
better performance downstream. However, the models had difficulties in simulating
discharge for the river sections close to the estuary. The complex processes between
the freshwater and saline water bodies may be the cause of this difficulty. The results
suggest that current models have limits in extreme hydrological event simulations,
which is vital for water resources management. It also indicates that current models
are limited in extreme hydrology event prediction, which usually brings huge losses
to the economy and society.

3.3 Baseflow Estimation and Change in the Basin

Streamflow in a river consists of two components, namely baseflow and storm-
flow. Baseflow refers to the component of streamflow originating from ground-
water storage and other delayed sources (Hall, 1968). It represents the flow within
a stream that would persist even in the absence of direct runoff resulting from rain-
fall. As a result, baseflow is an important source of water for a river, especially in
dry seasons. Baseflow estimation has been achieved through isotopic and chemical
tracer methods (Genereux, 1998; Muiioz-Villers et al., 2016). However, these tracer
methods are often costly and labor-intensive when applied in field measurements
(Lott & Stewart, 2016). To address these challenges, various mathematical methods
have been developed for baseflow estimation that do not require the use of tracers.
These methods include graphical approaches (Institute of Hydrology, 1980; Sloto,
1996) and digital filter methods (Anand Tularam & Ilahee, 2008; Chapman, 1991;
Eckhardt, 2005; Furey & Gupta, 2001; Huyck et al., 2005; Lin et al., 2007; Maxwell,
1996). These techniques provide alternative means of estimating baseflow efficiently
and cost-effectively (Fig. 3.20).

In this chapter, the baseflow of two typical hydrologic stations in the Mekong
River Basin, namely Yongjinghong and Kratie, were estimated and projected using
mathematical methods. The Yongjinghong Station is located in the Upper Mekong
River Basin, and the Kratie Station is located in the Lower Lancang-Mekong River
Basin.
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Fig. 3.20 Schematic
diagram of baseflow. Total
streamflow in a river consists
of two components, namely
baseflow and stormflow

Stormflow

Baseflow

flow

time

3.3.1 Comparison of Baseflow Estimation Methods

3.3.1.1 Baseflow Evaluation Criterion

Because of the lack of baseflow observation data, it is difficult to evaluate the accu-
racy of different baseflow separation methods through the observed baseflow. In
this chapter, a robust mathematical evaluation method is employed to evaluate the
accuracy of different separation methods. The main guideline is as follows. When
the quick flow (interflow and overland flow) of a basin ceases on a certain day, the
streamflow is completely replenished by the baseflow, and the streamflow of that day
is equal to the baseflow. The daily streamflows of these days can then be used as
the baseflow benchmark to assess different baseflow separation methods. According
to Brutsaert (2008), days when streamflow is completely replenished by baseflow
(hereafter baseflow days) can be selected through the following four steps:

dyi — dit1 Vi1

dt 2 :

(2) Exclude two days before and three days after the day with streamflow % > 0.

(3) Exclude five days after high flow events that were identified by flood peaks
greater than the 90th quantile of all daily streamflow observations (Cheng et al.,
2016).

(4) Exclude days followed by a day with smaller %, namely % < 0.

(1) Exclude days with streamflow Z—f > 0, where

These four steps have two purposes. The first three steps are to exclude the days
when the streamflow may contain quick flow. The last step is to exclude the days
when daily streamflow violates the pattern of baseflow recession during dry periods,
namely followed by a larger — i% (Xie et al., 2020). Baseflow days selected by the
four steps are shown in Fig. 3.21.

The baseflow days (Black points in Fig. 3.21) were used as the baseflow bench-
mark to evaluate the accuracy of different baseflow separation methods, based on
the evaluation metrics of Kling-Gupta Efficiency (KGE) (Knoben et al., 2019) and
relative bias (BIAS):
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Fig. 3.21 Selecting baseflow days according to the four steps. The red points are excluded through
the first three steps. The blue points are excluded through the last step. The daily streamflow
observations are from the Yongjinghong station in 1980

- 2 (g ’
KGE=1- (r—1)2+<ﬂ—1>+<—’”—1) (3.1

o

ZT(QUZ’ - Qmi)
er Qoi

where r is Pearson’s correlation between the selected baseflow and the corresponding
estimated baseflow. o, is the standard deviation of the selected baseflow, and o, is
the standard deviation of the corresponding estimated baseflow. Qy is the mean value
of the selected baseflow, and Q,, is the mean value of the corresponding estimated
baseflow. Q,; and Q,,; are the selected baseflow and the corresponding estimated
baseflow on the ith day, respectively.

BIAS = (3.2)

3.3.1.2 Baseflow Separation Methods

In this chapter, 9 baseflow separation methods were evaluated, including 5 digital
filter methods, namely the Chapman method, the LH method, the Eckhardt method,
the EWMA method and the CM method, and 4 graphic methods, namely the UKIH
method and three HY SEP methods. The digital filter methods are grounded on the
assumption that baseflow constitutes the low-frequency component of streamflow,
which exhibits a slow response to precipitation events, while quick flow represents the
high-frequency component, reacting rapidly to precipitation. In contrast, the graphic
methods identify specific low-flow points within a streamflow hydrograph, connect
these points to form a continuous baseflow line, and subsequently constrain this
baseflow line beneath the streamflow hydrograph to derive the baseflow hydrograph.
For a more comprehensive understanding of these methods, their principles and
specific details are presented in Table 3.6.
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3.3.1.3 Comparisons of Baseflow Separation Methods

Reservoir construction has significantly affected streamflow observations in the
Lancang-Mekong River Basin since 2008. Thus, 2007 was selected as the last year
of the baseflow separation in this study. Daily streamflow observations for the two
hydrologic stations, namely Yongjinghong and Kratie, from 1980 to 2007 were
obtained from the Mekong River Commission (https://portal. mrcmekong.org/home).

To evaluate the accuracy of the 9 baseflow separation methods, the baseflow points
obtained through the four steps in Sect. 3.3.1.1 and the baseflow estimated using the
9 methods introduced in Sect. 3.3.1.2 were compared in the two hydrologic stations.
Table 3.7 shows the evaluation result of the 9 baseflow separation methods for the
two hydrologic stations. For Yongjinghong Station, the Eckhardt method has the
largest value of KGE and the smallest value of BIAS among the 9 methods, with
values of 0.86 and 5.98% respectively. For Kratie Station, the Eckhardt method also
has the largest value of KGE and the smallest value of BIAS among the 9 methods,
with values of 0.93 and 5.81% respectively. Generally, the Eckhardt method has the
best performance to estimate baseflow for the two hydrologic stations. The good
performance indicates that it is reliable to use the Eckhardt method in estimating
baseflow for the two hydrologic stations in the LMRB.

3.3.2 Baseflow Estimation in the Basin

Using the Eckhardt method, the baseflows of the two hydrologic stations from 1980
to 2007 were estimated. From 1980 to 2007, the annual average runoff of the two
hydrologic stations, namely Yongjinghong and Kratie, was 388 mm and 649 mm,
respectively. The annual average baseflow of the two hydrologic stations was 199 mm
and 359 mm, respectively. The annual average BaseFlow Index (BFI), namely the

Table 3.7 The evaluation result of the 9 baseflow separation methods

Methods Yongjinghong Kratie
KGE BIAS (%) KGE BIAS (%)

UKIH 0.82 79 0.80 17.1
Local 0.86 7.1 0.74 20.1
Fixed 0.83 10.1 0.72 22.5
Slide 0.80 11.1 0.73 21.0
LH 0.70 16.8 0.62 28.6
Chapman 0.67 19.2 0.72 20.5
CM 0.43 232 0.67 25.3
EWMA 0.85 6.7 0.84 14.0
Eckhardt 0.86 6.0 0.93 5.8
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Table 3.8 Annual average .

runoff, baseflow and BFI for Stations Runoff (mm) Baseflow (mm) BFI
the two hydrological stations Yongjinghong 388 199 0.51
from 1980 to 2007 Kratie 649 359 0.55

ratio of baseflow to streamflow, of the two hydrologic stations was 0.51 and 0.55,
respectively (Table 3.8). The annual BFI of the Yongjinghong Station from 1980 to
2007 showed a significant (p < 0.05) downward trend, with a value of —0.001 yr~!,
while the annual BFI of the Kratie Station showed a significant (p < 0.05) upward
trend, with a value of 0.09 yr~! (Fig. 3.22). The annual baseflow of the Yongjinghong
Station from 1980 to 2007 showed a nonsignificant (p = 0.22) downward trend, with
a value of —0.77 mm/yr, while the annual baseflow of the Kratie Station showed a
significant (p < 0.05) upward trend, with a value of 7.22 mm/yr.

From 1980 to 2007, the maximum and minimum average monthly BFI of
Yunjinghong Station were in December (0.75) and June (0.34), respectively
(Fig. 3.22). The maximum and minimum average monthly baseflow of Yunjinghong
Station were in September (34 mm) and April (6 mm), respectively. The maximum
and minimum average monthly BFI of Kratie Station were in December (0.62) and
June (0.46), respectively. The maximum and minimum average monthly baseflow of
Kratie Station was in September (80 mm) and February (7 mm), respectively.

Bascllow (mm)

RunoflBascflow (mm)

2 4 6 8 10 12

Fig. 3.22 The annual baseflow and BFI (a, b), and average monthly runoff, baseflow and BFI (c,
d) from 1980 to 2007 for the two hydrological stations Yongjinghong (a, ¢) and Kratie (b, d)
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3.3.3 Influencing Factors of Baseflow [Xiaomang Liu]

For a basin, climatic factors have the most direct impact on the baseflow (Brutsaert,
2005). Climatic factors influence baseflow by altering rates of evapotranspiration,
infiltration and recharge, and timing of snowmelt runoff (Tague & Grant, 2009;
Winograd et al., 1998). Additionally, baseflow is also influenced by different basin
characteristics, including climate conditions, soils, topography, and land cover.

Figure 3.23 shows scatterplots of monthly baseflow versus four climatic factors,
namely precipitation (Pr), surface shortwave radiation (SSR), wind speed (u), and air
temperature (Ta), for the two hydrologic stations, namely Yongjinghong and Kratie.
For Yongjinghong Station, significant (p < 0.05) positive correlations were found
between baseflow and the two climate factors, namely Pr and Ta, and the values
of Pearson’s correlation (r) were 0.56 and 0.50, respectively. Significant (p < 0.05)
negative correlations were found between baseflow and the other two factors, namely
SSR and u, and the values of r were —0.24 and —0.60, respectively. For Kratie Station,
both Pr and Ta were significantly (p < 0.05) positively correlated with baseflow, and
the values of r were 0.67 and 0.39, respectively. Both SSR and u were significantly
(p < 0.05) negatively correlated with baseflow, and the values of r were —0.47 and —
0.46, respectively. Thus, baseflow is significantly affected by the four climatic factors
in the Lancang-Mekong River Basin.

3.3.4 Projected Change in Baseflow

Although the Eckhardt method can accurately estimate baseflow, the method needs
daily streamflow as input, while accurate daily streamflow estimates are not available
for the future. Therefore, models are needed to simulate the future baseflow. Past
studies have shown that mechanism models, such as hydrological models and land
surface models, have low accuracy in simulating baseflow (Bai et al., 2016). This is
due to the groundwater simulation of the hydrologic model and the land surface model
being relatively simple (Lo & Famiglietti, 2010). In this study, a machine learning
approach, namely the Long Short-Term Memory network, was used to estimate the
future baseflow based on data from the Coupled Model Intercomparison Project
phases 6 (CMIP6).

3.3.4.1 The Long Short-Term Memory (LSTM) Network

The LSTM network is a state-of-art machine learning approach for time series fore-
casting (Hochreiter & Schmidhuber, 1997). It has the advantage of remembering
information for a long period, namely long-time memory (Kratzert et al., 2018; Shen,
2018; Zhang et al., 2018). This advantage benefits monthly baseflow estimation and
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Fig. 3.23 The relationships between the monthly baseflow and the four climatic factors for
Yongjinghong Station (a—d) and Kratie (e-h). r value is the Pearson correlation coefficient. The
shaded bands represent 95% confidence intervals for the regressions
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prediction by learning long-term dependencies between baseflow and previous basin
conditions.

The Long Short-Term Memory (LSTM) network is structured as a collection of
interconnected memory blocks, with each block consisting of several key compo-
nents: a cell state, input gate, output gate, and forget gate, along with the hidden state.
The cell state functions as the system’s memory, retaining crucial information. The
three gates, namely the input gate, output gate, and forget gate, enable the network
to selectively store and retrieve important information from past time steps while
discarding irrelevant data (Kratzert et al., 2018). The details of the LSTM network
can refer to Hochreiter and Schmidhuber (1997) and Kratzert et al. (2019). In this
study, the LSTM network was constructed using the deep learning toolbox available
in MATLAB. Four related climatic factors, namely monthly precipitation (Pr), air
temperature (Ta), surface shortwave radiation (SSR), and wind speed (u), were used
to estimate and predict monthly baseflow based on Sect. 3.3.3.

3.3.4.2 Data and Method

Historical data of the four variables from 1980 to 2014 were obtained from Princeton
Global Meteorological Forcing Dataset (Sheffield et al., 2006; Zhang et al., 2018),
with a spatial resolution of 0.5°. Future data on these variables from 2015 to 2100
were obtained from 26 general circulation models (GCMs) in the CMIP6 (Table 3.9).
Simulations from four shared socioeconomic pathways (SSPs), drawn from Tier 1 of
ScenarioMIP: SSP1-2.6 (+2.6 W/m? imbalance; low forcing sustainability pathway),
SSP2-4.5 (+4.5 W/m?; medium forcing middle-of-the-road pathway), SSP3-7.0
(+7.0 W/m?; medium- to high-end forcing pathway), and SSP5-8.5 (+8.5 W/m?;
high-end forcing pathway), were used (O’Neill et al., 2016). The bilinear interpo-
lation method was used to downscale all the variables to a common horizontal grid
at 0.5° x 0.5° resolution. To proceed with further analysis with reduced biases, the
perturbation method was used to perform bias correction against observed data.

The classic split sample test scheme (KlemeS, 1986) was used for calibration
and validation of the LSTM. The available data in the basin was split into two sub-
periods, namely sub-period I and sub-period II, which were used to calibrate and
validate the LSTM, respectively. The LSTM was calibrated in sub-period I (1980-
1999) and validated in sub-period II (2000-2007). The Nash—Sutcliffe efficiency
(NSE) between simulated and observed baseflow was taken as the objective function
to train the LSTM. The KGE and BIAS were used to evaluate the accuracy of model
estimation.

3.3.4.3 Estimating and Predicting Baseflow with the LSTM Model

Generally, the LSTM model performed well in the calibration and validation periods
for the two hydrologic stations, namely Yongjinghong and Kratie (Table 3.10). In
the calibration period, the KGE values between the observed and simulated baseflow
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Table 3.9 The information of the 26 GCMs in the CMIP6
No. |ESM Center Realisations | Resolution (km)
1 ACCESS-CM2 CSIRO-ARCCSS, rlilplfl 144 x 192
Australia
2 ACCESS-ESM1-5 CSIRO, Australia rlilplfl 145 x 192
3 BCC-CSM2-MR BCC, China rlilplfl 160 x 320
4 CanESM5 CCCma, Canada rlilplfl 64 x 128
5 CanESM5-CanOE CCCma, Canada rlilp2fl 64 x 128
6 CESM2 NCAR, USA rlilplfl 192 x 288
7 CESM2-WACCM NCAR, USA rlilplfl 192 x 288
8 CNRM-CM6-1 CNRM-CERFACS, rlilplf2 128 x 256
France
9 CNRM-ESM2-1 CNRM-CERFACS, rlilplf2 128 x 256
France
10 EC-Earth3 EC-Earth-Consortium rlilplfl 256 x 512
11 EC-Earth3-Veg EC-Earth-Consortium rlilplfl 256 x 512
12 FGOALS-f3-L CAS, China rlilplfl 180 x 288
13 FGOALS-g3 CAS, China rlilplfl 80 x 180
14 GFDL-ESM4 NOAA-GFDL, USA rlilplfl 180 x 288
15 GISS-E2-1-G NASA-GISS, USA rlilplf2 90 x 144
16 HadGEM3-GC31-LL | MOHC, UK rlilplf3 144 x 192
17 INM-CM4-8 INM, Russia rlilplfl 120 x 180
18 INM-CM5-0 INM, Russia rlilplfl 120 x 180
19 IPSL-CM6A-LR IPSL, France rlilplfl 143 x 144
20 MIROC6 JAMSTEC/AORI/NIES/ | rlilplfl 128 x 256
R-CCS, Japan
21 MIROC-ES2L JAMSTEC/AORINIES/ | rlilplf2 64 x 128
R-CCS, Japan
22 MPI-ESM1-2-h MPI-M, Germany rlilplfl 192 x 384
23 MPI-ESM1-2-LR MPI-M, Germany rlilplfl 96 x 192
24 MRI-ESM2-0 MRI, Japan rlilplfl 160 x 320
25 NorESM2-MM NCC, Norway rlilplfl 192 x 288
26 UKESM1-0-LL MOHC, UK rlilplf2 144 x 192

for the two hydrologic stations are 0.90 and 0.92, respectively. The BIAS values
between observed and simulated baseflow for the two hydrologic stations are 1.3%
and 1.6%, respectively. In the validation period, the median KGE values for the two
stations are 0.87 and 0.75 respectively, and the BIAS values are 11.0% and 16.8%
respectively. Thus, the trained LSTM model was used to estimate the future monthly

baseflow.
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Table 3.10 Performance of the LSTM model for the two hydrological stations

Stations Calibration period Validation period

KGE BIAS (%) KGE BIAS (%)
Yongjinghong 0.90 13 0.87 11.0
Kratie 0.92 1.6 0.75 16.8

The trained LSTM model was used to estimate and predict the monthly baseflow
from 1980 to 2100 for the two hydrologic stations. Figure 3.24 shows the time series
of annual baseflow and BFI for the two hydrological stations from 1980 to 2100.
Annual baseflows for the two hydrological stations in the four scenarios, namely
SSP1-26, SSP2-45, SSP3-70, and SSP5-85, all have increasing trends, and the BFI
in the four scenarios all have a slightly increasing trend. Table 3.11 shows the average
annual baseflow and BFI for the two hydrological stations from 2015 to 2100. It could
be found from Table 3.11 that the volume of baseflow from the Yongjinghong station
upstream is much lower than that of Kratie station downstream, while the BFI is just
slightly lower. And with the intensification of climate change and human activities,
the baseflow at both the upstream and downstream increases and that at the upstream
increases faster than that of the downstream, but the BFIs keep consistent, implying
that the total streamflow doesnot have a similar increasing trend.

i) Yongjinghong - Basellow

by Yongjinghong - BFI

(17 2000 ) e ‘Bhen o 10 ] 000 mzm man ) 088 1

e 2000 M 0 060 ‘s 100 980 o0 ) ) 060 ™ f
ar Year

Fig. 3.24 Annual baseflow and BFI from 1980 to 2100 for the Yongjinghong station (a, b) and
Kratie station (c, d) for the four scenarios. The shading denotes the 95% confidence intervals of the
26 models
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Table 3.11 Annual average baseflow and BFI for the two hydrological stations from 2015 to 2100
in the four scenarios

Scenarios Yongjinghong Kratie

Baseflow (mm) BFI Baseflow (mm) BFI
SSP1-26 210+ 13 0.56 + 0.02 498 + 86 0.59 £ 0.07
SSP2-45 208 =13 0.56 £ 0.02 501 £ 85 0.60 £+ 0.07
SSP3-70 207 £ 16 0.55 +£0.03 462 £ 82 0.56 = 0.09
SSP5-85 218+ 16 0.56 + 0.03 501 + 83 0.57 £ 0.09

3.4 Dynamics of Inundation Area and Water Turbidity
in Tonle Sap Lake

3.4.1 Inundation Area Detection

Tonle Sap Lake (TSL) in Cambodia stands as the largest lake in Southeast Asia,
playing a pivotal role as one of the world’s most productive lake-wetland systems.
This remarkable ecosystem supports approximately 1.7 million people who depend
on it for their livelihoods. What sets TSL apart is its distinctive “flood pulse”
phenomenon, marked by seasonal water level fluctuations between the wet and dry
seasons, creating a periodically inundated floodplain. This dynamic floodplain offers
unique habitats for seasonally migratory fish species and receives a vital influx of
nutrients from the Mekong River. It serves as a critical source of freshwater resources
and preserves essential habitats for numerous endangered species. Furthermore, the
flood regime of TSL exerts a significant influence on land cover changes, such as
delineating the extent of cropland in the floodplain and impacting alterations in
forest cover. Consequently, Tonle Sap Lake holds the status of being the “heart of
the lower Mekong” as regional socio-economic development and the sustainability
of the ecosystem profoundly rely on the intricate dynamics of this “flood pulse.”
The boundary of Tonle Sap Lake was firstly defined before the inundation area
extraction, which is the buffered extent that was larger than the maximum possible
inundation area of the open water body of the lake (Lin & Qi, 2017). This definition
is different from previous studies that also considered the entire floodplain as Tonle
Sap Lake (Arias et al., 2012; Frappart et al., 2018; Sakamoto et al., 2007), and the
currently used boundary excluded most of the area in the floodplain of Tonle Sap
Lake. Such exclusion is because of the difficulty in estimating the surface area of the
entire floodplain when using optical remote sensing data, where the water is hidden
beneath the flooded forest. The inundation areas were extracted based on a normalised
difference vegetation index (NDVI) (Mcfeeters, 1996; Verhoef, 1996). Note that the
NDVI thresholds to separate water and land may differ among images. To overcome
this challenge, a self-developed interactive graphical user interface (GUI) by Hou
et al. (2018) was used to determine the optimal image-specific threshold. We further
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visualised the resulting land/water boundaries to assure the best consistency with the
largest contrasts over NDVI images.

3.4.2 Modelling Inundation Areas and Their Change

Inundation in the Tonle Sap Lake region is governed by the (1) reversed flow in the
Tonle Sap river, (2) inflow from the lake tributaries, and (3) direct rainfall on the
lake system. The lake’s floodplains extend into 12,000—15,000 km? area during the
wet season, storing 50—80 km? of water, which shrinks to ~2,400 km? during the
dry season with a water storage of 1.5-3.0 km>. The lake water levels during these
wet-dry transitions vary between ~1.4 to ~9.0 m (Arias et al., 2012; Chen et al.,
2021a, 2021b; Frappart et al., 2018; Kummu & Sarkkula, 2008; Kummu et al., 2014;
Pokhrel et al., 2018a). Besides the permanently flooded lake portion, substantial areas
in its periphery are flooded seasonally with varied flood occurrence during average,
wet, and dry years (Fig. 25X; Dang et al., 2022). The dry—wet variation in flooded
areas within a year serves as an important detention reservoir to provide increased
dry season flow in the Mekong Delta region. The flooded areas vary vastly not only
seasonally but also from year to year depending on regional climate variability and
the water levels in the mainstream Mekong River that drive the flow reversal in the
Tonle Sap River. On an average basis over long terms, ~54% of the inflow to the
Tonle Sap Lake comes from the Mekong River either through flow reversal in the
Tonle Sap River or by overland flooding, and the rest is contributed by inflow from
the tributaries (~34%) and precipitation over the lake (~12%) (Kummu et al., 2014)
(Fig. 3.25).

Numerous studies have examined how the inundated areas in the Tonle Sap
Lake floodplain have been changing in the past few decades by using hydrological-
hydrodynamic modelling and remote sensing data. For example, Lin and Qi (2017)
mapped the open water areas in the Tonle Sap Lake from 2001 to 2015 using remote
sensing products and showed large inter-annual variability, also noting a consis-
tent decline in open water areas during that period. They attributed such shrinking
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Fig. 3.25 Average flood occurrence (% time during a year) of the Tonle Sap Lake area in a dry
year (a, 2015), long-term average (b, between 1979 and 2016) and a wet year (c, 2000)
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of the lake to the rapid increase in dam construction in the Mekong River Basin
during the same period, but their study did not explicitly isolate the effects of dams
versus climate change and variability. Another recent study (Frappart et al., 2018)
used remotely sensed data to map inundation extents during the 1993-2017 period,
finding that interannual anomalies of the lake surface water storage variations are
more related to precipitation fluctuation outside of the Tonle Sap watershed with
discharge from the Mekong River being the major influence. The study by Ji et al.
(2018) used the Modified Normalised Difference Water Index (MNDWI) based on
MODIS satellite data for 2000-2014 period. They suggested a decline in water
surface area, especially after 2008, by 8.3% and 1.5% during the flood and dry
seasons, respectively. This study also indicated a more dominant role of rainfall in
the Mekong River Basin than that of the rainfall in the lake watershed on the variation
of water areas in the lake, but also noted that the construction and operation of new
dams in the Lancang river could not be directly linked to the decline in the lake area.
Instead, they indicated that the increased runoff due to dam release during the dry
season could have mitigated the decline in surface area during the dry season. These
findings are in line with a potential increase in dry-season flow and water levels when
the mainstream Mekong flow is regulated by upstream dams (Pokhrel et al., 2018b).

Chen et al. (2021a, 2021b) conducted a study revealing notable declines in water
levels and inundation areas during the dry season and throughout the entire year since
the late 1990s. These declines occurred alongside increased sub-decadal variability
in the region. The study also identified decreasing probabilities of encountering high
inundation areas and increasing probabilities of encountering low inundation areas
for the period from 2000 to 2019 when compared to the return period of inundation
areas for the years 1986 to 2000 and 1960 to 1986. Furthermore, the research unveiled
a shift in the mean seasonal cycle of daily water levels, with a 10-day shift in the dry
season and a 5-day shift in the wet season between the periods 2000-2019 and 1986—
2000. The study also established significant correlations and changes in coherence
between water levels and large-scale atmospheric circulations, including El Nifio-
Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Indian Ocean
Dipole (IOD). These findings suggest that atmospheric circulations exerted influ-
ences on the flood pulse at various time scales. Additionally, changes in discharge at
the Mekong mainstream were observed, indicating that anthropogenic factors may
have played a role in impacting the high water levels in the lake. In summary, the
study points to a diminishing flood pulse in the Tonle Sap Lake region since the
late 1990s. These previous studies assume that water infrastructure development and
climate change are the main factors affecting the inundation extent and duration in
the Tonle Sap Lake region. However, a recent study by Ng and Park (2021) that
used remote sensing products for 1980-2018 period highlighted the role of intensi-
fied local sand mining at Phnom Penh and Prek Kdam, which could have lowered
the riverbed at the entrance from the Mekong mainstream to the lake and signifi-
cantly impacted lake inundation dynamic. While these studies have provided crucial
information on the changing inundation dynamics of the Tonle Sap Lake, the results
suffer from uncertainties arising from missing data, cloud contamination, effect of
vegetation, and inherent uncertainties in satellite products.
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Hydrological modelling can fill the data gaps by providing spatially complete and
temporally continuous simulations; however, realistic simulations require accurate
input data and model parameters, which are not abundantly available for the Tonle
Sap Lake region. Numerous modelling studies have been conducted for the Tonle
Sap Lake. Kummu et al. (2014) presented a detailed modelling and water balance
analysis of the Tonle Sap Lake system using an integrated framework that employed
a digital bathymetry model, water level-area-volume relationship and the EIA 3D
hydrodynamic model (Kummu et al., 2006). They provided a detailed water balance
of the lake, including inundated areas, timing of flow reversal in the Tonle Sap River,
and various other related hydrodynamic attributes of the lake. They also suggested
that the lake water level is primarily governed by water levels in the Mekong River,
and noted that a relatively small change in water level would inundate large areas of
the floodplain.

3.4.3 Water Turbidity Estimation

To investigate the potential impacts of lake inundation changes on water turbidity,
the concentrations of total suspended sediments (TSS) were quantitatively retrieved
using remote sensing images. Various methods have been developed previously to
estimate the TSS concentrations of inland and coastal waters using satellite obser-
vations, with the algorithms ranging from empirical (Doxaran et al., 2002; Feng
et al., 2012; Hou et al., 2018; Nechad et al., 2010) to semianalytical approaches
(Dekker et al., 2001). The underlined theory of these algorithms is the sensitivity of
the TSS concentration to red and NIR reflectance (Feng et al., 2012; Tassan, 1994),
where the signals increase with TSS increases, owing to the enhanced backscat-
tering of suspended particles (Babin et al., 2003). In this study, a red band-based
algorithm, previously used in both Tonle Sap Lake (Hoshikawa et al., 2019) and
various other global waters (Miller and McKee 2004), was established in this work
by using concurrent MODIS reflectance and in situ TSS concentrations, expressed
as follows:

TSS (mgL™") =10.32¢*"7*(Q = Rs) (3.3)

where Rgys is the MODIS surface reflectance product in the 645 nm band, which has
been proven to be effective in TSS estimation in lacustrine waters (Feng et al., 2018).
Indeed, the feasibility of this algorithm can be indicated by the high correlation (R?
= 0.84), small root mean square error (34.2%) and large TSS range (8.6-398.0 mg
L) (see Fig. 3.26).
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3.4.4 Long-Term Evolution of Inundation Area and Water
Turbidity

Figure 3.27a displays the monthly mean inundation areas of Tonle Sap Lake for the
period between 1988 and 2018, determined from both Landsat (red) and MODIS
(black) data. Additionally, the monthly mean climatological inundation areas, which
represent multiyear monthly means estimated using MODIS data, are plotted as green
dashed lines. Points falling above the green line indicate that the current month’s inun-
dation value exceeded the monthly climatology, and vice versa. To analyze inundation
trends over the past three decades, monthly anomalies were calculated as deviations
from the monthly climatologies (in percent), as shown in Fig. 3.27b. Throughout
the observed period, the inundation area of Tonle Sap Lake exhibited considerable
variability, ranging from 3599.8 km? in October 2001 to 2304 km? in March 2013.
These values experienced rapid fluctuations due to pronounced seasonal changes
influenced primarily by shifts in regional precipitation and interactions between the
river and the lake (Frappart et al., 2018).

However, superimposed on these substantial seasonal cycles is a noticeable trend
of lake shrinkage in recent years. There is clear evidence of decreased inundation in
most years over the past two decades (see Fig. 3.27a, b). Specifically, the decreasing
patterns from 2000 to 2018 were consistent between MODIS and Landsat observa-
tions, despite differences in their data availabilities. This shrinking trend is further
underscored by the consistent declines in the annual mean (8.22 km? per year, signif-
icant at P < 0.05), annual minimum (5.93 km? per year, significant at P < 0.05), and
annual maximum (17.82 km? per year, significant at P < 0.05) inundation areas,
as derived from MODIS-extracted data for the period between 2000 and 2018 (see
Fig. 3.28). Furthermore, although statistically insignificant, a decreasing trend was
also observed in the annual maximum and minimum ratio (P > 0.05), indicating
a reduced strength of the flood pulse between the dry and wet seasons during the
MODIS observational period (see Fig. 3.28d).
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Figures 3.29 and 3.30 show the annual mean TSS maps and zonal mean values of
Tonle Sap Lake from 2000 to 2018. The annual mean TSS concentration of the entire
lake showed a statistically significant increasing trend between 2000 and 2018 (see
Fig. 3.30a, 7.92 mg L= yr~!, P < 0.05). In terms of seasonal patterns, significant
TSS increasing trends were detected in quarters 1 and 4, whereas nonsignificant
trends were identified in quarters 2 and 3 (Fig. 3.30b—e). Moreover, remarkable
spatial heterogeneity was revealed in the TSS concentration maps. In particular, in
most of the years, riverine estuaries in the southeastern, northwestern, and northern
parts of the lake showed consistently higher values (sediment plume). The significant
seasonal TSS dynamics can partially explain the spatial heterogeneities of the annual
TSS maps. The zonal mean TSS concentration of the entire lake was generally
<100 mg L~! (bluish to greenish) before 2004, and such values reached above 100 mg
L~!in most of the later years. Spatially, TSS increase could be found in almost every
location of the lake (see the last panel of Fig. 3.29).

Fig. 3.29 Annual mean TSS concentration maps of Tonle Sap Lake from 2000 to 2018. The last
panel shows the change rate for the annual mean TSS concentration at each location in Tonle Sap
Lake between 2000 and 2018 (Wang et al., 2020)
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3.4.5 Drivers of Change in Inundation Area and Water
Turbidity

Figure 3.31a reveals the identification of a high correlation zone (HCZ) marked
with black dots, situated in the northern region of the Tonle Sap Lake drainage basin,
depicted by yellowish to reddish coloring, encompassing more than 50% of the entire
Mekong River Basin. Analyzing the change rate in annual mean precipitation between
2000 and 2016 (as shown in Fig. 3.31b), it becomes evident that approximately one-
third of locations within the HCZ exhibit a statistically significant decreasing trend in
precipitation. In contrast, most regions outside the HCZ display insignificant corre-
lations. Notably, the year-to-year fluctuations in mean precipitation within the HCZ
closely mirror those observed in the inundation area of Tonle Sap Lake, with a robust
correlation (R2 = 0.67, significant at P < 0.05) (Fig. 3.31d). Similarly, a strong corre-
lation exists between the annual mean runoff at Kratie station and the precipitation
within the HCZ (R2 = 0.68, significant at P < 0.05) (Fig. 3.31e). Consequently,
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it can be deduced that the recent reduction in Tonle Sap Lake’s inundation area is
intimately linked with the decline in runoff in the Mekong River and the decrease in
precipitation within the HCZ.

The HCZ is situated in the lower basin of the Mekong River, predominantly
outside the drainage basin of Tonle Sap Lake. Recent reductions in precipitation
within the Mekong River Basin have previously been linked to El Nifio/La Nifa
events, as well as the Indian and Western North Pacific Monsoons (Frappart et al.,
2018). Previous research has suggested that the decreased runoff from the Mekong
River was primarily a consequence of climate change rather than human interven-
tions, such as upstream dam construction in China. In contrast, there were no signif-
icant trends in precipitation for most of the Mekong River Basin between 1988 and
2000 (Fig. 3.31c), which could potentially explain the stabilized inundation observed
during this period (see Fig. 3.25). To assess the relative impacts of three potential
factors on the interannual inundation changes of Tonle Sap Lake, a multiple general
linear model was employed (Tao et al., 2015). These factors included the precipita-
tion of the HCZ, the number of dams, and the evapotranspiration (ET) of the lake’s
drainage basin. The analysis revealed that the relative contributions were 76.1% for
HCZ precipitation, 6.9% for the number of dams, and 2.0% for ET, respectively.
These findings underscore the predominant role of HCZ precipitation changes in
driving the interannual dynamics of the lake’s inundation.

The water turbidity of the Tonle Sap Lake is likely to be controlled by two factors:
(1) Sediment resuspension, which can be attributed to external forces such as wind
activity within the lake, sediment discharge within the lake basin, as well as internal
forces related to hydrodynamics (Hoshikawa et al., 2019); and (2) exchanges of
sediments between the Tonle Sap Lake and the Mekong River. Satellite observations
showed a pronounced increase in water turbidity, which was likely due to the lake
shrinkage induced hydrodynamic changes. For example, higher chances of sediment
resuspension from the bottom can be expected when water depth decreases, even if
other external factors are stable. Indeed, it was further confirmed that the validity
of this hypothesis by the statistically significant correlations between the annual
TSS concentration and inundation area (R2 = 0.41 for quarter 1 and R2 = 0.49 for
quarter 4, both with P < 0.05, see Fig. 3.32a, d). Such correlations agreed well with
the results of a former study (Hoshikawa et al., 2019), where statistically significant
relationships were detected between water depth and TSS in dry seasons. Therefore,
the inundation shrinkage (i.e., water depth decline) has caused an increase in sediment
resuspension through either wind or gravity flow and therefore lead to the recent
increase in water turbidity in Tonle Sap Lake (Siev et al., 2018). In contrast, the TSS
trend and TSS- inundation correlations in quarters 2 and 3 were insignificant, which
were associated with the reversed flow of the Mekong River to Tonle Sap Lake that
was intervented by human activities during these periods (Fig. 3.32b, ¢). Numerically,
sediment flux from the Tonle Sap River to the lake varies between 5.1 and 6.4 Mt
year~!, whereas the magnitude of reversal sediment discharge from the lake to the
river was about three times smaller (Kummu & Sarkkula, 2008; Sok et al., 2021). As
such, the lake turbidity could be substantially modulated by the sediment-rich flows
from the Mekong River, which smears the inundation shrinkage-induced impacts in
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Fig. 3.32 Relationships between the seasonal mean TSS and inundation areas of Tonle Sap Lake.
a—d Quarters 1-4 (Wang et al., 2020)

wet seasons. Nevertheless, physical modelling and additional in situ hydrological
measurements are required to determine the underlined mechanisms and to quantify
the exact contributions of various drivers on the inundation and water turbidity.

3.4.6 Projected Change in Inundation Area

Numerous studies have used hydrological models to simulate and quantify the future
changes in the Tonle Sap Lake’s inundation dynamics under various scenarios repre-
senting both climate variability and water infrastructure development plans. For
example, Vistild et al. (2010) used multiple models including GCM, VIC, EIA to
examine the effects of changes in sea level and Mekong mainstream discharge under
climate change on the Lower Mekong flood pulse during 2010-2049 period. They
found that water levels in the Lower Mekong, including the Tonle Sap Lake, would
increase in the future, leading to higher annual flooded areas. In particular, annual
maximum water depth and flooded areas increased during average and dry years
and decreased during wet years. The study also reported that flood duration will be
likely to increase slightly with greater flooding starting earlier and lasting longer
with flood peaks arriving earlier in average hydrological years. Arias et al. (2012)
evaluated the impact of water infrastructure development and climate change by
using the MRC Decision Support Framework for multiple scenarios of progressive
stages in comparison to simulations by Vistild et al. (2010). They reported that while
hydropower development could reduce flood extent by up to 1,200 km?, climate
change is expected to increase flood extent by up to 1,000 km?. They also noted that
during average years in the future, water levels in the lake during October—November
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may increase due to climate change but reduce due to dam construction. The largest
changes may occur during dry years, and the areas most impacted would be those
at the fringe of the open water with flood duration of 9-10 months, and halfway
between open water and the edge of the floodplain, flooded for ~4 months. A recent
study also showed similar results based on hypothetical dam simulations, indicating
that regulation of mainstream Mekong flow by dams may increase areas flooded
for over 7 months and reduce those flooded for less than 5 months (Pokhrel et al.,
2018b). Similar findings have been reported by Yu et al. (2019) using CAESAR-
LISFLOOD system and by Try et al. (2020) using RRI model. Further, Arias et al.
(2014) identified that areas that currently have long periods or are permanently inun-
dated throughout the year are likely to expand while seasonally inundated areas will
be decreased. They also found that the hydrological alteration of the hydropower
system in the 3S basin could have similar effects as the Lancang dam cascade and
the cumulative effect of development in both areas will cause significant disruption
to the inundation pattern of the lake.

3.5 Past and Future Changes in Climate and Water
Resources in the LMRB

3.5.1 Climate of the Lancang-Mekong River Basin

3.5.1.1 Past and Future Warming Trends

In the past decade, there have been notable and confidently increasing trends in the
annual mean temperature across the LMRB (Fan et al., 2015). These warming trends
in both the Lancang River Basin and Mekong River Basin have surpassed the global
average temperature rise, which was reported as 0.17 °C per decade since 1981 by
Hartfield et al. (2018).

Between the early 1980s and 2010, there were no statistically significant changes
in annual maximum and minimum temperatures observed over the Lancang River
Basin (Fan et al., 2015). However, it’s noteworthy that both annual maximum and
minimum temperatures exhibited the same warming trend direction as the mean
annual temperature in the Mekong River Basin during the same period (Lutz et al.,
2014). Among the seasons, the highest rate of warming trends was observed during
winter (December—February) across both the Lancang River Basin (Fan et al., 2015)
and the Mekong River Basin (Lutz et al., 2014) from 1981 to 2010. It’s worth
mentioning that the Lancang River Basin had already been experiencing warmer
winters prior to 1981, particularly during the period from the 1960s to the early
2000s (You et al., 2010).

Projections for the twenty-first century indicate statistically significant warming
trends in mean annual temperature over the Lancang-Mekong River Basin (Kingston
etal., 2011; Lacombe et al., 2012). These trends are expected to be more pronounced
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in the northern and southern parts of the basin (Lauri et al., 2012). However, it’s
important to note that the extent of temperature change varies depending on the
climate scenario used in the models. Over the Mekong River Basin, a warming trend
of 0.01-0.03 °C per decade is projected (Zhou et al., 2013), while the Lancang
River Basin is expected to experience slightly more evident and consistent warming
(Kingston et al., 2011). Projections suggest that by 2050, the daily maximum temper-
ature over the Mekong River Basin is likely to increase, with estimates ranging from
1.6 °C in the northern and southwestern regions to 4.1 °C in the southeastern areas,
where the historical climate has been cooler than in the central part of the basin
(Zhou et al., 2013). Consequently, an increase in the frequency of annual hot days
(daily maximum temperature >33 °C) is anticipated, particularly in the southern part
of the Mekong River Basin (Vistild et al., 2010). Regarding seasonal temperature
changes, projections indicate a fairly homogeneous increase in temperatures across
the Mekong River Basin, with a warmer climate expected during wet seasons (1.7—
5.3 °C) compared to dry seasons (1.5-3.5 °C) for the near future (2020-2050) (Zhou
et al., 2013). Meanwhile, daily mean temperatures across the Lancang River Basin
are projected to be higher during dry seasons (7.5-10.5 °C) than during wet seasons
(6.0-7.5 °C) under the 6 °C warming scenario. Furthermore, the warming trend is
expected to extend to higher elevations, especially above 400 m, in the Mekong River
Basin during this century (Zhou et al., 2013).

3.5.1.2 Uncertainty in Estimated Past and Projected Future
Precipitation

Previous studies have reported moderately increasing trends in annual precipitation
over the Lancang-Mekong River Basin (LMRB) in recent decades, although with
varying levels of confidence (Lacombe et al., 2013). One recent study found a wet
but statistically insignificant trend of 24.8 mm/decade in annual precipitation over
the LMRB during the period 1983-2016 (Chen et al., 2019). In contrast, from 1981
to 2007, annual precipitation based on daily gridded (0.25° x 0.25°) APHRODITE
(Asian Precipitation-Highly Resolved Observational Data Integration Towards Eval-
uation of Water Resources) data showed a significant increasing trend of 52.6 mm/
decade over the Mekong River Basin (Lutz et al., 2014). Similarly, there was a signifi-
cant increase (14.5 mm/decade) in annual precipitation over the Lancang River Basin
during the period 1981-2010, based on in situ precipitation records at seven mete-
orological stations (Liu et al., 2022). These findings suggest that while there are
differences in estimates based on different datasets, there has been an increasing
trend in annual precipitation in the LMRB in recent years. There is a consensus,
with high confidence, that significant increases in annual precipitation are expected
across the LMRB over the next 30-50 years (Lacombe et al., 2012). Variability in
annual precipitation is also projected to increase in this basin (Lauri et al., 2012). This
high confidence in projected wetting trends is primarily attributed to future global
warming, which is likely to enhance the transport of water vapor from the Indian
Ocean and the western Pacific Ocean towards the LMRB, resulting in increased
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precipitation across the region (Zhang et al., 2017). Depending on the emissions
scenario, these projected wetting trends in annual precipitation over the Lancang-
Mekong River Basin range from 2.5-8.6% to 1.2-5.8% per year. For instance, annual
precipitation is expected to increase by 35-365 mm (3—14%) over the Mekong River
Basin by 2050 (Zhou et al., 2013) and by approximately 10% over the Lancang River
Basin under the 2 °C warming scenario.

In terms of monthly precipitation, projections indicate increases over the Lancang
River Basin for all months by 20-60% under warming scenarios of 2—-6 °C, except
for April, which shows a projected decrease of 16-40% (Kingston et al., 2011). With
moderate confidence, it is expected that precipitation will increase during the wet
season (May—October) over the Mekong River Basin by 2050 but decrease in the dry
season (November—April) (Zhou et al., 2013). Additionally, there is a likelihood that
precipitation will shift from higher to lower elevations, such that historical annual
precipitation levels of 1,500 mm recorded at an elevation of approximately 280 m
may be observed at elevations of around 80 m (Zhou et al., 2013) (Fig. 3.33).
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3.5.2 Water Resources in the LMRB: Historical Changes
and Future Projections

3.5.2.1 Annual Mean Discharge

A general trend of decreasing annual streamflow was identified in the Lancang-
Mekong River Basin (LMRB) over the period of 1960-2010, although this trend is
associated with low confidence. However, no clear trend has been observed after
2010 (Ruiz-Barradas et al., 2018). It’s worth noting that different studies have
reported varying trends in historical streamflow in the LMRB, with some indicating
a decrease and others suggesting an increase. These discrepancies can be attributed
to differences in data sources and methodologies used in each study.

The changes in streamflow in the LMRB are the result of a combination of climate
change