Skip to main content

Biosynthesis Application and Modification of Protein Fiber

  • Chapter
  • First Online:
Biopolymers in the Textile Industry

Abstract

Wool, silk, and cashmere are natural fibers, proteins which are developed of condensed alpha-amino acids found in animal sources. They possess unique characteristics, including warmth, moisture-wicking ability, and resilience. Wool, a widely used protein fiber, is synthesized from keratin produced by specialized cells in sheep's skin. The wool life cycle involves shearing, cleaning, spinning, and manufacturing into various products like clothing, blankets, and upholstery. The chemical composition of wool includes keratin, which gives it its distinctive properties. Wool finds applications in clothing, home textiles, outdoor gear, filtration, insulation, and various industrial sectors. Protein fibers, such as collagen and silk, have diverse medical applications. They are commonly used in wound dressings, tissue engineering scaffolds, and controlled drug delivery systems. Protein fibers offer unique properties, including biocompatibility, biodegradability, and mechanical strength, making them valuable in the development of artificial organs and surgical materials. Additionally, these fibers have potential applications in bioadhesives for tissue sealing and wound closure. As research continues, exploring the full potential of protein fibers from various sources may lead to innovative advancements in medical technology and therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdussalam-Mohammed, W., Amar, I. A., AlMaky, M. M., Abdelhameed, A., & Errayes, A. O. (2023). Silver nanoparticles and protein polymer-based nanomedicines. In Protein-Based Biopolymers, 3(1), 239–311.

    Google Scholar 

  2. Ali, M. A., Gad-Allah, A. A. I., Al-Betar, E. M., & El-Newashy, R. F. (2022). Effect of blending ratio and sewing characteristics on performance properties for barki wool/ polyester fabrics. Journal of Natural Fibers, 19(16), 13864–13875.

    Google Scholar 

  3. Allafi, F. A., Hossain, M. S., Shaah, M., Lalung, J., Ab Kadir, M. O., & Ahmad, M. I. (2022). A review on characterization of sheep wool impurities and existing techniques of cleaning: industrial and environmental challenges. Journal of Natural Fibers, 19(14), 8669–8687.

    Article  Google Scholar 

  4. Allafi, F., Hossain, M. S., Lalung, J., Shaah, M., Salehabadi, A., Ahmad, M. I., & Shadi, A. (2022). Advancements in applications of natural wool fiber. Journal of Natural Fibers, 19(2), 497–512.

    Article  CAS  Google Scholar 

  5. Alyousef, R., Alabduljabbar, H., Mohammadhosseini, H., Mohamed, A. M., Siddika, A., Alrshoudi, F., & Alaskar, A. (2020). Utilization of sheep wool as potential fibrous materials in the production of concrete composites. Journal of Building Engineering, 30(2), 101216.

    Article  Google Scholar 

  6. Amin, N., Rehman, F. U., Adeel, S., Ahamd, T., Muneer, M., & Haji, A. (2020). Sustainable application of cochineal-based anthraquinone dye for the coloration of bio-mordanted silk fabric. Environmental Science and Pollution Research, 27(4), 6851–6860.

    Article  CAS  PubMed  Google Scholar 

  7. Andonegi, M., Correia, D. M., Costa, C. M., Lanceros-Mendez, S., de la Caba, K., & Guerrero, P. (2022). Tailoring physicochemical properties of collagen-based composites with ionic liquids and wool for advanced applications. Polymer, 25(2), 124943.

    Article  Google Scholar 

  8. Arzik, Y., Kizilaslan, M., Behrem, S., White, S. N., Piel, L. M., & Cinar, M. U. (2023). Genome-wide scan of wool production traits in akkaraman sheep. Genes, 14(3), 713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Asquith, R. S. (2012). Chemistry of natural protein fibers. Springer Science & Business Media.

    Google Scholar 

  10. Aznar-Cervantes, S. D., Monteagudo Santesteban, B., & Cenis, J. L. (2021). Products of sericulture and their hypoglycemic action evaluated by using the silkworm, Bombyx mori (Lepidoptera: Bombycidae), as a model. Insects, 12(12), 1059.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Buccitelli, C., & Selbach, M. (2020). mRNAs, proteins and the emerging principles of gene expression control. Nature Reviews Genetics21(10), 630–644

    Article  CAS  PubMed  Google Scholar 

  12. Dandolo, V. (2019). The Art of Rearing Silk-Worms. Cambridge University Press.

    Google Scholar 

  13. Deng, C., Yang, J., He, H., Ma, Z., Wang, W., Zhang, Y., & Wang, J. (2021). 3D bio-printed biphasic scaffolds with dual modification of silk fibroin for the integrated repair of osteochondral defects. Biomaterials Science, 9(14), 4891–4903.

    Article  CAS  PubMed  Google Scholar 

  14. Doblhofer, E., Heidebrecht, A., & Scheibel, T. (2015). To spin or not to spin: spider silk fibers and more. Applied microbiology and biotechnology, 99, 9361–9380.

    Article  CAS  PubMed  Google Scholar 

  15. Donato, R. K., & Mija, A. (2019). Keratin associations with synthetic, biosynthetic and natural polymers: an extensive review. Polymers, 12(1), 32.

    Article  PubMed  PubMed Central  Google Scholar 

  16. El-Ghorab, A., El-Massry, K. F., & Shibamoto, T. (2007). Chemical composition of the volatile extract and antioxidant activities of the volatile and nonvolatile extracts of Egyptian corn silk (Zea mays L.). Journal of Agricultural and Food Chemistry, 55(22), 9124–9127.

    Google Scholar 

  17. EL-Sayed, H., & El-Hawary, N. (2022). The use of modified Fenton chemistry for reducing energy consumption during dyeing of wool and nylon 6 fabrics with acid dyes. Journal of Natural Fibers, 19(13), 6865–6877.

    Google Scholar 

  18. Eyupoglu, C., Eyupoglu, S., & Merdan, N. (2022). Investigation of dyeing properties of mohair fiber dyed with natural dyes obtained from candelariella reflexa. Journal of Natural Fibers, 19(16), 12829–12848.

    Article  CAS  Google Scholar 

  19. Fan, J., Yang, X., & Liu, Y. (2019). Fractal calculus for analysis of wool fiber: mathematical insight of its biomechanism. Journal of Engineered Fibers and Fabrics, 14(2), 1558925019872200.

    Google Scholar 

  20. Frank, E. N., Hick, M. V. H., & Castillo, M. F. (2022). Determination of the efficiency of the AM2 dehairing technology process with Llama fiber of different types of fleeces and Alpaca Huacaya fiber. Journal of Textile Engineering & Fashion Technology, 8(1), 6–8.

    Article  Google Scholar 

  21. Fu, J., Guerette, P. A., Pavesi, A., Horbelt, N., Lim, C. T., Harrington, M. J., & Miserez, A. (2017). Artificial hagfish protein fibers with ultra-high and tunable stiffness. Nanoscale, 9(35), 12908–12915.

    Article  CAS  PubMed  Google Scholar 

  22. Giora, D., Marchetti, G., Cappellozza, S., Assirelli, A., Saviane, A., Sartori, L., & Marinello, F. (2022). Bibliometric analysis of trends in mulberry and silkworm research on the production of silk and its by-products. Insects, 13(7), 568.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gopu, P., Murali, N., Saravanan, R., Balasundaram, B., & Malarmathi, M. (2021). Study on wool quality and traditional pattern of wool weaving from tiruchy black sheep in Tamil Nadu. Indian Journal of Small Ruminants, 27(2), 271–274.

    Article  Google Scholar 

  24. Guo, C. (2021). Insect and animal-originated fibres: silk and wool. In Fundamentals of Natural Fibres and Textiles, 11(2), 153–178).

    Google Scholar 

  25. Haji, A., Ashraf, S., Nasiriboroumand, M., & Lievens, C. (2020). Environmentally friendly surface treatment of wool fiber with plasma and chitosan for improved coloration with cochineal and safflower natural dyes. Fibers and Polymers, 21(3), 743–750.

    Article  CAS  Google Scholar 

  26. Hao, W., Xu, J., Li, R., Zhao, X., Qiu, L., & Yang, W. (2019). Developing superhydrophobic rock wool for high-viscosity oil/ water separation. Chemical Engineering Journal, 36(8), 837–846.

    Article  Google Scholar 

  27. Hassan, M. M., & Carr, C. M. (2019). A review of the sustainable methods in imparting shrink resistance to wool fabrics. Journal of Advanced Research, 18, 39–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hearle, J. W. S. (2002). Physical properties of wool. Wool: Science and Technology, 34(5), 80–129.

    Google Scholar 

  29. Holland, C., Numata, K., Rnjak‐Kovacina, J., & Seib, F. P. (2019). The biomedical use of silk: past, present, future. Advanced Healthcare Materials, 8(1), 1800465.

    Article  Google Scholar 

  30. Hsing, W. H., Lin, J. H., & Kao, K. T. (2007). The investigation of fiber carding performance with the application of static electricity to carded nonwoven fabric process. Journal of Materials Processing Technology, 192(4), 543–548.

    Article  Google Scholar 

  31. Hu, J., Xiong, Z., Liu, Y., & Lin, J. (2022). A biodegradable composite filter made from electrospun zein fibers underlaid on the cellulose paper towel. International Journal of Biological Macromolecules, 204, 419–428.

    Article  CAS  PubMed  Google Scholar 

  32. Huson, M. G. (2018). Properties of wool. In Handbook of properties of textile and technical fibres, 11(2), 59–103.

    Article  Google Scholar 

  33. Ismail, S. A., Abou Taleb, M., Emran, M. A., Mowafi, S., Hashem, A. M., & El-Sayed, H. (2022). Benign felt-proofing of wool fibers using a keratinolytic thermophilic alkaline protease. Journal of Natural Fibers, 19(10), 3697–3709.

    Article  CAS  Google Scholar 

  34. Jia, T., Wang, Y., Dou, Y., Li, Y., Jung de Andrade, M., Wang, R., & Liu, Z. (2019). Moisture sensitive smart yarns and textiles from self‐balanced silk fiber muscles. Advanced Functional Materials, 29(18), 1808241.

    Article  Google Scholar 

  35. Johari, N., Moroni, L., & Samadikuchaksaraei, A. (2020). Tuning the conformation and mechanical properties of silk fibroin hydrogels. European Polymer Journal, 134(2), 109–842.

    Google Scholar 

  36. Jóźwiak-Niedźwiedzka, D., & Fantilli, A. P. (2020). Wool-reinforced cement based composites. Materials, 13(16), 3590.

    PubMed  Google Scholar 

  37. Karahan, H. A., Özdogğan, E., Demir, A., Koçum, I. C., Öktem, T., & Ayhan, H. (2009). Effects of atmospheric pressure plasma treatments on some physical properties of wool fibers. Textile Research Journal, 79(14), 1260–1265.

    Article  CAS  Google Scholar 

  38. Katashima, T., Malay, A. D., & Numata, K. (2019). Chemical modification and biosynthesis of silk-like polymers. Current Opinion in Chemical Engineering, 24(6), 61–68.

    Article  Google Scholar 

  39. Kazakov, F., Sattarova, N., Rajabov, A., & Nodirova, M. (2021). A study of the study of the basic physico-mechanical and technological properties of camel wool fiber. Maтpицa нayчнoгo пoзнaния, (6–2), 31–40.

    Google Scholar 

  40. Khusanbaev, A. M., Madaminov, J. Z., & Oxunjonov, Z. N. (2020). Effect of radiation on physical-mechanical properties of silk threads. Theoretical & Applied Science, 17(5), 209–212.

    Article  Google Scholar 

  41. Kim, D. W., Lee, O. J., Kim, S. W., Ki, C. S., Chao, J. R., Yoo, H., & Park, C. H. (2015). Novel fabrication of fluorescent silk utilized in biotechnological and medical applications. Biomaterials, 70, 48–56.

    Article  CAS  PubMed  Google Scholar 

  42. Knuuttila, K. (2022). Biosynthesis of wool. 18(6),78–95.

    Google Scholar 

  43. Kumar, A., Sawal, R. K., Narula, H. K., Kumar, S., & Kumar, R. (2019). Subjective and objective/ machine evaluation of wool luster in magra sheep vis-a-vis wool grading and animal selection. Journal of Natural Fibers, 16(5), 644–651.

    Article  Google Scholar 

  44. Kumar, V., Dureja, H., & Garg, V. (2023). Traditional Use, Phytochemistry and pharmacology of ananas comosus (L.) Merr.(Family Bromeliaceae): An update. Current Nutrition & Food Science, 19(4), 428–441.

    Google Scholar 

  45. Li, W., Zhao, Y., & Wang, X. (2019). Effect of surface modification on the dynamic heat and mass transfer of wool fabrics. Journal of Thermal Biology, 85(3), 102416.

    Article  PubMed  Google Scholar 

  46. Li, X., Zong, L., Wu, X., You, J., Li, M., & Li, C. (2018). Biomimetic engineering of spider silk fibres with graphene for electric devices with humidity and motion sensitivity. Journal of Materials Chemistry C, 6(13), 3212–3219.

    Article  CAS  Google Scholar 

  47. Liang, Y., Pakdel, E., Zhang, M., Sun, L., & Wang, X. (2019). Photoprotective properties of alpaca fiber melanin reinforced by rutile TiO2 nanoparticles: A study on wool fabric. Polymer Degradation and Stability, 160, 80–88.

    Article  CAS  Google Scholar 

  48. Lin, Z., Huang, W., Zhang, J., Fan, J. S., & Yang, D. (2009). Solution structure of eggcase silk protein and its implications for silk fiber formation. Proceedings of the National Academy of Sciences, 106(22), 8906–8911.

    Article  CAS  Google Scholar 

  49. Ma, S. Y., Smagghe, G., & Xia, Q. Y. (2019). Genome editing in Bombyx mori: new opportunities for silkworm functional genomics and the sericulture industry. Insect Science, 26(6), 964–972.

    Article  CAS  PubMed  Google Scholar 

  50. Makvandi, P., Ali, G. W., Della Sala, F., Abdel-Fattah, W. I., & Borzacchiello, A. (2019). Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing. Carbohydrate Polymers, 223(21), 115023.

    Article  CAS  PubMed  Google Scholar 

  51. Murmu, S. B., Debnath, S., & Bhutia, C. N. (2023). Evaluation of the german angora rabbit fiber produced in the northeast region of india. Journal of Natural Fibers, 20(2), 2210323.

    Article  Google Scholar 

  52. Nawaz, N., Bakar, N. K. A., Mahmud, H. N. M. E., & Jamaludin, N. S. (2021). Molecularly imprinted polymers-based DNA biosensors. Analytical Biochemistry, 630(4), 114–328.

    Google Scholar 

  53. Nerger, B. A., Brun, P. T., & Nelson, C. M. (2019). Microextrusion printing cell-laden networks of type I collagen with patterned fiber alignment and geometry. Soft matter, 15(28), 5728–5738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nikolova, M. P., & Chavali, M. S. (2020). Metal oxide nanoparticles as biomedical materials. Biomimetics5(2), 27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Otakulov, B. A., Karimova, M. I. Q., & Abdullayev, I. A. (2021). Use of mineral wool and its products in the construction of buildings and structures. Scientific Progress, 2(6), 1880–1882.

    Google Scholar 

  56. Patrucco, A., Visai, L., Fassina, L., Magenes, G., & Tonin, C. (2019). Keratin-based matrices from wool fibers and human hair. In Materials for Biomedical Engineering, 11(2), 375–403).

    Google Scholar 

  57. Prajapati, C. D., Smith, E., Kane, F., & Shen, J. (2019). Selective enzymatic modification of wool/ polyester blended fabrics for surface patterning. Journal of Cleaner Production, 211(4), 909–921.

    Article  CAS  Google Scholar 

  58. Qaxxorovich, N. Q., Juraevich, Y. N., Nozimjonovna, O. I., & Baxtiyorovna, N. B. (2021). The perspective directions for the development of sericulture. The American Journal of Engineering and Technology, 3(09), 24–27.

    Google Scholar 

  59. Ranakoti, L., Gupta, M. K., & Rakesh, P. K. (2019). Silk and silk-based composites: opportunities and challenges. Processing of Green composites, 91–106.

    Google Scholar 

  60. Raza, Z. A., & Khatoon, R. (2023). Lipolysis of poly (hydroxybutyrate)‐based films for the tailored release of hydrophilic proteins. Chemistry Select, 8(1), 202203417.

    Google Scholar 

  61. Reddy, N., & Yang, Y. (2011). Potential of plant proteins for medical applications. Trends in Biotechnology29(10), 490–498.

    Article  CAS  PubMed  Google Scholar 

  62. Rippon, J. A. (2013). The structure of wool. The Coloration of Wool and Other Keratin Fibres, 2(1),1–42.

    Google Scholar 

  63. Rosenman, G., Beker, P., Koren, I., Yevnin, M., Bank‐Srour, B., Mishina, E., & Semin, S. (2011). Bioinspired peptide nanotubes: deposition technology, basic physics and nanotechnology applications. Journal of Peptide Science, 17(2), 75–87.

    Article  CAS  PubMed  Google Scholar 

  64. Sacchero, D., Roger, J. Q., Romero, S., Maurino, J., & Gonzalez, E. B. (2022). Community-based vicuña (Vicugna vicugna) shearing in the arid Puna of Argentina: Body weight and fiber traits obtained during the chakus. Small Ruminant Research, 216, 106829.

    Article  Google Scholar 

  65. Safer, A. M. (2017). A quantitative description of lipid and extracellular matrix proteinaceous fibers in hepatic fibrosis of a rat model by imagej using nano-images. Journal of Nanomedicine and Nanotechnology, 8(2), 111–116.

    Google Scholar 

  66. Saha, S., Kumar, P., Raj, S., & Sentisuba, B. M. (2022). Sericulture: management and practices of mulberry silkworm. International Journal of Pharmaceutical Research and Applications, 7(2), 35–46.

    Google Scholar 

  67. Scheibel, T. (2005). Protein fibers as performance proteins: new technologies and applications. Current Opinion in Biotechnology, 16(4), 427–433.

    Article  CAS  PubMed  Google Scholar 

  68. Shang, S., Zhu, L., & Fan, J. (2011). Physical properties of silk fibroin/ cellulose blend films regenerated from the hydrophilic ionic liquid. Carbohydrate Polymers, 86(2), 462–468.

    Article  CAS  Google Scholar 

  69. Sheraliyevna, A. T. (2023). To study the chemical composition of woolen fabric. American Journal of Interdisciplinary Research and Development, 16(5), 21–24.

    Google Scholar 

  70. Song, J. E., Sim, B. R., Jeon, Y. S., Kim, H. S., Shin, E. Y., Carlomagno, C., & Khang, G. (2019). Characterization of surface modified glycerol/ silk fibroin film for application to corneal endothelial cell regeneration. Journal of Biomaterials Science, Polymer Edition, 30(4), 263–275.

    Article  CAS  PubMed  Google Scholar 

  71. Sun, J., Chen, J., Liu, K., & Zeng, H. (2021). Mechanically strong proteinaceous fibers: engineered fabrication by microfluidics. Engineering, 7(5), 615–623.

    Article  CAS  Google Scholar 

  72. Sun, J., Li, B., Wang, F., Feng, J., Ma, C., Liu, K., & Zhang, H. (2021). Proteinaceous fibers with outstanding mechanical properties manipulated by supramolecular interactions. Chinese Chemical Society Chemistry, 3(6), 1669–1677.

    CAS  Google Scholar 

  73. Sun, J., Su, J., Ma, C., Göstl, R., Herrmann, A., Liu, K., & Zhang, H. (2020). Fabrication and mechanical properties of engineered protein‐based adhesives and fibers. Advanced Materials, 32(6), 1906360.

    Article  CAS  Google Scholar 

  74. Tang, X., Liu, H., Shi, Z., Chen, Q., Kang, X., Wang, Y., & Zhao, P. (2020). Enhanced silk yield in transgenic silkworm (Bombyx mori) via ectopic expression of BmGT1‐L in the posterior silk gland. Insect Molecular Biology, 29(5), 452–465.

    Article  CAS  PubMed  Google Scholar 

  75. Tansil, N. C., Koh, L. D., & Han, M. Y. (2012). Functional silk: colored and luminescent. Advanced Materials, 24(11), 1388–1397.

    Article  CAS  PubMed  Google Scholar 

  76. Thill, S., Schmidt, T., Wöll, D., & Gebhardt, R. (2019). A regenerated fiber from rennet-treated casein micelles. Colloid and Polymer Science, 299, 909–914.

    Article  Google Scholar 

  77. Thill, S., Schmidt, T., Wöll, D., & Gebhardt, R. (2021). A regenerated fiber from rennet-treated casein micelles. Colloid and Polymer Science, 299, 909–914.

    Article  CAS  Google Scholar 

  78. Thomas, S., & Thomas, J. (2021). A review on existing methods and classification algorithms used for sex determination of silkworm in sericulture. In Intelligent Systems Design and Applications: 20th International Conference on Intelligent Systems Design and Applications (ISDA 2020), 567–579.

    Google Scholar 

  79. Wan, S., Cheng, W., Li, J., Wang, F., Xing, X., Sun, J., & Liu, K. (2022). Biological composite fibers with extraordinary mechanical strength and toughness mediated by multiple intermolecular interacting networks. Nano Research, 15(10), 9192–9198.

    Article  CAS  Google Scholar 

  80. Wang, C. Y., Jiao, K., Yan, J. F., Wan, M. C., Wan, Q. Q., Breschi, L., & Niu, L. N. (2021). Biological and synthetic template-directed syntheses of mineralized hybrid and inorganic materials. Progress in Materials Science, 116(14), 100–712.

    Google Scholar 

  81. Wang, X., Li, Y., & Zhong, C. (2015). Amyloid-directed assembly of nanostructures and functional devices for bionanoelectronics. Journal of Materials Chemistry B, 3(25), 4953–4958.

    Article  CAS  PubMed  Google Scholar 

  82. Wang, X., Li, Y., Liu, Q., Tan, X., Xie, X., Xia, Q., & Zhao, P. (2019). GC/ MS-based metabolomics analysis reveals active fatty acids biosynthesis in the filippi's gland of the silkworm, bombyx mori, during silk spinning. Insect Biochemistry and Molecular Biology, 105(11), 1–9.

    PubMed  Google Scholar 

  83. Wang, Y., Wang, F., Xu, S., Wang, R., Chen, W., Hou, K., ... & Xia, Q. (2019). Genetically engineered bi-functional silk material with improved cell proliferation and anti-inflammatory activity for medical application. Acta Biomaterialia, 86, 148–157.

    Google Scholar 

  84. Wang, Y., Xu, S., Wang, R., Chen, W., Hou, K., Tian, C., & Wang, F. (2019). Genetic fabrication of functional silk mats with improved cell proliferation activity for medical applications. Biomaterials science, 7(11), 4536–4546.

    Article  CAS  PubMed  Google Scholar 

  85. Xu, L., Zhang, N., Wang, Q., Yuan, J., Yu, Y., Wang, P., & Fan, X. (2019). Eco-friendly grafting of chitosan as a biopolymer onto wool fabrics using horseradish peroxidase. Fibers and Polymers, 20, 261–270.

    Article  CAS  Google Scholar 

  86. Yıldız, A., Kara, A. A., & Acartürk, F. (2020). Peptide-protein based nanofibers in pharmaceutical and biomedical applications. International Journal of Biological Macromolecules, 148(9), 1084–1097.

    Article  PubMed  Google Scholar 

  87. Zhang, C., Xia, L., Zhang, J., Liu, X., & Xu, W. (2020). Utilization of waste wool fibers for fabrication of wool powders and keratin: a review. Journal of Leather Science and Engineering, 2, 1–15.

    Article  Google Scholar 

  88. Zhang, L., Piipponen, M., Liu, Z., Li, D., Bian, X., Niu, G., & Xu Landén, N. (2023). Human skin specific long noncoding RNA HOXC13-AS regulates epidermal differentiation by interfering with Golgi-ER retrograde transport. Cell Death & Differentiation, 4(1),1–15.

    Google Scholar 

  89. Zhang, P., Li, J., Sun, J., Li, Y., Liu, K., Wang, F., & Su, J. (2022). Bioengineered protein fibers with anti‐freezing mechanical behaviors. Advanced Functional Materials, 32(48), 2209006.

    Article  CAS  Google Scholar 

  90. Zhang, P., Sun, J., Li, J., Zhang, H., & Liu, K. (2023). Biosynthesis, assembly, and biomedical applications of high-performance engineered proteins. American Chemical Society Chemical Biology.

    Google Scholar 

  91. Zhang, P., Wang, Q., Shen, J., Wang, P., Yuan, J., & Fan, X. (2019). Enzymatic Zhang, P., Sun, J., Li, J., Zhang, H., & Liu, K. (2023). Biosynthesis, Assembly, and Biomedical thiol–ene click reaction: an eco-friendly approach for MPEGMA-grafted modification of wool fibers. American Chemical Society Sustainable Chemistry & Engineering, 7(15), 13446–13455.

    Google Scholar 

  92. Zhang, W., & Fan, Y. (2021). Structure of keratin. Fibrous Proteins: Design, Synthesis, and Assembly, 11(2),41–53.

    Article  Google Scholar 

  93. Zhang, Y., Lu, L., Chen, Y., Wang, J., Chen, Y., Mao, C., & Yang, M. (2019). Polydopamine modification of silk fibroin membranes significantly promotes their wound healing effect. Biomaterials Science, 7(12), 5232–5237.

    Article  CAS  PubMed  Google Scholar 

  94. Zhao, M., Zhou, H., Luo, Y., Wang, J., Hu, J., Liu, X., & Hickford, J. G. (2021). Variation in a newly identified caprine KRTAP gene is associated with raw cashmere fiber weight in Longdong cashmere goats. Genes, 12(5), 625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhou, Q., Wang, W., Zhang, Y., Hurren, C. J., & Li, Q. (2020). Analyzing the thermal and hygral behavior of wool and its impact on fabric dimensional stability for wool processing and garment manufacturing. Textile Research Journal, 90(19–20), 2175–2183.

    Article  CAS  Google Scholar 

  96. Zhou, Q., Wu, W., Zhou, S., Xing, T., Sun, G., & Chen, G. (2020). Polydopamine-induced growth of mineralized γ-FeOOH nanorods for construction of silk fabric with excellent superhydrophobicity, flame retardancy and UV resistance. Chemical Engineering Journal, 382(14), 122988.

    Article  CAS  Google Scholar 

  97. Zhu, P., Li, D., Yang, Q., Su, P., Wang, H., Heimann, K., & Zhang, W. (2021). Commercial cultivation, industrial application, and potential halocarbon biosynthesis pathway of Asparagopsis sp. Algal. Research, 56, 102319.

    Article  Google Scholar 

  98. Zuber, M., Adeel, S., Rehman, F. U., Anjum, F., Muneer, M., Abdullah, M., & Zia, K. M. (2020). Influence of microwave radiation on dyeing of bio-mordanted silk fabric using neem bark (Azadirachta indica)-based tannin natural dye. Journal of Natural Fibers, 17(10), 1410–1422.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazal-ur-Rehman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fazal-ur-Rehman, Fatima, A., Adeel, S., Qayyum, M.A., Tanveer, H.A. (2024). Biosynthesis Application and Modification of Protein Fiber. In: Ahmed, S., Shabbir, M. (eds) Biopolymers in the Textile Industry. Springer, Singapore. https://doi.org/10.1007/978-981-97-0684-6_11

Download citation

Publish with us

Policies and ethics