Skip to main content

On–off Thinning in Linear Antenna Arrays Using Binary Dragonfly Algorithm

  • Conference paper
  • First Online:
Advances in Computing and Network Communications

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 735))

Abstract

The aim of this work is to study the suitability of two newly introduced bio-inspired algorithms, namely the dragonfly algorithm (DA) and the salp swarm algorithm (SSA) for thinning a linear antenna array. In array thinning, a fully populated array is chosen as a starting point, and a thinned array is obtained through careful deactivation of select sensors such that the residual active sensors enable the array to achieve a desired side-lobe performance. In this paper, we apply the binary versions of DA and SSA, namely the binary dragonfly algorithm (BDA), and the binary salp swarm algorithm (BSSA) to thin a symmetric linear array with uniform inter-element spacing of half wavelength. Extensive simulations were performed in MATLAB by considering arrays of different sizes. The results obtained from BDA and BSSA were compared against those obtained from the binary versions of two benchmark algorithms, namely the genetic algorithm (GA) and the gray wolf optimizer (GWO). Relative side-lobe level (RSLL) and filling percentage were used as performance comparison metrics. It has been observed that both BDA and BSSA offer promising results in line with BGA and BGWO. More specifically, BDA was found to be faster than BSSA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.A. Monzingo, R. Haupt, T. Miller, in Introduction to Adaptive Arrays, 2nd edn. (Institution of Engineering and Technology, 2011)

    Google Scholar 

  2. F. Gross, in Smart Antennas with MATLAB 2nd edn. (McGraw-Hill Education, 2015)

    Google Scholar 

  3. R.L. Haupt, Thinned arrays using genetic algorithms. IEEE Trans. Antennas Propag. 42(7), 993–999 (1994). https://doi.org/10.1109/8.299602

    Article  Google Scholar 

  4. G.G. Lema, D.H. Hailu, T.B. Wuneh, SLL attenuation-based thinned antenna design for next-generation communications. EURASIP J. Wireless Commun. Netw. 2019(1), 225 (2019). https://doi.org/10.1186/s13638-019-1547-5

    Article  Google Scholar 

  5. G. Buttazzoni, F. Babich, F. Vatta, M. Comisso, Geometrical synthesis of sparse antenna arrays using compressive sensing for 5G IoT applications. Sensors 20(2), 2 (2020). https://doi.org/10.3390/s20020350

  6. G. Sun, Y. Liu, J. Li, Y. Zhang, A. Wang, Sidelobe reduction of large-scale antenna array for 5G beamforming via hierarchical cuckoo search. Electron. Lett. 53(16), 1158–1160 (2017). https://doi.org/10.1049/el.2016.4768

    Article  Google Scholar 

  7. M.Z. Hasan, H. Al-Rizzo, Beamforming optimization in internet of things applications using robust swarm algorithm in conjunction with connectable and collaborative sensors. Sensors 20(7), 7 (2020). https://doi.org/10.3390/s20072048

  8. T. Bai, A. Alkhateeb, R. Heath, Coverage and capacity of millimeter-wave cellular networks. IEEE Commun. Mag. 52(9), 70–77 (2014). https://doi.org/10.1109/MCOM.2014.6894455

    Article  Google Scholar 

  9. S. Kutty, D. Sen, Beamforming for millimeter wave communications: an inclusive survey. IEEE Commun. Surveys Tutorials 18(2), 949–973 (2016). https://doi.org/10.1109/COMST.2015.2504600

  10. M. Wang, F. Gao, S. Jin, H. Lin, An overview of enhanced massive MIMO with array signal processing techniques. IEEE J. Selected Topics Signal Process. 13(5), 886–901 (2019). https://doi.org/10.1109/JSTSP.2019.2934931

    Article  Google Scholar 

  11. A. Patwari, G.R. Reddy, A conceptual framework for the use of minimum redundancy linear arrays and flexible arrays in future smartphones. Int. J. Antennas Propag. 2018(9629837), 12 (2018). https://doi.org/10.1155/2018/9629837

    Article  Google Scholar 

  12. A. Patwari, R.R. Gudheti, Novel MRA-based ssparse MIMO and SIMO antenna arrays for automotive radar applications. Progress Electromagnet. Res. 86, 103–119 (2020). https://doi.org/10.2528/PIERB19121602

    Article  Google Scholar 

  13. A. Patwari, G.R. Reddy, DOA estimation and adaptive nulling in 5G smart antenna arrays for coherent arrivals using spatial smoothing. IJMET 9(11), 614–628 (2018)

    Google Scholar 

  14. A. Patwari, G.R. Reddy, H. Gupta, V. Nigam, Suitability of conventional 1D noise subspace algorithms for DOA estimation using large arrays at millimeter wave band. Int. J. Appl. Eng. Res. 12(8), 1591–1597 (2017). https://doi.org/10.37622/IJAER/12.8.2017.1591-1597

  15. H.M. Elkamchouchi, M.M. Hassan, Array pattern synthesis approach using a genetic algorithm. IET Microwaves Antennas Propag. 8(14), 1236–1240 (2014). https://doi.org/10.1049/iet-map.2013.0718

    Article  Google Scholar 

  16. J.R. Mohammed, Thinning a subset of selected elements for null steering using binary genetic algorithm. Progress Electromagnet. Res. 67, 147–155 (2018). https://doi.org/10.2528/PIERM18021604

    Article  Google Scholar 

  17. T.B. Chen, Y.B. Chen, Y.C. Jiao, E.S. Zhang, Synthesis of antenna array using particle swarm optimization. in 2005 Asia-Pacific Microwave Conference Proceedings, December 2005, vol. 3, (2005) pp. 4. https://doi.org/10.1109/APMC.2005.1606685

  18. M.M. Khodier, C.G. Christodoulou, Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization. IEEE Trans. Antennas Propag. 53(8), 2674–2679 (2005). https://doi.org/10.1109/TAP.2005.851762

    Article  Google Scholar 

  19. S. Pal, A. Basak, S. Das, A. Abraham, Linear antenna array synthesis with invasive weed optimization algorithm. in 2009 International Conference of Soft Computing and Pattern Recognition, December (2009), pp. 161–166. https://doi.org/10.1109/SoCPaR.2009.42

  20. P. Saxena, A. Kothari, Ant lion optimization algorithm to control side lobe level and null depths in linear antenna arrays. AEU—Int. J. Electron. Commun. 70(9), 1339–1349 (2016). https://doi.org/10.1016/j.aeue.2016.07.008

    Article  Google Scholar 

  21. P. Saxena, A. Kothari, Optimal pattern synthesis of linear antenna array using grey wolf optimization algorithm. Int. J. Antennas Propag. (2016). https://www.hindawi.com/journals/ijap/2016/1205970/ (Accessed May 13, 2020).

  22. N. Mhudtongon, C. Phongcharoenpanich, S. Kawdungta, Modified fruit fly optimization algorithm for analysis of large antenna array. Int. J. Antennas Propag. (2015). https://www.hindawi.com/journals/ijap/2015/124675/ (Accessed May 13, 2020)

  23. L. Polo-López, J. Córcoles, J.A. Ruiz-Cruz, Antenna design by means of the fruit fly optimization algorithm. Electronics 7(1), 1 (2018). https://doi.org/10.3390/electronics7010003

  24. U. Singh, R. Salgotra, Pattern synthesis of linear antenna arrays using enhanced flower pollination algorithm. Int. J. Antennas Propag. (2017). https://www.hindawi.com/journals/ijap/2017/7158752/ (Accessed May 13, 2020)

  25. H. Wang, C. Liu, H. Wu, B. Li, X. Xie, Optimal pattern synthesis of linear array and broadband design of whip antenna using grasshopper optimization algorithm. Int. J. Antennas Propag. (2020). https://www.hindawi.com/journals/ijap/2020/5904018/ (Accessed May 13, 2020)

  26. A.K. Yerrola, P. Spandana, Optimization of linear antennas—a survey. Int. J. Comput. Appl. 171(3), 17–20 (2017)

    Google Scholar 

  27. D. Prabhakar, M. Satyanarayana, Side lobe pattern synthesis using hybrid SSWOA algorithm for conformal antenna array. Eng. Sci. Technol. Int. J. 22(6), 1169–1174 (2019). https://doi.org/10.1016/j.jestch.2019.06.009

    Article  Google Scholar 

  28. A.A. Amaireh, A.S. Al-Zoubi, N.I. Dib, Sidelobe-level suppression for circular antenna array via new hybrid optimization algorithm based on antlion and grasshopper optimization algorithms. Progress Electromagnet. Res. 93, 49–63 (2019). https://doi.org/10.2528/PIERC19040909

    Article  Google Scholar 

  29. Z. Liang, J. Ouyang, F. Yang, A hybrid GA-PSO optimization algorithm for conformal antenna array pattern synthesis. J. Electromagnet. Waves Appl. 32(13), 1601–1615 (2018). https://doi.org/10.1080/09205071.2018.1462257

    Article  Google Scholar 

  30. S. Mirjalili, A.H. Gandomi, S.Z. Mirjalili, S. Saremi, H. Faris, S.M. Mirjalili, Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017). https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  31. S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl. 27(4), 1053–1073 (2016). https://doi.org/10.1007/s00521-015-1920-1

    Article  MathSciNet  Google Scholar 

  32. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997). https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  33. S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  34. R.M. Rizk-Allah, A.E. Hassanien, M. Elhoseny, M. Gunasekaran, A new binary salp swarm algorithm: development and application for optimization tasks. Neural Comput. Appl. 31(5), 1641–1663 (2019). https://doi.org/10.1007/s00521-018-3613-z

    Article  Google Scholar 

  35. H. Rezagholizadeh, D. Gharavian, A thinning method of linear and planar array antennas to reduce SLL of radiation pattern by GWO and ICA algorithms. AUT J. Electri. Eng. 50(2), 135–140 (2018). https://doi.org/10.22060/eej.2018.13697.5182

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Patwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patwari, A., Mani, M., Singh, S., Srinivasan, G. (2021). On–off Thinning in Linear Antenna Arrays Using Binary Dragonfly Algorithm. In: Thampi, S.M., Gelenbe, E., Atiquzzaman, M., Chaudhary, V., Li, KC. (eds) Advances in Computing and Network Communications. Lecture Notes in Electrical Engineering, vol 735. Springer, Singapore. https://doi.org/10.1007/978-981-33-6977-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6977-1_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6976-4

  • Online ISBN: 978-981-33-6977-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics