
Chapter 5
Energy Management of Maritime Grids
Under Uncertainties

5.1 Introductions of Uncertainties in Maritime Grids

5.1.1 Different Types of Uncertainties

There are many types of uncertainties during the operation of maritime grids, i.e.,
demand-side uncertainties, generation-side uncertainties, and failure uncertainties,
which are shown in Fig. 5.1.

Generally, navigation uncertainties are the main sources of demand-side uncer-
tainties, such as the uncertain wave and wind and the adverse weather conditions.
As we have illustrated in former Chap. 2, there are different management tasks
of maritime grids, and the navigation uncertainties therefore can bring uncertain-
ties to the demand, such as the propulsion load in ships and the corresponding
calls-for-service delay for berthing.

For the propulsion load, conventional uncertainwave andwindwill add navigation
resistance and cause speed loss. To ensure the on-time rates, the power generation
system requires a certain power reserve, noted as “sea margin” [1]. Table 5.1 shows
the “sea margins” in the main navigation route around this world.

From the above table, the “sea margins” are generally within the range of “20%–
30%”, which represents a general ship design should at least have 30% power reserve
[2]. This power reserve range has provided the flexibility for the maritime grids to
accommodate navigation uncertainties towards economic and environmental objec-
tives, and also gives the necessity of optimal energy management. When the navi-
gation uncertainties continuously increasing, the route may become not suitable
for navigation, and this type of navigation uncertainties is the “adverse weather
conditions”, the ships need to change another route for safety, which refers to the
“weather routing” problems [3–5]. Additionally, navigation uncertainties will bring
calls-for-service delays, which means the ships cannot arrive at the mission point at
the scheduling time, and the service will be delayed. For example, the pre-scheduled
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Fig. 5.1 Classification of uncertainties in maritime grids

Table 5.1 “Sea margins” for
the main navigation route [2]

Navigation route Sea margin

North Atlantic, heading west 25%–35%

North Atlantic, heading east 20%–25%

Europe-Australia 20%–25%

Europe-East Asia 20%–25%

Pacific 20%–30%

berth position for a delayed ship may stay idle state till the ship arrives, and the
electric and logistic service will also be postponed, which brings uncertainties to the
operation of the seaport.

The energy source uncertainties are the main sources of generation-side uncer-
tainties. In conventional operating scenarios, the uncertainties of energy sources are
quite limited since the main energy sources, such as diesel engines or gas turbines are
highly controllable. However, in recent years, various types of renewable energy are
integrated into maritime grids, and the inherent intermittency brings lots of operating
uncertainties to the maritime grids, such as the photovoltaic energy in ships, and the
offshore wind farms for island microgrid. Those types of uncertainties should be
addressed to reduce the operating risks of maritime grids. Another type of energy
source uncertainties is the main grid uncertainties from the uncertain electricity price
and the main grid failures.

The equipment uncertainties generally include two types, the first one is for
the failure and the second one is for the scheduled maintenance or replacement.
Their difference is the failure occurs unexpectedly and the system needs to act for
correction, and the scheduled uncertainties give much longer time for the system to
re-schedule the operating plan.

The main classifications of uncertainties in maritime grids are illustrated above,
and the uncertainties bring enormous operating risk to the maritime grids, and proper
operating strategies should be promoted to mitigate their influence.
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5.1.2 Effects of Electrification for Uncertainties

The above uncertainties have perplexed the maritime industry for a long time. For
example, the adverse weather conditions have been viewed as one of the main reason
for ocean accidents, for example, the accident of Svendborg Maersk in 2014 [6]. The
equipment failures are also viewed as the enemy to the system reliability [7, 8].
Lots of control strategies have been studied to prevent their harmful effects, such
as spare parts optimization [9] and system reconfiguration [8]. With the extensive
electrification, the maritime grids become a highly coupledmulti-energy system, and
all the system resources can be used to mitigate one type of uncertainty. Here we
give two examples to show the effects of electrification for uncertainties.

In conventional ships, the propulsion system is directly driven by the main engine
by a gearbox, and the other onboard components are supplied by the shipboard power
system, shown as Fig. 5.2.

The main engines cannot freely adjust their outputs, and only several gear posi-
tions can be selected, such as 1/2 full power or 1/3 full power. As a result, this type of
adjustment is coarse and lacks flexibility for conventional navigation uncertainties,
since, for most cases, the speed loss by navigation uncertainties is only 10%~15%
of the total speed [2]. With extensive electrification, the propulsion system can be
quickly responding to the navigation uncertainties due to the superior rotation regu-
lation performance of electric machines [10, 11]. In this sense, the electrification can
make ships navigate in a more steady speed range.

For conventional seaports, the logistic equipment consumes most of the energy
consumption and they may be not driven by electricity, such as the rubber-tire gantry
may be driven by diesel engines [12]. In some cases, the rest systemmay not consume
all renewable energy integration. For example, the Jurong port of Singapore has
9.5 MW photovoltaic energy integration in 2016 [13], but some of them may be
wasted in some time periods. However, with fully electrified, the maritime grids will
have a larger capacity to accommodate the energy source uncertainties. Furthermore,

Oil tanker Prime mover gearbox Propeller

Auxiliary
engine Generator

Serviceload

Fig. 5.2 Topology of conventional ships
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the auxiliary equipment brought by electrification, such as batteries, combined heat-
cooling power generators, can further enhance the reliability undermain grid failures.

In summary, with full electrification, the maritime grids will have larger capacity
and more resources to withstand different types of uncertainties, and with proper
energy management, the economy, environment, and reliability objectives can be
better achieved.

5.2 Navigation Uncertainties

5.2.1 Uncertain Wave and Wind

Generally in calm water, the propulsion load of ship has a cubic relationship with
the cruising speed, shown as Fig. 5.3. The propulsion load will gradually increase
with the speed and finally hits the “wave wall”, and the maximum cruising speed
achieves. When a ship sails on the sea, the wave and wind will add extra resistance
and bring speed losses [2], and the wave wall will be moved to the left.

From Fig. 5.3, when considering the wave and wind, the cruising speed under the
same propulsion load will decrease, and this refers to the “speed loss”. To mitigate
this speed loss, the main engine of ships should have adequate “sea margin”, usually
more than 15% by different navigation routes and seasons, as shown in Table 5.1.
For example, in the route between Japan-Canada, the added resistance may scale up
to 220% in some seasons, and the average is about 100% [14], and for most cases,
the resistance in summer increases about 50%, and in winter, the resistance increases
about 100% [14]. That added resistance will introduce more speed losses, and those
speed losses may even accumulate and cause a severe delay in the destination. There-
fore, energy management considering speed losses in uncertain wave and wind is
essential for the maritime industry.

Fig. 5.3 Relationship
between the propulsion load
and the cruising speed

Wave wallPropulsion
load

Speed

Calm water

With wave
and wind
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The performance of ships in wave and wind has been studied for a long time,
and an empirical model is formulated in [15] by various CFD simulations, which are
shown as follows.

RT
t = RC + �Rwave

t + �Rwind
t (5.1)

�Rwave
t = 1

L · ρwater · g · h2t · B2
int · CD.wat (τt , θt ) (5.2)

�Rwind
t = 1

2
· ρair · Sint · CD.air ·

[(
vct + vwindt cosθt

)2
−(

vct
)2

]
(5.3)

vt = c2

√
RC

RT
t

· vct (5.4)

where RT
t is the total resistance; RC is the resistance of calm water;�Rwave

t ,�Rwind
t

are the added resistances of wave and wind; L is the ship length; ρwater is the density
ofwater; g is the acceleration of gravity; ht is thewave height; Bint is the breath of ship
intersection; CD.wat (τt , θt ) is the added resistance coefficient, which is determined
by wave-length τt and weather direction θt ; ρair is the density of air; Sint is the area
of ship intersection; CD.air is the air drag coefficient; vwindt is the wind speed; vct and
vt are the cruising speed in calm water and wave/wind, respectively.

From the aboveEqs. (5.1)–(5.4), there are fourmain decision variables to calculate
the speed loss, i.e., wave height denoted as ht , wavelength denoted as τt , wind speed
vwindt and the weather direction θt . It should be noted that the weather direction
is defined as the angle between the wind and the ship sailing direction. Since the
wave has a similar direction with the wind, weather direction is used to indicate the
influence of wave and wind.

Reference [15] has comprehensively studied the speed performance in wave and
wind, and gives some fitting curves to calculateCD.wat under different weather direc-
tion (under B.N. 6), shown as Fig. 5.4. We can see this coefficient differs from each
other when the weather direction changes.

With the above model, the speed loss under uncertain waves and wind can be
predicted. Then in the energy management model, the speed loss can be considered
in the voyage scheduling, and the propulsion system can response to the speed loss
and ensures the punctuality of the ship’s navigation.

5.2.2 Adverse Weather Conditions

Adverse weather conditions are those scenarios or areas which are not suitable for
navigation [16, 17], and the ships should avoid this type of area for safety. Adverse
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Fig. 5.4 Fitting curves to calculate added resistance of wave. Reprinted from [15], with permission
from Elsevier

weather conditions generally include the typhoon or strong ocean current and the
following Fig. 5.5 shows the influence of adverse weather conditions on the ship’s
navigation.

In Fig. 5.5, the primary navigation route is from Singapore to Inchon. The red
dash line is the conventional navigation route from Singapore to Inchon due to the
shortest distance. However, under pre-voyage weather forecasting, this navigation
route is under the influence of a typhoon. Based on this information, the first stage
chooses another navigation route (blue dash line) to keep away from the typhoon.
In real-time navigation (second stage), the forecasting trajectory of typhoons may
change to the black line, and the navigation route obtained in the first stage may
still under the influences of typhoons. In this case, the second stage will modify the
navigation route and the corresponding cruising speeds as the purple dash line for
safe sailing.

From above, the uncertainties of adverse weather conditions come from the
weather forecasting error, and the navigation route changes led by the adverseweather
conditions will have different energy requirements on the ship power system.
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: Pre-voyage forecasting trajectory

: First stage navigation route
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Fig. 5.5 Adverse weather conditions and the two-stage adjustment

5.2.3 Calls-for-Service Uncertainties

The former two types of uncertainties mainly influence the operation of ships and
will bring delays to the destination, which brings calls-for service uncertainties to
the seaport or other service facilities, such as islands or ocean platforms.

Generally, the services provided to the ships are classified as (1) the logistic
services, i.e., cargo handling, and (2) the electric service, i.e., cold-ironing. Since the
ships may not arrive on time for different reasons, as stated above, all the services
may be delayed. Figure 5.6 shows the influences of calls-for-service uncertainties.

From above, the calls-for-service delays led to different power demand curves,
which require different energy schemes. There are two main types of power demand
changes, i.e., service delay and service accumulation. The service delay will not
change the shape of power demand but only delays them, like the cold ironing power.
The other type is the service accumulation, like cargo handling. This type of service
has a constant total service workload, and if the service is delayed and the service
will accumulate to increase the maximal power demand.
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Fig. 5.6 Influences of calls-for-service

5.3 Energy Source Uncertainties

5.3.1 Renewable Energy Uncertainties

Nowadays, environmental issues have been the major concern from the globe, and
renewable energy is gradually widely spread in the maritime grids, as we have
stated in Chap. 1. However, renewable energy generally has high intermittency and
a specified energy management method should accommodate this uncertainty. The
following Fig. 5.7 gives a typical wind speed pattern.

The wind speed pattern can be depicted as a spectrum, and a high value indicates
a high variation in that timescale [18]. In Fig. 5.7, the first peak is in the timescale of
minutes, and the sites with high average wind speed tend to have a lower peak. This
variation, referred to as the short-term variation, has been mitigated by many control
strategies [19–21]. In the timescale of more than one day (Macro-meteorological
range), there are three peaks, (1) Diurnal pattern, or named as the day-night pattern,
which is led by the temperature difference between day and night; (2) depressions
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Fig. 5.7 Wind speed patterns. Reprinted from [18], open access

and anti-cyclones, and this phenomenon is more distinct in oceanic than continental
regions.; (3) annual pattern, varies with the degree of latitude and vanishes close to
the equator. In the following Fig. 5.8a, b, the power outputs of different wind turbines
in a day and different seasons are shown.

From the above figure, we can see significant variations by different wind turbines
and different seasons. As for the photovoltaic energy, the variations by different
modules and different seasons are shown in the following Fig. 5.9a, b.

As above, the power outputs of the wind farm and photovoltaic farm are highly
fluctuating, and even after deliberate forecasting, the error is still inevitable. Table 5.2
gives the forecasting error of renewable energy through various methods. The root-
mean-square error (RMSE) are around 1–5%, which should be considered in the
energy management of maritime grids.

5.3.2 Main Grid Uncertainties

The maritime grids can be mainly operated in (1) grid-connected mode; and (2)
isolated mode. Two modes are shiftable for most of the maritime grids. For example,
the ships are in isolated mode when sailing, and are in grid-connected mode when
receiving the cold-ironing power from the seaport. For a seaport, it can also operate
in isolated mode when having enough generators or renewable energy integration.

When in grid-connected mode, the main grid is generally the main energy source
of maritime grids. However, there will be many uncertain failures that happened in
the main grid and even cause a loss of power. The maritime grids generally don’t
have a strong network structure, and therefore an energy management method with
considering the main grid failure is essential for the safety of maritime grids [26].

Besides, the main grid and the maritime grid maybe not under the same admin-
istrator, and the maritime grid should purchase electricity from the main grid, and
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(a) Power outputs by different wind turbines 
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(b) Power outputs in different seasons
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Fig. 5.8 Power outputs of different wind turbines and in different seasons

the electricity prices also have uncertainties. The maritime grid should aggregate the
total power demand and negotiate the price with the main grid. The price may change
in every round of negotiation [27], which also brings the main grid uncertainties.

5.3.3 Equipment Uncertainties

The equipment uncertainties in maritime grids come from two aspects: (1) the equip-
ment failure; and (2) the scheduled maintenance. Their difference is the equipment
failure may happen unattended but the latter one is planned.

For the equipment failure, the energy management system of maritime grids has
to make enough power reserve for each severe scenario [8]. In [28, 29], to avoid
the influence of the onboard generator’s failure, the generation system have reserved
a certain part of capacity, which are the same in ships and seaports. For a seaport,
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Fig. 5.9 Power outputs of different photovoltaic modules and in different seasons

Table 5.2 Forecasting error by different methods

Methods Renewable energy Timescale Error (%) References

f-ARIMA Wind Day-ahead 5.35 [22]

ANN Wind Day-ahead 1.32–1.56 [23]

SVM PV 120 h 1.21 [24]

ARIMA PV 1~39 h 21 [25]

the power reserve ratio can be lower since the main grid can provide enough power
with high reliability, but the within generators still need to be standby for uncertain
failure.

For the scheduledmaintenance, the equipment out of service is known in advance,
and the energy management system can make necessary adjustments. For example,
when a generator in a seaport is planned to be in maintenance, the administrator of
the seaport will give a new energy plan to the upper main grid to purchase more
electricity [27].
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5.4 Data-Driven Optimization with Uncertainties

5.4.1 General Model

The main types of uncertainties in the operation of maritime grids are illustrated as
above. To ensure the safety and reliability of maritime grids, considering the above
uncertainties in energy management is necessary. Nowadays, stochastic optimiza-
tion [30–32] and robust optimization [32–34] are two main types to address the
uncertainties, which are shown as following Eqs. (5.5) and (5.6), respectively.

min
x∈X g(x) + E

(
min

y∈Y (x,ξ)
f (y)

)
(5.5)

min
x∈X g(x) + max

ξ∈U

(
min

y∈Y (x,ξ)
f (y)

)
(5.6)

In stochastic optimization (Eq. (5.5)), x is the first stage decision variables which
are not determined by uncertainties; X is the feasible region of x ; g(x) is the objective
function of the first stage; ξ is the uncertain variables, and Y (x, ξ) is the feasible
region of y determined by x and ξ ; f (y) is the objective function of the second
stage; E(·) is the expectation. In this model, the uncertain variable ξ is depicted
by the probability distribution, such as the probability distribution of equipment
failure, or the probability distribution of renewable energy output, and so on. Then
stochastic optimization seeks the optimal solution within the feasible region defined
by the probability distributions.

In robust optimization (Eq. (5.6)), the main difference is the uncertain variable
ξ is described by the uncertainty set U , including the upper/lower limits and the
uncertainty budget, which mainly has polyhedral models [35] and ellipsoid models
[36]. Then robust optimization seeks the optimal solution in the worst case in the
defined uncertainty set and brings conservatism. With above, the primary problem
of the uncertainty modeling is how to determine the feasible regions, such as the
probability distributions in stochastic optimization and the uncertainty set in robust
optimization.

As above, how to get the range of uncertain variables, i.e., the probability distri-
bution function or the uncertainty set of ξ , is the basic problem of the optimization
model. Nowadays, with the development of measurement and communication tech-
nology, more operating data can be transmitted and stored in the control center in
real-time. How to use this type of massive data to model the feasible region of
uncertainty has become a hot topic, and various methods have been proposed.
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5.4.2 Data-Driven Stochastic Modeling

Stochastic modeling is to get the probability distribution functions of uncertain
variables, and there are three types in general, (1) the non-parametric probability
modeling; and (2) stochastic processmodeling and (3) artificial intelligencemethods.

The non-parametric probability modeling method directly extracts features from
the original dataset and doesn’t limit the probabilistic distribution prototype [37], thus
may have higher accuracy when having limited knowledge on the dataset character-
istics. Based on the diffusion-based density method, [38] proposes a non-parametric
probabilistic model for wind speed. Later on, [39] proposes a model for wind speed
combined the non-parametric probability modeling and auto-regression modeling.
Then based on the non-parametric probability modeling, [40] formulates a proba-
bilistic optimal economy dispatch model for a renewable integrated microgrid, and
the case study proves the proposed method can improve the economic behaviors
during uncertainties.

The basic idea of stochastic process modeling is to use a series of simple
kernel functions to fit the complex function [41]. Based on different basis func-
tions, stochastic process modeling has many representatives. The autoregression and
moving average (ARMA) method is one of them and has been utilized in renewable
power prediction, and power demand prediction [22, 25]. To reduce the dimension of
the dataset, many reduction algorithms are implemented. Based on Karhunen-Loeve
expansion, a time-space modeling method for renewable energy is proposed in [42,
43]. Then [44] proposes a solution method for this uncertainty modeling, and shows
a lower computational burden with acceptable accuracy.

Compared with the above two types, the methods based on artificial intelligence
has stronger data mining ability. The uncertain set can be directly modeled and no
necessary to follow the conventional process of “probability distribution formulation-
sampling-scenario reduction”. Until now, various methods, such as the generative
adversarial network (GAN) [45], recurrent neural network (RNN) [46], extreme
learning machine (ELM) [47], are implemented to provide uncertain set by massive
original dataset.

5.4.3 Data-Driven Robust Modeling

Robust modeling is to get the set of uncertain variables, and there are also three types
in general, (1) the polyhedral set; and (2) the ellipsoid set and (3) the uncertain set
based on scenarios.

The polyhedral set is themost commonly used uncertainty set for robustmodeling,
which is based on a series of upper and lower limits, shown as Eq. (5.7).

U =
{
ξt |ξ ≤ ξt ≤ ξ̄ ,∀t ∈ T

}
(5.7)
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where ξ and ξ̄ are the lower and upper limits of ξt . If the uncertainty series follows the
Markov law, the lower and upper limits may become ξ = ξ

t
(ξt−1) and ξ̄ = ξ̄t (ξt−1).

To limit the range of uncertain variables, uncertainty budget constraints may be
added, shown as Eq. (5.8).

η ≤
∑

t
ξt

/
μ · |T | ≤ η̄ (5.8)

whereμ is the expectation of ξ ; and η, η̄ are the lower and upper budgets of uncertain
variable ξ . The uncertainty budget is used to limit the dramatic changes and reduce
the conservatism of the robust model.

The second type is the ellipsoid set, which aims to solve the inconsistent
characteristic at the boundary of the uncertain set. A general form is shown in Eqn.

U =
{

ξt

∣∣∣∣∣(ξ − μ)T ·
−1∑

(ξ − μ) ≤ Γ

}
(5.9)

where μ is the expectation of ξ ; and
∑

is the correlation matrix of ξ . Li et al.
[48] use the ellipsoid set to model the uncertainties, and find the ellipsoid set can
better represent the uncertainty when approaching the boundary. Kumar andYildirim
[49] proposes the minimum volume enclosing ellipsoid (MVEE) method to limit the
uncertainty in the smallest ellipsoid and reduce the conservatism. Based on MVEE,
[50] studies the robust optimization based on the ellipsoid set, and proposes an invalid
constraint reduction method to simplify the solution method.

Besides the above two modeling methods, there is a modeling method based on
extreme conditions. In [51], an ellipsoid set of uncertainty is first formulated and
then several extreme points are selected to form a convex set. The formulated robust
model is shown as follows.⎧⎪⎪⎨

⎪⎪⎩
max
ξn∈Un

(
min
x,yn

f (x, yn, ξn)

)
s.t.A(x, yn, ξn) = 0n = 1, 2, . . . , N
B(x, yn, ξn) ≤ 0n = 1, 2, . . . , N

(5.10)

where ξn is the uncertain variable in the n-th extreme scenarios, and yn is the corre-
sponding second stage decision variables; A and B are the equality and inequality
constraints, respectively.

Another robust modeling formulates the uncertain set as a convex envelope to
contain all the pre-given extreme points and can be shown as Eq. (5.11). αn is the
ratio for the n-th extreme scenario.

U =
{

ξ |ξ =
∑
n

αn · ξn,
∑
n

αn = 1, αn ≥ 0

}
(5.11)
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5.5 Typical Problems

5.5.1 Energy Management for Photovoltaic (PV)
Uncertainties in AES

As the main representative of maritime grids, AESs face many uncertainties during
navigation. This Chapter focuses on the uncertainties of onboard photovoltaic (PV)
integration. This research is illustrated in detail in [52].

(1) Onboard PV power forecasting

In land-based PV power forecasting, the PV power is determined by three factors,
i.e., the irradiation density, denoted as I Gh , and the angle between solar rays
and the PV modules, denoted as θ , and the generation efficiency, usually deter-
mined by the ambient temperature [53], denoted as ηPV . However, some differences
compared with the load-based applications should be incorporated into the onboard
PV forecasting.

The first difference is that the shipwill constantlymove along the navigation route.
As shown in Fig. 5.10, the ship has different locations when t1 and t2, meanwhile
the direction of solar rays, as well as the ambient temperature along the navigation
route, are also changed. Therefore, it is sensible to utilize the measured data along
the route, rather than the data in a stationary place to predict the PV generation.

The second difference is that the shipboard deck will constantly swing when
cruising and change the angle between solar rays and the PV modules [53], shown
in Fig. 5.11. The angles between solar rays and ship decks become (θ ± φ), which
further affects the PV generation outputs. In general, the swinging direction of ships

Fig. 5.10 An illustration on the moving of ships
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Fig. 5.11 Definition of the angle of solar ray and the tilt angle. Reprinted from [52], with permission
from IEEE

is the samewith the wind direction and the tilt angle is determined by the wind speed.
So, it is necessary to incorporate wind speed along the navigation route to forecast
the tilt angle range of ships.

(2) Two-stage robust modeling framework

The above two characteristics are both considered, and this Chapter proposes a
data-driven PV generation uncertainty characterization method, shown as the below
Fig. 5.12a. The general framework of the two-stage robust modeling is shown as
Fig. 5.12b.

In Fig. 5.12a, owing to the high scalability and fast computational speed, the
Extreme Learning Machine (ELM) is regarded as a useful learning technique for
training a single hidden-stage feed-forward neural network [54]. In Fig. 5.12b, the
forecasting values and error of irradiation density, wind speed, and temperature

Two-stage
coordination

First stage for long-term PV

Day ahead PV
generation forecasting

generation forecasting

forecasting

term PV forecasting
Second stage for short-

Half-hour ahead PV

Two-stage coodinated operation framework
Data-driven PV generation uncertainty

characterization

(a) ELM-based forecasting method

ELM

Inputs

Hidden

Outputs

(b) Two-stage coordinated optimization model

1/4

Fig. 5.12 Overall framework of proposed model. Reprinted from [52], with permission from IEEE
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are obtained by ELM. Then three intervals, i.e., the irradiation density intervals[
I Gh
min,t , I

Gh
max,t

]
, the tilt angle intervals

[
φmin
t , φmax

t

]
and the PV generation efficiency

intervals
[
ηPV
min,t , η

PV
max,t

]
are obtained by two different ways, i.e.,

[
I Gh
min,t , I

Gh
max,t

]
is

calculated by the forecasting values and error, and
[
φmin
t , φmax

t

]
,
[
ηPV
min,t , η

PV
max,t

]
are

calculated by the forecasting wind speed intervals and temperature intervals, since
higher wind speed and temperature will lead to larger rolling effect and generation
efficiency, respectively.

PPV
t = ηPV

t · APV · I Gh
t ·

[
cos θt + Cφ1

(
cos φt

2

)2
+Cφ2

(
sin φt

2

)2
]

(5.12)

Based on the obtained uncertain PV generation as (5.12), the proposed two-
stage multi-timescale coordinated operation framework aims to coordinate different
controllable resources in different timescales according to their different response
characteristics considering the uncertain PV outputs, which is shown in Fig. 5.12b.
In the day-ahead time-window, i.e., the first stage, the DGs’ on/off states and the
cruising speed, which cannot instantly respond to the uncertainties, are optimized
based on day-ahead interval predictions of the PV generation. This stage aims to
dispatch the DGs and ESS on a large time horizon to fulfill propulsion and service
loads in the worst case of PV generation.

During the half-hour-ahead online operation time-window, i.e., the second stage,
the loading factor ofDGs andESS are re-dispatched based on half-hour-ahead predic-
tions of the PV generation. The half-hour-ahead predictions tend to be more accurate
and they can be regarded as the uncertainty realization. Thus, the second-stage oper-
ation aims to compensate for the first-stage operation when the uncertainties realize
in practice.

(3) Case description

In this study, a typical medium voltage direct current (MVDC) 4-DGs AES case is
used to verify the proposed method. The topology and navigation data of this 4-DG
AES are shown in Figs. 5.13 and 5.14, respectively. The topology is from [55], which
follows the ABS-R2 standard [56]. In Fig. 5.13, 4 DGs are connected in two buses
via AC/DC converters, and the circuit breaker is normally open. In general cases,
two buses are located in different watertight compartments for avoiding operating
risk. As for the PV generation uncertainty set characterization, the training datasets
are also applied to [53], which are deduced from real-world navigation from Dalian,
China to Aden, Yemen, and 2MWPVmodules are integrated into the AES for future
applications. Other detailed parameters can be found in [52].

(4) Case study

To test the validity of the proposed forecasting process, three forecasting methods
are compared. The results are shown in Fig. 5.15.
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Bus A Bus B

DG1 DG2 DG3 DG4

Electric Propeller Battery 2Battery 1AC loads AC loads

PV1 PV2

Circuit Breaker

Fig. 5.13 Topology of 4-DG AES. Reprinted from [52], with permission from IEEE

Berthing: t=1

Port 1
Cargo:100ktons

Port 2
Cargo:90ktons

Port 3
Cargo: 80ktons

Arriving: t=8

Arriving: t=16

Arriving: t=24

Cruising:1~7
Partial: 1,7

Cruising:9~15
Partial: 9,15

Cruising:17~23
Partial: 17,23

60.8nm

64nm

64nm

: Speed
19knot

Fig. 5.14 Navigation scheme of AES. Reprinted from [53], with permission from IEEE

Forecasting method A: the proposed method considering both the movement and
tilt angle (wind speed);

ForecastingmethodB: the proposedmethodwithout considering the tilt angle (wind
speed);
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Fig. 5.15 Forecasting results under different methods. Reprinted from [53], with permission from
IEEE

Forecasting method C: forecasting method only using the dataset in a stationary
place (irradiation density, temperature) without considering the tilt angle.

From Fig. 5.15, the following conclusions can be found, (1) from the compar-
ison between methods A and B, the forecasting intervals become much wider when
considering tilt angle. This phenomenon suggests the rolling of the shipboard deck
will bring more uncertainties to the PV generation, and if it is ignored, an optimistic
scheme may be obtained; (2) from the comparison between method B and C, the
forecast error of method C becomes rather large when the ship is away from the
initial port (t = 14 ∼ 24), which suggests the necessity to use the dataset along the
navigation route to predict the PV generation.

The energy scheduling schemes in two stages are shown in Figs. 5.16 and 5.
17, respectively. From Fig. 5.16, since the PV generations in the second stage are all
larger than theworst case, theDGs’ outputs are further replaced by the PV integration,
which introduces further FC reductions. FromFig. 5.17, the ESS power inmost of the
partial intervals is increased, which means the PV generation increments are directly
charged to the ESS in the partial intervals, therefore in the cruising intervals the ESS
has more energy to shed the power demands of DGs than the first stage.

The above results manifest that, since the worst case of PV generation only
happens in a small probability, therefore the single-stage robust method will intro-
duce plenty of conservatism to the operating scheme, which leads towastes on the PV
generation. In this section, the online half-hour-ahead operation can effectively go
against the uncertainty realization to improve the overall energy utilization efficiency
while satisfying the constraints.
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Fig. 5.16 Scheduling schemes of DGs in the first and second stages. Reprinted from [53], with
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Fig. 5.18 Coordinated generation-voyage scheduling. Reprinted from [57], with permission from
Elsevier

5.5.2 Energy Management for Navigation Uncertainties
in AES

(1) Problem formulation

Besides the above PV power uncertainties, the navigation uncertainties are also
commonly faced during the operation of AES. Fang and Xu [57] has studied this
problem in detail, which is illustrated below. As shown in Fig. 5.18, the shipboard
microgrid of an AES consists of DGs and ESS to meet the propulsion and service
loads.

Compared with the conventional land-based microgrids, the AES (mobile micro-
grid) has the total voyage distance to the ports as amandatory requirement, and there-
fore put extra constraints on the cruising speed of AES, as well as on the propulsion
load. The generation scheduling aims to an economic energy scheme and the voyage
scheduling aims to a punctual energy scheme. Both of them consist of a coordinated
generation-voyage scheduling problem.

The speed loss when considering navigation uncertainties can be calculated by
(5.1)–(5.4). The uncertainty set of the proposed model is formulated as following
(4.13).

In this section, the wave height h, wavelength τ , weather direction angle θ and
wind speed vwind are four uncertain variables. In (4.13), ht , τt and vwindt are the
expectations of corresponding uncertain variables; μ and μ̄ are the lower and upper
budgets of the uncertainty set, when the lower budget falls and the upper budget rises,
it means that the uncertainty set can cover higher uncertainty, leading to a higher
robustness degree. Then the robust model shown in (5.6) is utilized to consider the
worst influence by the navigation uncertainties.
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U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ht ∈ R
|T | : hmin ≤ ht ≤ hmax ,∀t ∈ T

μh ≤
∑

t∈T ht
/∑

t∈T ht ≤ μh

τt ∈ R
|T | : τmin ≤ τt ≤ τmax ,∀t ∈ T

μτ ≤
∑

t∈T τt

/∑
t∈T τt ≤ μτ

vwindt ∈ R
|T | : vwindmin ≤ vwindt ≤ vwindmax

μv ≤
∑

t∈T vwindt

/∑
t∈T vwindt ≤ μv

ϑ ∈ [
0, 180o

] : θt = ς · ϑ,∀ς ≤ 180/ϑ ∈ N

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.13)

(2) Case study

To test the effects of proposed robust model on the on-time rates, 500 water current
scenarios are randomly sampled according to uniform distributions in each time-
interval, denoted as

(
hl,t , τl,t , vwindl,t

)
, t = 1 ∼ 24, i = 1 ∼ 500. Robust 1 (The

formulated robust model considering navigation uncertainties, abbreviated as R1)
and Non-robust (conventional coordinated generation-voyage scheduling without
navigation uncertainties, abbreviated as NR1) are set as operating strategies, respec-
tively. The corresponding voyage distances of each sample at the scheduled time
under θ = 30o are shown in Fig. 5.19. The cruising speed and EEOI are shown
in Fig. 5.20. The generation scheduling schemes are shown in Fig. 5.21. The worst
speed loss and the corresponding on-time rates under different θ with or without
wind are shown in Fig. 5.22.

Port 1 Port 2 Port 3

NR1 Frequency R1 Frequency
NR1 Probability density R1 Probability density

Fig. 5.19 On-time rates of different voyage schedules. Reprinted from [57], with permission from
Elsevier
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Fig. 5.20 Comparisons between NR1 and R1. Reprinted from [57], with permission from Elsevier

NR1 DG1 NR1 DG2 NR1 DG3 NR1 SOC
R1 SOCR1 DG1 R1 DG2 R1 DG3 R1 DG4

Fig. 5.21 Scheduling schemes of DGs and ESS of NR1 and R1. Reprinted from [57], with
permission from Elsevier

Figure 5.19 clearly shows that the influences of uncertain water and wind will
constantly accumulate during the voyage, which leads to an average 13 nm delay,
leading to a 0% on-time rate of NR1 at the terminal port. However, the proposed
robust model can accommodate these uncertainties by adjusting the outputs of the
DGs and ESS. Accordingly, the corresponding on-time rates of R1 to each port are
all 100%.

The reason to ensure the on-time rates of proposed method can be inferred from
Figs. 5.20 and 5.21. The first berthing time-interval, t = 0, is not included in the
analysis since the cruising speed and corresponding propulsion load are both zeros.

In Fig. 5.20, the cruising speed of robustmodel is higher than non-robustmodel, so
able to cover the speed loss led by the wave and wind. Higher cruising speed suggests
heavier propulsion load, so the corresponding outputs of DGs are all increased to
meet the power demand increments, which leads to a higher FC. Specifically, in
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Fig. 5.22 Worst speed loss and corresponding on-time rates. Reprinted from [57], with permission
from Elsevier

Fig. 5.21, NR1 uses no more than 3 DGs all the time, even 2 DGs in t = 1 ∼
5, 8, 9, 15 ∼ 17, 23, 24. Correspondingly, R1 uses 4 DGs in most time during the
voyage, only except the partial speed time-intervals, t = 1, 7 ∼ 9, 15 ∼ 17, 23, 24.

Figure 5.22 shows the worst speed loss and corresponding on-time rates. The
yellow and red curves show that the proposed method can ensure a 100% on-time
rate for all uncertain scenarios. The green curves show that the water wave always
has negative impacts on the cruising speed, but the effect will gradually fade with the
increment of the weather direction angle, which leads to the speed loss reductions.

Besides, it can be observed from Fig. 5.22 that, unlike water wave, the wind
has quite different impacts on the speed loss in different scenarios, e.g. when θ ∈
[30◦, 90◦], the wind will increases speed loss, while when θ ∈ [90◦, 180◦], the wind
can reduce speed loss. Especially when θ = 150◦ and 180°, the speed loss under
wave and wind are less than 0.5knot, thereby its negative impacts on the voyage
scheduling can be greatly reduced. This is also the key reason for the cruising ships
to choose their navigation route to the leeward side of wind.
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