
Chapter 2
Basics for Optimization Problem

2.1 Overview of Optimization Problems

2.1.1 General Forms

In different engineering scenarios, the maximizing or minimizing of some functions
relative to some sets are common problems. The corresponding set often represents
a range of choices available in a certain situation, and the “solution” infers the “best”
or “optimal” choices in this scenario. Some common applications include “minimal
cost, maximal profit, minimal error, optimal design, and optimal management”. This
type of problem has a general form as follows.

min
x

/max
x

f (x)

s.t.h(x) ≤ 0
g(x) = 0,∀x ∈ S

(2.1)

In (2.1), f (x) is the objective function, and represents the management tasks;
“min” and “max” represent the minimizing and maximizing of f (x), respectively;
x is the decision variables, and represents the choices of administrator; h(x) ≤
0 and g(x) = 0 are the inequality and equality constraints to limit the decision
variables,which represents the limitations on the choices of administrator by different
operating scenarios; S is the original set for the decision variables, such as continuous
variables, binary variables, integer variables, and so on. In this problem, the model
expects to find the “best” or “optimal” solution “x∗” which meets the minimization
or maximization of f (x), and in reality, this may represent the minimization of costs
or the maximization of profits. Here we give a simple case, Example 2.1, for the
optimization problems.
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Example 2.1: Knapsack Problem
Assuming we have n types of goods and indexed by i ∈ 1, 2, 3 . . . , n. Each good
values Wi and the size is Si , and we have a knapsack with the capacity of C . The
problem is how we can pack the goods with the highest value? The model of this
problem is shown as follows.

max
n∑

i=1
Wi · xi

s.t.
n∑

i=1
Si · xi ≤ C

xi ∈ {0, 1}

(2.2)

In (2.2), xi is the “decision variables”, and represents the choice of the ith good or
not. If choosing the ith good into the knapsack, xi = 1 and if not, xi = 0. xi ∈ {0, 1}
is the original set of “decision variables”.

∑n
i=1 Wi · xi is the “objective function”,

and represents the total values of the selected goods, and
∑n

i=1 Si · xi ≤ C is the
“constraint”, represents the total sizes of goods that should be smaller or equal to the
capacity of the knapsack. The “best” or “optimal” solution “

{
x∗
i , i ∈ 1, 2, 3 . . . , n

}
”

can achieve the maximization of
∑n

i=1 Wi · xi .

Case Study for Example 2.1
Here we test a simple case, and the parameters are shown as follows: n = 5,
{Wi |i = 1, 2, . . . , 5} = [2, 3, 1, 4, 7], and {Si |i = 1, 2, . . . , 5} = [2, 2, 1, 2, 3], and
C = 6. The simulation results are shown in Fig. 2.1.

From the Fig. 2.1, the best solution for Example 2.1 is to select the 3rd, 4th and
5th goods, and the maximal total value is 12, and the total size of goods is 6.
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Fig. 2.1 Simulation results of Example 2.1
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2.1.2 Classifications of Optimization Problems

(1) Classifications by decision variables

The decision variable x may consist of different number types, such as continuous
variables, binary variables, and integer variables, and the combination of different
number types produces different optimization problems. For example, if x only
consists of continuous variables, then problem (2.1) is “continuous optimization”,
and if x only consists of binary variables or integer variables, then problem (2.1) is
“binary optimization” or “integer optimization”. If x simultaneously has continuous
variables and integer variables, then problem (2.1) is “mixed-integer optimization”.

(2) Classifications by the objective function

Generally, objective function f (x) can be a scalar or vector and based on it, problem
(2.1) is “single-objective optimization” when f (x) is a scalar and “multi-objective
optimization” or “vector optimization” when f (x) is a vector.

(3) Linear optimization and non-linear optimization

In practical cases, f (x), h(x) and g(x) may have different mathematical charac-
teristics. If f (x), h(x) and g(x) are all linear functions, problem (2.1) is “linear
optimization (LP)”, and is “non-linear optimization (NLP)” if anyone in f (x), h(x)
and g(x) is non-linear. Specifically, if f (x) is non-linear, and h(x) and g(x) are
both linear, then problem (2.1) is “linear constrained and non-linear objective opti-
mization (LCNLP)”, and if f (x) is linear, and h(x) and g(x) are both non-linear,
then problem (2.1) is “non-linear constrained and linear objective optimization”.
Here we give some typical cases, if f (x), h(x) and g(x) are all polynomials and the
largest power is two, then problem (2.1) is “quadratic optimization (QP)”. Similarly,
we can define the “quadratic-objective quadratic-constrained optimization (QCQP)”,
“quadratic-objective linear-constrained optimization (LCQP)”, and so on.

(4) Convex optimization and non-convex optimization

Before introducing the convex optimization and non-convex optimization, the convex
function and convex set should be described in thefirst place. Firstly, convex functions
should meet (2.3) for any x1 and x2 in the domain of f (x) [1].

f (α · x1 + (1 − α) · x2) ≤ α · f (x1) + (1 − α) · f (x2),∀α ∈ [0, 1] (2.3)

Then the convex set S should meet: for any two points in S, denoted as s1 and
s2, their linear combination α · s1 + (1 − α) · s2 is still within S [1]. Illustrations for
convex function and convex set are shown in Fig. 2.2a and b, respectively.

FromFig. 2.2a, x3 = α ·x1+(1 − α)·x2 and f3(x3) < α · f3(x1)+(1 − α)· f3(x2),
thus f3(x) is a convex function. Similarly, f1(x) is a concave function, and f2(x) is a
convex function and also a concave function. From Fig. 2.2b, any linear combination
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Fig. 2.2 Illustrations of convex functions and convex sets

of s1 and s2 belongs to the same set, which represents the convexity. For the non-
convex set, at least one combination of s1 and s2 is outside the same set, shown in
Fig. 2.2b.

With the above definitions, (2.1) is a convex optimization problem when the
following two conditions satisfied: (1) f (x) is convex in case of minimization and
concave in case of maximization; (2) S = {x |h(x) ≤ 0, g(x) = 0,∀x ∈ S} is a
convex set. The main characteristic of the convex optimization compared with non-
convex optimization is, a local optimal solution of the convex optimization is also the
global optimal solution of this convex optimization [1]. This characteristic greatly
benefits the applications of convex optimization, and in reality, if we can model or
reformulate the problems as convex optimization, then the global optimal solution
can be obtained after resolving any local optimal ones. This is one of themain reasons
for “the main watershed in optimization problem is not between the linear ones and
non-linear ones, but the convex ones and non-convex ones” [1].

In summary, the classification methods can be combined to characterize different
optimization problems, such as “mixed-integer linear optimization (MILP)”, “mixed-
integer non-linear optimization (MINLP)”, “mixed-integer quadratic optimization
(MIQCP)”, and so on.

2.2 Optimization Problems with Uncertainties

Uncertainties are inevitable in reality since the measurement and control both have
errors. To ensure safety and reliability, considering uncertainties in optimization
problems is necessary, and stochastic optimization, robust optimization, and interval
optimization are three main types.
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2.2.1 Stochastic Optimization

A general form of stochastic optimization is shown as (2.4) [2].

min
x∈X g(x) + E

(

min
y∈Y (x,ξ)

f (y)

)

(2.4)

In stochastic optimization (Eq. 2.4), x is the first stage decision variables which
are not determined by uncertainties; X is the feasible region of x ; g(x) is the objective
function of the first stage; ξ is the uncertain variables, and Y (x, ξ) is the feasible
region of y determined by x and ξ ; f (y) is the objective function of the second stage;
E(·) is the expectation. In this model, the uncertain variable ξ is depicted by the
probability distribution, such as the probability distribution of equipment failure, or
the probability distribution of renewable energy output, and so on. Then stochastic
optimization seeks the optimal solution within the feasible region defined by the
probability distributions. To clearly show the stochastic optimization, Example 2.2
is reformulated as follows.

Example 2.2: Stochastic Knapsack Problem
Based on all the assumptions of Example 2.1, we further assume that for ∀i ∈{
1, 2, . . . , n f

}
,Wi is a constant, and for∀i ∈ {

n f , n f + 1, . . . , n
}
,Wi = Wc+�Wi ,

whereWc is a constant and�Wi follows a pre-given distributionψ . Then the original
knapsack problem becomes (2.5).

max

(
n f∑

i=1
Wi · xi +

n∑

i=n f

Wc · xi
)

+ E

(

max

(
n∑

i=n f

�Wi · xi
))

s.t.
n∑

i=1
Si · xi ≤ C

xi ∈ {0, 1}, �Wi ∈ ψ

(2.5)

where
(∑n f

i=1 Wi · xi + ∑n
i=n f

Wc · xi
)
is “−g(x)”, and the “−” is to transform the

maximization of (2.5) to the minimization of (2.4), and this term is not influenced by
the uncertainties;

∑n
i=n f

�Wi · xi is f (y) which is influenced by the uncertainties;

and x = {
xi |i = 1, 2, . . . , n f

}
, and y = {

xi |i = n f , n f + 1, . . . , n
}
.

Case Study for Example 2.2 Here we test a simple case, and the parameters are
shown as follows: n = 5, {Wi |i = 1, 2, 3} = [2, 3, 1], and {Wc|i = 4, 5} = [4, 7],
and {�Wi |i = 4, 5} is normally distributed as N (0, 1), and {Si |i = 1, 2, . . . , 5} =
[2, 2, 1, 2, 3], and C = 6. The simulation results are shown in Fig. 2.3a and b.

From the Fig. 2.3a, the best solution for Example 2.2 is also to select the 3rd, 4th
and 5th goods, and the expected maximal total value is 12.23, and the total size of
goods is 6. The main difference between the stochastic optimization (2.5) and the
conventional deterministic problem (2.2) is the uncertainties of �Wi will cause the
uncertainties of objective function, which is shown as Fig. 2.3 (b).
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Fig. 2.3 Simulation results of Example 2.2

2.2.2 Robust Optimization

A general form of robust optimization is shown as (2.6) [3].

min
x∈X g(x) + max

ξ∈U

(

min
y∈Y (x,ξ)

f (y)

)

(2.6)

In robust optimization (Eq. 2.6), the main difference is the uncertain variable
ξ is described by the uncertainty set U , including the upper/lower limits and the
uncertainty budget. Then robust optimization seeks the optimal solution in the worst
case in the defined uncertainty set and therefore brings conservatism. With above,
the primary problem of the uncertainty modeling is how to determine the feasible
regions, such as the probability distributions in stochastic optimization and the
uncertainty set in robust optimization. Similarly, we can give a robust knapsack
problem as Example 2.3.
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Fig. 2.4 Simulation results of Example 2.3

Example 2.3: Robust Knapsack Problem
Based on all the assumptions of Examples 2.1 and 2.2, we further assume �Wi is
within a range denoted as [WL ,WU ], and the robust knapsack problem can be shown
as (2.7). The meaning of each part is similar to the stochastic model of (2.5).

max

(
n f∑

i=1
Wi · xi +

n∑

i=n f

Wc · xi
)

+ min
�Wi

(

max

(
n∑

i=n f

�Wi · xi
))

s.t.
n∑

i=1
Si · xi ≤ C

xi ∈ {0, 1}, �Wi ∈ [WL ,WU ]

(2.7)

Case Study for Example 2.3
Here we test a simple case, and the parameters are shown as follows: n = 5,
{Wi |i = 1, 2, 3} = [2, 3, 1], and {Wc|i = 4, 5} = [4, 7], and {�Wi |i = 4, 5} ∈
[−2, 1], and {Si |i = 1, 2, . . . , 5} = [2, 2, 1, 2, 3], andC = 6. The simulation results
are shown in Fig. 2.4.

From the Fig. 2.4, the best solution for Example 2.3 in robust optimization
becomes the 2nd, 3rd and 5th goods, and the value of the objective function is
9. This change is due to the risk of the 4th good, since in the worst case, its value
becomes 2, and it is not worthy to select. From the above results, we can find the
results of robust optimization is conserve.

2.2.3 Interval Optimization

Interval optimization can be viewed as an enhancement of robust optimization and
consisted of a lower sub-problem and an upper sub-problem, shown as (2.8) [4],
and the upper sub-problem is similar with the robust optimization of (2.6). It should



38 2 Basics for Optimization Problem

be noted that, for the maximization problem, the lower sub-problem is a robust
optimization problem. The main advantage of interval optimization is the interval
obtained can be used to analyze the influences of uncertainties on the system. A case
is given as Example 2.4.

⎡

⎢
⎢
⎢
⎣
min
x∈X g(x) + min

ξ∈U

(

min
y∈Y (x,ξ)

f (y)

)

︸ ︷︷ ︸
Lower sub−problem

,min
x∈X g(x) + max

ξ∈U

(

min
y∈Y (x,ξ)

f (y)

)

︸ ︷︷ ︸
Upper sub−problem

⎤

⎥
⎥
⎥
⎦

(2.8)

Example 2.4:Interval Knapsack Problem

Lower :max

⎛

⎝
n f∑

i=1

Wi · xi +
n∑

i=n f

Wc · xi
⎞

⎠ + min
�Wi

⎛

⎝max

⎛

⎝
n∑

i=n f

�Wi xi

⎞

⎠

⎞

⎠ (2.9)

Upper :max

⎛

⎝
n f∑

i=1

Wi · xi +
n∑

i=n f

Wc · xi
⎞

⎠ + max
�Wi

⎛

⎝max

⎛

⎝
n∑

i=n f

�Wi xi

⎞

⎠

⎞

⎠ (2.10)

Case Study for Example 2.4
The parameters of Example 2.4 is the same as Example 2.3, and the decision variables
keep the same as Example 2.3, shown as Fig. 2.5, and the range of objective function
is [9, 12]. From this, we can see the interval optimization can give both pessimistic
and optimistic scenarios.

In summary, how to get the range of uncertain variables, i.e., the probability distri-
bution function or the uncertainty set of ξ , is the basic problem of the optimization
model. Nowadays, with the development of measurement and communication tech-
nology, more operating data can be transmitted and stored in the control center in
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Fig. 2.5 Simulation results of Example 2.4
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real-time. How to use this type of massive data to model the feasible region of uncer-
tainty has become a hot topic, and various methods have been proposed. This topic
will discuss in Chap. 4.

2.3 Convex Optimization

The importance of convex optimization has been emphasized in the former context,
and in practical cases, we always want to model or reformulate a complex problem as
convex ones, and the semi-definite programming (SDP) and the second-order cone
programming (SOCP) are two classic types and have been well studied, which has
gained the concerns from both academic and industry.

2.3.1 Semi-definite Programming

The general form of SDP is given as (2.11) [5].

min A0 · X
s.t. Ap · X = bp, (p = 1, 2, ..,m)

0�X ∈ Sn
(2.11)

where A0, Ap are all coefficient matrixes; X is the decision matrix which should
be semi-definite; bp is a coefficient vector; Sn is the real space with n dimensions.
Conventional linear optimization (LP) and quadratic optimization (QP) can be both
formulated as SDP by defining X = x · xT [6], then many commercial solvers can
be used to solve the reformulated SDP for the global optimal solution, like Sedumi.

2.3.2 Second-Order Cone Programming

The general form of SOCP is given as (2.12) [7].

min f T · x
s.t. ||Ai · x + bi ||2 ≤ cTi · x + di , i = 1, 2, . . . , n

F · x = g
(2.12)

where f T , Ai , bi , cTi , di , F, g are all coefficient vectors or matrixes; x is the decision
variables. It should be noted that the objective function is no need to be linear, and
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quadratic objective function can also be solved like conventional SOCP. Similarly,
many types of optimization problems can be reformulated as SOCP, and several cases
are given below to show the usages of SOCP.

(1) Quadratic terms

For quadratic terms like x2, it can be relaxed by the following (2.13) [8].

x2 ≤ W, ||2W, γ − x ||2 ≤ γ + q (2.13)

(2) Bilinear terms

For bilinear terms like x · y, it can be relaxed by the following (2.14) [8].

x · y = z (2.14)

1

2
(x + y)2 − 1

2

(
x2 + y2

) ≤ z

1

2

(
x2 + y2

) − 1

2
(x + y)2 ≤ z (2.15)

In (2.15), − 1
2

(
x2 + y2

)
and − 1

2 (x + y)2 are concave, and the following convex-
concave procedure can be used to convexify them [9].

1

2
(x + y)2 − 1

2

(
x̄2 + ȳ2

) − x̄ · (x − x̄) − ȳ · (y − ȳ) ≤ z

1

2

(
x2 + y2

) − 1

2
(x̄ + ȳ)2 − (x̄ + ȳ)(x − x̄ + y − ȳ) ≤ z (2.16)

where (x̄, ȳ) is a constant reference point.

(3) Exponential terms

For bilinear terms like ex , it can be relaxed by the following (2.17).

y = ex , log(y) ≥ x, log(y) ≤ x (2.17)

Then at a reference point ȳ, (2.17) can be reformulated as (2.18) similarly by the
convex-concave procedure [9].

log(ȳ) + 1

ȳ
· (y − ȳ) ≤ x (2.18)
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2.4 Optimization Frameworks

2.4.1 Two-Stage Optimization

In reality, there aremany cases that the decision variables cannot be determined in the
same time, and this is the main motivation of two-stage optimization. The stochastic
and robust optimization models in (2.4) and (2.6) are both two-stage optimization.
Here we give a general form of two-stage optimization as (2.19) [10].

min
x∈X g(x) + min

y∈Y f (y)

s.t. l(x) ≤ 0, h(y) ≤ 0
G(x, y) ≤ 0

(2.19)

In the above formulation, g(x) and f (y) are the objective functions of the first
stage and the second stage, respectively; and x, y are the corresponding decision
variables; l(x) ≤ 0, h(y) ≤ 0 are the corresponding constraints and G(x, y) ≤ 0
is the coupling constraints. It should be noted that, two-stage means x, y cannot be
determined in the same time. To clarify this problem, Example 2.5 is given below.

Example 2.5: Two-stage Knapsack problem
Based on all the assumptions of Example 2.1, we assume that the ith good when i
= 1,2,…,n1 is available now and the ith good when i = n2, . . . , n will be available
after some times, and n2 ≤ n1. The objective is still the maximization of the total
values, but each good can only be selected one time. Then the optimization problem
becomes (2.20).

min
x∈X

n1∑

i=1
Wi · xi +

n∑

j=n2

Wi · y j

s.t.
n1∑

i=1
Si · xi ≤ C,

n∑

j=n2

Sj · y j ≤ C, xi ∈ {0, 1}, y j ∈ {0, 1}
xi + y j ≤ 1, i ∈ n1, . . . , n2

(2.20)

In the above formulation,
∑n1

i=1 Wi ·xi and∑n
j=n2

Wi ·y j are the objective functions
of the first stage and the second stage, respectively, and

∑n1
i=1 Si · xi ≤ C,

∑n
j=n2

Sj ·
y j ≤ C are their corresponding constraints, and xi + y j ≤ 1, i ∈ n1, . . . , n2 is the
coupling constraints.

Case study for Example 2.5
Here we test a simple case, and the parameters are shown as follows: n = 5, n1 = 3
and n1 = 2, and {Wi |i = 1, 2, . . . , 5} = [2, 3, 1, 4, 7], and {Si |i = 1, 2, . . . , 5} =
[2, 2, 1, 2, 3], and C = 6. The simulation results are shown in Fig. 2.6.

From Fig. 2.6, the final objective function is 13 by the final selections of the 1st,
2nd, 3rd, and 5th goods. In the first stage, the capacity of the knapsack is 4, and
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Fig. 2.6 Simulation results of Example 2.5

the 1st and 2nd goods are selected, then in the second stage, the 3rd and 5th goods
are selected, and no good has been selected for twice. If the coupling constraint
xi + y j ≤ 1, i ∈ n1, . . . , n2 is eliminated and the value of the 3rd good comes to 2,
then the final selections are the 2nd good, and 3rd good for twice and the 5th good,
and the objective function comes to 14.

In summary, the coupling constraint in two-stage optimization is essential which
could influence the final results. Which is proved by many practical cases, the
modifications on the coupling constraints benefit the objective function [10, 11].

2.4.2 Bi-level Optimization

Bi-level optimization is a special type of two-stage optimization and has a general
formulation as following (2.21) [12]. In the following formulation, F(x, y) represents
the upper-level objective function and f (x, z) represents the lower-level objective
function. Similarly, x represents the upper-level decision vector and y represents the
lower-level decision vector. Gi (x, y) and g(x, z) represents the inequality constraint
functions at the upper and lower levels respectively. We can find that y is the decision
variable of F(x, y) and also the optimal decision variable to minimize f (x, z). The
upper and lower levels are coupled to achieve the overall optimum. Here we also
give Example 2.6.
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min
x∈X,y∈Y F(x, y)

s.t. Gi (x, y) ≤ 0, i ∈ 1, 2, . . . , I
y ∈ arg min

z∈Y
{ f (x, z): g(x, z) ≤ 0}

(2.21)

Example 2.6: Bi-level Knapsack problem
Based on all the assumptions of Example 2.1, we assume inside the outer knapsack
with the capacity of Co, there is a small bag which holds the most valuable goods,
and the capacity is Cs , and the objective is to maximize the total values and also in
the small bag. Then the optimization problem becomes (2.22).

max

(
n f∑

i=1
Wi · xi +

n∑

i=n f

Wi · xi
)

s.t.
n f∑

i=1
Si · xi ≤ Co − Cs, xi ∈ {0, 1}

{
xi |i = n f , n f + 1, . . . , n

} = argmax

{
n∑

i=n f

Wi · xi |
n∑

i=n f

Si · xi ≤ Cs

}
(2.22)

In the above formulation,
∑n f

i=1 Wi · xi + ∑n
i=n f

Wi · xi and ∑n
i=n f

Wi · xi are the
objective functions of the upper level and lower level, respectively.

∑n f

i=1 Si · xi ≤
Co − Cs and

∑n
i=n f

Si · xi ≤ Cs are their constraints, respectively.

Case study for Example 2.6
Here we test a simple case, and the parameters are shown as follows: n = 5, n f = 2,
and {Wi |i = 1, 2, . . . , 5} = [2, 3, 1, 4, 7], and {Si |i = 1, 2, . . . , 5} = [2, 2, 1, 2, 3],
and Cs = 3, and Co = 6. The simulation results are shown in Fig. 2.7. From the
results, the lower level selects the 5th good in the first place and then in the upper
level, the 2nd and 3rd goods are selected, and the final objective function comes to 11.

2.5 Summary

This chapter has briefly introduced the frequently used optimization models in engi-
neering, and listed several important literature in the references for the readers.
Simple testcases are also given to show different types of optimization models, and
the models above will be used in the rest chapters of this book.
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Fig. 2.7 Simulation results of Example 2.6
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Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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