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Abstract. In recent years, a large number of users continuously suffer fromDDoS
attacks. DDoS attack volume is on the rise and the scale of botnets is also get-
ting larger. Many security organizations began to use data-driven approaches to
investigate gangs and groups beneath DDoS attack behaviors, trying to unveil the
facts and intentions of DDoS gangs. In this paper, DDoSAGD - a DDoS Attack
Group Discovery framework is proposed to help gang recognition and situation
awareness. A heterogeneous graph is constructed from botnet control message and
relative threat intelligence data, and a meta path-based similarity measurement is
set up to calculate relevance between C2 servers. Then two graphminingmeasures
are combined to build up our hierarchical attack group discovery workflow, which
can output attack groups with both behavior-based similarity and evidence-based
relevance. Finally, the experimental results demonstrate that the designed models
are promising in terms of recognition of attack groups, and evolution process of
different attack groups is also illustrated.

Keywords: Botnet · Graph mining · DDoS · Attack group discovery ·
Community detection

1 Introduction

Amongmany network attackmethods, DDoS (Distributed Denial of Service) has always
been regarded as the effective weapon of hacker attacks due to its low attack threshold
and high damage. Compared with other attack methods, the technical requirements and
cost in launching an attack of DDoS are very low. In the past three years, the situation
of DDoS attacks is still grim. In late February 2018, the world-renowned open source
project hosting site GitHub suffered a DDoS attack with a peak value of 1.35 Tbps,
which has reached a record high, marking the official entry of the DDoS attacks into Tb
level. Super-large DDoS attacks have been increasing steadily year by year after a sharp
increase in 2018. The ultra-large-scale attacks above 300 Gbps in 2019 increased by
more than 200 times as compared with 2018 [1]. Botnets and Internet of Things are hot
words for DDoS attacks in recent years. The active botnet family is further concentrated
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on the IoT platform, which mainly includes Gafgyt and Mirai. DDoS attacks have also
become one of the important methods for attackers to use IoT devices.

At the same time, with the rise of big data technology and threat intelligence, many
security agencies began to use data-driven methods to mine the gang behaviors behind
DDoS attacks. NSFOCUS has found 60 DDoS gangs in 2019, and up to 15 gangs have
attack resources of greater than 1000, and the largest attack gang contains 88,000. The
highest proportion of IoT devices in a single gang of DDoS gangs reaches 31% [1]. An
in-depth analysis on gang behaviors in network security data is also made in 2018 Active
DDoS Attack Gang Analysis Report [2] and 2018 Website Attack Situation and “Attack
Gang”Mining Analysis Report [3] released in 2018 by Cncert. The gang analysis behind
DDoS can help regulators and security researchers understand the attack trends and the
overall situation.

In this article,DDoSgangs are analyzed based on control instruction propagation logs
and threat intelligence data of a botnet. Articles with similar goal of this article include
Zhu Tian’s group analysis of DDoS based on network attack accompanying behavior
[5], and Application of community algorithm based on malicious code propagation
log by Wang Qinqin [6], and IP Chain-Gang analysis by NSFOCUS based on DDoS
logs [4, 7]. Existing DDOS gang analysis mostly focuses on the behaviors of attacking
resources, searching for communities in big data. Gang analysis based on the behaviors
of attacking resources has two disadvantages. The first is the detection accuracy of the
attack behavior data. DDoS is always accompanied by normal user behaviors with high
traffic, while some of them are very hard to be distinguished. The second is the problem
of unity of data. The gang analysis based on the behavior of attacking resources usually
originates from large-scale behavior similarities and community structure of attacking
resources, lacking the correlation of small scale but strong evidences. Therefore, for the
purpose of uncovering attack gangs, it is necessary to not only perform clustering at the
behavior level, but also combine the control messages of the attack resources and related
samples/domain names.

This article presents a DDoS attack group discovery framework based on complex
graphs. Entities and relations are extracted from botnet control messages and threat
intelligence data of a botnet, and the constructed underlying heterogeneous graph con-
tains a DDoS behavior relationship and an intelligence association relationship. Then
the control end is taken as the key entity, to set a series of meta paths, establish the
similarity relationship between the control ends, and form a homomorphic graph with
the control end as the node and the similarity as the relationship. Finally, the DDoS gang
is calculated through the hierarchical community algorithm.

The main contributions of this article are as follows:

• This paper proposed a heterogeneous graph construction method based on control
instruction logs and threat intelligence data of a botnet, fused behavioral relations and
intelligence association relations, and constructed the underlying graph.

• This article proposed a meta path-based similarity graph construction method with
the control end as the core. At the same time, the hierarchical similarity interval can
ensure that the subsequent group discovery can distinguish the scale similarity from
the evidence/intelligence similarity.
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• This article proposed a hierarchical DDoS attack gang discovery method, and in com-
bination with the advantage of Louvain algorithm for mining community structure
and the advantage of Connected Component for mining strong evidence relation-
ship, this article obtained a more complete gang structure, and retained the results of
hierarchical community analysis to assist in security operations.

The structure of this article is as follows: Sect. 1 is the introduction, introducing
related work and main research ideas; Sect. 2 is a technical route and data background,
introducing workflow and data overview; Sect. 3 is a detailed elaboration of the DDoS
attack group discovery framework; and Sect. 4 is the experimental results, introducing
research results and cases.

2 Methodology and Background

The dataset of this paper is the botnet control message logs from January 2018 toDecem-
ber 2019. The botnet control message logs contain a C2 (Command & Control) server,
a C2 family, a bot list, attack target information and attack time. Botnet refers to the use
of one or more propagation methods to infect a large number of hosts with bot virus,
thus forming a one-to-many control network between the controller and infected hosts.
Botnets rely on large-scale DDoS attacks or bitcoin mining for profit. This paper only
focuses on DDoS attacks in botnets.

The preparation of the dataset consists of threemodules, including data import, threat
intelligence correlation and data storage/calculation.

Data Import: The dataset used in this paper originates from the evaluation dataset
provided by the National Computer Network Emergency Technology Processing and
Coordination Center (CNCERT/CC).

Threat Intelligence Correlation: In this step, network entities are extracted from bot-
net control messages, and related intelligence information, including related domain
names and related samples, is queried from various external intelligence sources and
data sources.

Data Storage/Calculation: Hadoop is used to store the large-scale sample data, and
Spark is used for calculation.

Data Overview: The test dataset contains 3005888 botnet controlling messages of
5225 C2 servers. The monthly trend of botnet controlling messages is shown in Fig. 1
and the distribution of active months among C2 servers is shown in Table 1. C2
servers cover 34 botnet families. The top three botnet families are DDoS.Linux.Gafgyt,
DDoS.Linux.BillGates and DDoS.Linux.Xorddos. The active period of C2 servers can
reach a maximum of 20 months and a minimum of less than 1 month, with an average
active time of 1.4 months.
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Fig. 1. Monthly trend of botnet control messages

Table 1. Active period (in month) distribution of C2 servers

Active months C2 count

1 4093

2 740

3 103

4 49

6 24

3 DDoSAGD – DDoS Attack Group Discovery Framework

In this paper, the DDoS Attack Group Discovery (DDoSAGD) Framework is developed
to unveil DDoS attack groups with behavior-based similarity and evidence-based rele-
vance from DDoS attack logs and threat intelligence data. The DDoSAGD framework
provides principles and practices for attack group discovery, including three phases:
heterogeneous graph data modeling, relevance measurement, and community detection.

3.1 Basic Concepts and Fundamental Graph Initialization

In this section, the construction details of the graphmodel are introduced and the relevant
definitions are clarified.

Definition 1 DDoS Attack Group: The core of a DDoS attack group is C2 servers.
Bots and other attack resources are related to C2 servers. The C2 server set is the most
critical part of a DDoS attack group.
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Graphs are used to represent the interactions amongdifferent entities in the realworld.
In this paper, we regard the network entities, such as C2 servers, victim IP addresses,
bots in DDoS attacks as nodes in the graph. Those nodes are extracted from the behavior
logs or related intelligence. We assign each node/entity with a globally unique identifier
(ID) and attach attributes to them. Moreover, we divide the entities into the following
two categories.

Definition 2 Critical Entity: Critical entities are core members in an attack scenario.
Specifically, the critical entities in the DDoS attack scenario are C2 servers.

Definition 3 Associated Entity: Associated entities are related to critical entities. In
the DDoS scenario, C2 servers are critical entities while bots, victim targets and related
domains are all associated entities.

Table 2 lists entities involved in the DDoS scenario. To be specific, the ‘EVENT’
entities are extracted according to attack targets and time characteristics. Within an
empirical attack cycle, which is usually no longer than 24 h, an ‘event’ refers to a DDoS
attack launched by a bunch of Internet resources aiming at a certain victim. It is noted
that, if that victim is attacked by the same cluster of resources after more than 24 h from
the last attack, it will be regarded as another event.

Table 2. Entities in DDoS attack scenario

DDoS entity Entity type

C2 Critical Entity

BOT Associated Entity

TARGET Associated Entity

EVENT Associated Entity

DOMAIN Associated Entity

SAMPLE Associated Entity

PDB Associated Entity

We extract three different types of relations among these entities, namely, behavioral
relations, associated relations and correlated relations.

Definition 4 Behavioral Relation: Behavioral relations are extracted from behavior
logs or alerts and can represent the attacks or communications between entities.

Definition 5 Associated Relation: Associated relations are extracted from external
intelligence or knowledge base and can represent the affiliation or usage relations
between entities. Such relations are often related to knowledge, rather than behaviors.
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The two relations above construct a heterogeneous graph in DDoS attack sce-
nario. For further analysis on similarity, correlated relations are defined to calculate
the similarity among entities of the same type.

Definition 6 Correlated Relation: Correlated relations depict the relevance of a pair of
entities with the same type. Relevance measurement comes from comparative analysis
on behavioral relations, association relations and attributes between a pair of entities
with the same type.

3.2 Meta Path-Based Similarity Framework

The main task of DDoS attack group discovery is to cluster the critical entities based
on correlated relations. Specifically, the correlated relation between two entities is cal-
culated through meta path-based similarity in the heterogeneous graph. Table 3 lists the
heterogeneous relations, including behavioral relations and associated relations in the
heterogeneous graph model constructed for the DDoS attack scenario.

Table 3. Relations in DDoS attack scenario

d Relation Relation type

d1 C2-TARGET Behavior/Behavioral Relation

d2 C2-BOT Behavior/Behavioral Relation

d3 C2-EVENT Behavior/Behavioral Relation

d4 C2-DOMAIN Association/Associated Relation

d5 C2-SHA56 Association/Associated Relation

d6 SHA256-PDB Association/Associated Relation

d7 SHA256-SHA256 Association/Associated Relation

d8 C2-MD5 Association/Associated Relation

d9 MD5-PDB Association/Associated Relation

Correlated Relations Based on Meta Path (C2-C2@SIM[Associated Entity]).
Considering the multi-hop similarity theory, a certain entity can have 1-hop neighbors,
2-hop neighbors and even n-hop neighbors in a graph. Figure 2 shows an example of
k-hop neighbors. In this figure, the orange circle represents an entity, the green ones
represents the 1-hop neighbors, the blue ones represent the 2-hop neighbors and the pur-
ple ones represent the 3-hop neighbors. This theory can be applied to the DDoS attack
scenario to extract multidimensional correlated relations between C2 servers.
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Fig. 2. Multi-hop in graph (Color figure online)

The correlated relations are illuminated in Fig. 3 and Table 4. For example, C2-
C2@SIM[DOMAIN] represents the correlated relation between a C2 server and its
2-hop neighbors based on the associated domains while C2-C2@SIM[MD5] represents
the correlated relation between a C2 server and its 3-hop neighbors, which is based on
the similarity of the associated MD5 samples. Finally, C2-C2@SIM[PDB] represents
the correlated relation between a C2 server and its 4-hop neighbors. This relation is
based on two types of associated relations, that is, malware samples associated to C2
servers and the PDB paths associated to MD5 samples.

C2DOMAINC2

C2-C2@SIM[DOMAIN]

Doubel hop

MD5 C2MD5C2 PDB

C2-C2@SIM[PDB]

Four hop

C2MD5C2

C2-C2@SIM[MD5]

MD5Three hop

Fig. 3. Multi-hop in DDoS attack
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Table 4. Relations of C2

Relation (C2-C2@SIM[Associated_Entity])

C2-C2@SIM[PDB]

C2-C2@SIM[SHA256]

C2-C2@SIM[SHA256&BDFF]

C2-C2@SIM[MD5]

C2-C2@SIM[TARGET]

C2-C2@SIM[EVENT]

C2-C2@SIM[BOT]

C2-C2@SIM[DOMAIN]

We determinewhether two critical entities belong to the same attack group according
to these nine correlated relations. Specifically, given two C2 servers C2_1 and C2_2with
a kind of associated entity A, A_set1 and A_set2 are subsets of A, which contain all
the associated Class A entities of C2_1 and C2_2 respectively. As shown in Eq. 1,
suppose that a correlated relation exists between C2_1 and C2_2 based on Class A
entity if the number of Class A entities related to both C2 servers is greater than n, or
the Jaccard similarity is greater than t. It is noted that C2-C2@SIM[A] is a Boolean
variable, where the true value represents that the two C2 servers are relevant while the
false value represents that they are irrelevant.

C2-C2@SIM [A] = bool(Aset1 ∩ Aset2 > n)‖bool(Jaccard(A_set1,A_set2)) (1)

Jaccard(A_set1,A_set2) = |A_set1 ∩ A_set2|
|A_set1 ∪ A_set2| (2)

Similarity of C2s(C2-C2@SIM). We utilize the attention mechanism to aggregate the
multi-dimensional correlated relations, since different types of relations are not equally
important when the similarity between C2 servers is calculated. According to Eq. 3, ωe
is weight of C2-C2@SIM [Ae], and a homogeneous graph can be constructed for the
following community detection and DDoS attack group discovery. Figure 4 shows the
process of similarity construction.

C2-C2@SIM = ω0C2-C2@SIM [A0] + ω1C2-C2@SIM [A1]

+ · · ·ωqC2-C2@SIM
[
Aq

] =
∑q

e=0
ωeC2-C2@SIM [Ae] (3)

Considering that more relations may exist beyond those listed in Table 3 and Table 4,
our following group discovery framework is designed to be extensible, so that users can
add or remove relations to customize the system.
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Fig. 4. Similarity calculation of C2s

3.3 Hierarchical Community Discovery

Considering the goal of DDoS attack graph discovery, we aim to find groups with several
characteristics:

• Behavior-based similarity: Attackers in a specific group should have similarity in
their large-scale attack behaviors, for instance, in a certain time period, bots should
be controlled by the same set of C2 servers, bots or C2 servers should participate in
the same set of attack events. Behavioral similarity is adopted to measure whether the
entities in a specific group may have the same temporary goal beneath their attacks.
Only entities with behavioral similarities above threshold will be considered into the
same group.

• Evidence-based relevance: Unlike behavior-based similarity from large-scale attacks
or connections, evidence-based relevance is built to extract relevance from small-scale
relations with high confidence. For example, in a certain time period, two C2 servers
are both resolved by the same domain names, or both have network connections from
the samemalware samples or malware samples with a high similarity. Evidence-based
relevance may appear in small scales, but they should not be neglected in our grouping
strategy, due to the fact that they are strong evidence of same attack resources and
attacking methods.
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Fig. 5. Hierarchical community discovery workflow.

Hence, we need to establish a community detection workflow to capture closeness
from behavior and evidence. Meanwhile, similarity connections between C2 servers
build up a large weighted correlated graph, and time-efficiency should be taken into good
consideration. Various unsupervised learning techniques are available for community
detection, but none of them can capture large-scale behavior closeness and small-scale
strong relevance at the same time. A 3-step workflow is set up to accomplish our attack
group discovery, as shown in Fig. 5.

First, we choose to use the Louvain method to discover groups in C2 servers from
their behavior similarity, considering Louvain’s efficient handling of large networks. In
this step, Louvain [9] will output community results with the best modularity.

Second, we run Connected Component Algorithm [10] on the super graph of C2
vertices connected by strong evidence. As a result, the super graph will be spitted in to
several components, in which any two vertices are connected to each other by paths, and
which is connected to no additional vertices in the super graph.

Last, we merge overlapping Louvain’s communities and Connected Component’s
component result. A community and a component will be merged into a DAG group
if they both have the same C2 vertices. Each final DAG group consists of a set of C2
vertices.
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This workflow will be illustrated in detail below:

First Step: Louvain. The Louvain algorithm was proposed in 2008, which is one of
the fastest modularity-based algorithms and works well with large graphs. Modularity
is defined as follows:

Q = 1

2m

∑

i,j

[
Aij − kikj

2m

]
δ
(
ci, cj

)
(4)

Modularity Q [9] has a value between −1 and 1, which measures the quality of
relation density within communities. Aij represents the weight of the edge between i
and j, ki = ∑

j Aij is the sum of the weights of the edges attached to vertex i, ci is the
community to which vertex i is assigned, the δ-function δ(u, v) is 1 if u = v and 0
otherwise and m = 1

2

∑
ij Aij.

The method consists of repeated applications of two steps. At the beginning, each
node of the graph is considered as a community. The first phase is a repeated and sequen-
tial assignment of nodes to their neighbor communities, favoring local optimizations of
modularity score, until no further improvement can be achieved. The second phase
is the definition of a new coarse-grained network based on the communities found in
the first phase. These two phases are repeated until no further modularity-increasing
reassignments of communities are possible.

At the end of the Louvain process, we can derive communities of C2 vertices
(LCi, i = [1, l], l is the number of communities) with the best global modularity.

Second Step: Connected Component. Connected Component is a simple algorithm
with time efficiency of O(n log n), n is the number of nodes in the graph. Nodes in a com-
ponent are connected by paths while different components have no overlapping nodes.
It works well in large-scale networks. Hence, we can extract subgraphs of C2 vertices
connected by strong evidence from fundamental graph into a super graph EG (evidence
graph). Running Connected Component on EG will help us find out the components
(CPNi, i = [

1, p
]
, p is the number of components) within which all possible evidence

paths are considered.

Final Step: Merging Communities and Components. In this Step, components from
the second step and communities from the first step are taken as nodes, linkswill be estab-
lished if any two components and communities have the commonC2 vertices.We simply
run Connected Components algorithm on this graph, which results in several subgraphs.
After correlating subgraphs with former community-related C2 and component-related
C2, we can obtain our final DDoS attack groups DAG. Each attack group consists of a
set of C2 vertices.

4 Evaluation

The evaluation process is illustrated as follows. Firstly, we extract entities and events
from input data sources, then we are able to grasp the trend of active entities/events and
construct our fundamental graph and similarity graph. Secondly, we run hierarchical
community discovery on graphs and evaluate the effectiveness of DDoS attack groups.
Finally, we conduct an in-depth analysis on several typical DDoS attack groups.
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4.1 Statistics of Input Data and Graphs

According to our extraction strategy and attack event definition, we are able to know the
scale of entities participating in attack events and resources attackers used, as well as
the trend from different perspectives.

Monthly Trend. After we extract entities and attack events, we can derive the statistics
of active entities and activities in each month.
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Fig. 6. Monthly trend of active entities in DDoS attacks

Figure 6 shows us the number of active C2 servers and bots in each month. Though
the trend of each month is moving up and down, the overall trend is upwards in the scale
of C2 servers and bots. Meanwhile, the control ability of botnets is enhanced a lot in
2019 than in 2018. In May 2019, 392 C2 servers control botnets of over 0.65 million
bots.

Figure 7 illustrates the trend of targeting activities in DDoS attacks. An interesting
fact is that targeting activities reach a peak of each year in August in both 2018 and 2019.
InAugust 2019, active botnets conduct over 30K attack events targeting 21K destination.
On average, each target suffers from DDoS attacks for approximately a day and a half.

Graph Construction. Table 5 and Table 6 show the scale of a fundamental graph
built from entities and relations from behavior data and threat intelligence data. Ver-
tices of types C2, BOT, TARGET origin from botnet communication logs, while types
DOMAIN, SHA256, PDB origin from passive DNS data and threat intelligence data.
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Fig. 7. Monthly trend of targeting activities in DDoS attacks

Table 5. Vertex types in fundamental graph

Vertex type Count

BOT 3542413

DOMAIN 502354

TARGET 212273

SHA256 29254

C2 5225

PDB 59

Table 6. Edge types in fundamental graph

Edge type Count

SHA256-PDB 316

C2-TARGET 539176

C2-SHA256 29885

SHA256-SHA256 9675

C2-DOMAIN 523410

C2-BOT 5862597
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Table 7 shows scale of the graph we construct from meta path-based similarity
between C2 servers. The following DDoS attack group discovery is based on this graph.

Table 7. Scale of similarity graph

Name Type Count

CC vertex 5225

CC-CC@SIM edge 13161

4.2 Situation Awareness of DDoS Attack Groups

After DDoSAGD framework’s process, we get the result of 282 DDoS attack groups.
Each DDoS attack group contains more than one C2 server. DDoS attack groups’
characteristics vary a lot in lifecycle length and scale of attack resources.

20
18

01
20

18
02

20
18

03
20

18
04

20
18

05
20

18
06

20
18

07
20

18
08

20
18

09
20

18
10

20
18

11
20

18
12

20
19

01
20

19
02

20
19

03
20

19
04

20
19

05
20

19
06

20
19

07
20

19
08

20
19

09
20

19
10

20
19

11
20

19
12

Monthly emerging and fading trend of 
DDoS attack groups 

emerging groups fading groups

Fig. 8. Monthly emerging and fading trend of DDoS attack groups

Lifecycle of DDoS Attack Groups. Analysis results reveal the fact that most DDoS
attack groups stay active for a relatively short time period, only 19 groups remain active
after three months. Meanwhile, attackers can utilize only no more than 10 C2 servers to
gain possession of over 27K vulnerable machines or devices to be their botnet army in
a very short time.

Figure 8 tells the fact that DDoS attack groups keep emerging and fading in every
month. Figure 9 shows active month distribution among all DDoS attack groups. Most
attack groups disappear in less than 3 months and the largest group remains active for
23 months.
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Statistics of Top 10 DDoS Attack Groups: In Table 8, we display the top 10 DDoS
attack groups by ranking bots in possession by each one of them.

Table 8. Statistics of Top 10 DDoS attack groups

Group ID bot c2 target days domain sha256

G769 2,768,880 1,197 101,750 647 344,867 6,687

G36341 52,621 23 3,779 48 59 116

G31508 35,698 21 1,809 29 40 93

G1226 27,177 3 1,442 24 5 12

G1291 24,104 3 1,338 34 3 26

G904 23,341 19 7,754 65 15 145

G704 22,605 5 2,781 39 63 37

G1376 21,953 7 2,118 101 2 180

G1466 18,333 2 466 29 0 17

G18837 15,331 28 5,414 66 30 426

Typical DDoS Attack Group Analysis. The largest DDoS attack group G769 we dis-
cover is found to be related tomultiple DDoS attack groups unveiled by different security
organizations, such as SSHPsychos or Group 93 [11] from Cisco Talos Group, Loligang
[12] from Tencent Threat Intelligence Center and malicious IPs (related to *atat456.com
domains) referred to by many security researchers [13].
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Fig. 10. Subgraphs related to DDoS attack group uncovered by external security researchers
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Figure 10 depicts the relations between C2 servers, in which the red frames are sub-
graphs related to attack groups recognized by external security researchers in different
times. Our approach can construct behavior similarity and threat intelligence relevance
for C2 servers, hence be able to correlate them in the same DDoS attack group, con-
fronting the fact that real world attackers keep switching C2 servers to evade detection.
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Figure 11 supports this point of view by showing the monthly trend of emerging and
fading C2 servers of G769.

5 Conclusion

In this paper, a practical attack group framework DDoSAGD is proposed to unveil
the facts beneath DDoS attack behaviors. DDoSAGD takes the advantage of a graph
theory, and adopts dual community detection methods to discover groups in DDoS
attacks. DDoSAGD overcomes the difficulty in discovering attack groups in a long
period. Through an in-depth analysis on and comparison with external uncovered attack
groups, results verify that our approach is both applicable and efficient in the real world.
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the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Practical DDoS Attack Group Discovery and Tracking with Complex Graph-Based Network
	1 Introduction
	2 Methodology and Background
	3 DDoSAGD – DDoS Attack Group Discovery Framework
	3.1 Basic Concepts and Fundamental Graph Initialization
	3.2 Meta Path-Based Similarity Framework
	3.3 Hierarchical Community Discovery

	4 Evaluation
	4.1 Statistics of Input Data and Graphs
	4.2 Situation Awareness of DDoS Attack Groups

	5 Conclusion
	References




