Skip to main content

The Classification of Skateboarding Tricks: A Support Vector Machine Hyperparameter Evaluation Optimisation

  • Conference paper
  • First Online:
Recent Trends in Mechatronics Towards Industry 4.0

Abstract

The growing interest in skateboarding as a competitive sport requires new motion analysis approaches and innovative ways to portray athletes’ results as the conventional technique of the classification of the tricks is often inadequate in providing accurate and often biased evaluation during competition. This paper aims to identify the suitable hyperparameters of a Support Vector Machine (SVM) classifier in classifying five different skateboarding tricks (Ollie, Kickflip, Frontside 180, Pop Shove-it, and Nollie Frontside Shove-it) based on frequency-domain features extracted from Inertial Measurement Unit (IMU). An amateur skateboarder with the age of 23 years old performed five different skateboard tricks and repeated for five times. The signals obtained then were converted from time-domain to frequency-domain through Fast Fourier Transform (FFT), and a number of features (mean, kurtosis, skewness, standard deviation, root mean square and peak-to-peak corresponding to xyz axis of IMU reading) were extracted from the frequency dataset. Different hyperparameters of the SVM model were optimised via grid search sweep. It was found that a sigmoid kernel with 0.01 of gamma and regularisation, C value of 10 were found to be the optimum hyperparameters as it could attain a classification accuracy of 100%. The present findings imply that the proposed approach can well identify the tricks to assist the judges in providing a more objective-based evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Camomilla V, Bergamini E, Fantozzi S, Vannozzi G (2018) Trends supporting the in-field use of wearable inertial sensors for sport performance evaluation: a systematic review. Sensors (Switzerland) 18(3)

    Google Scholar 

  2. Park HK, Yi H, Lee W (2017) Recording and sharing non-visible information on body movement while skateboarding. In: Proceedings of the 2017 CHI conference on human factors in computing systems—CHI’17, pp 2488–2492

    Google Scholar 

  3. Groh BH, Kautz T, Schuldhaus D (2015) IMU-based trick classification in skateboarding. KDD Work Large-Scale Sport Anal

    Google Scholar 

  4. Anlauff J, Weitnauer E, Lehnhardt A, Schirmer S, Zehe S, Tonekaboni K (2010) A method for outdoor skateboarding video games. In: Proceedings of the 7th international conference on advances in computer entertainment technology—ACE’10, p 40

    Google Scholar 

  5. Groh BH, Fleckenstein M, Kautz T, Eskofier BM (2017) Classification and visualisation of skateboard tricks using wearable sensors. Pervas Mob Comput 40:42–55

    Article  Google Scholar 

  6. Ashqar HI, Almannaa MH, Elhenawy M, Rakha HA, House L (2019) Smartphone transportation mode recognition using a hierarchical machine learning classifier and pooled features from time and frequency domains. IEEE Trans Intell Transp Syst 20(1):244–252

    Article  Google Scholar 

  7. Stewart TOM, Narayanan A, Hedayatrad L, Neville J, Mackay L, Duncan S (2018) A dual-accelerometer system for classifying physical activity in children and adults, pp 2595–2602

    Google Scholar 

  8. Anand A, Sharma M, Srivastava R, Kaligounder L, Prakash D (2018) Wearable motion sensor based analysis of swing sports. In: Proceedings of 16th IEEE international conference on machine learning application ICMLA 2017, pp 261–267, Jan 2018

    Google Scholar 

  9. Connaghan D, Kelly P, O'Connor NE, Gaffney M, Walsh M, O’Mathuna C (2011) Multi-sensor classification of tennis strokes. Proceedings of IEEE sensors, pp 1437–1440

    Google Scholar 

  10. Friday H, Ying T, Mujtaba G, Al-garadi MA (2019) Data fusion and multiple classifier systems for human activity detection and health monitoring: review and open research directions, vol 46, pp 147–170, June 2018

    Google Scholar 

  11. Gani O et al (2019) Journal of network and computer applications a light weight smartphone based human activity recognition system with high accuracy. J Netw Comput Appl 141(May):59–72

    Article  Google Scholar 

  12. Groh BH, Fleckenstein M, Eskofier BM (2016) Wearable trick classification in freestyle snowboarding. In: BSN 2016—13th annual body sensing networks conference, pp 89–93

    Google Scholar 

  13. Corrêa NK et al (2017) Development of a skateboarding trick classifier using accelerometry and machine learning. Res Biomed Eng 33(4):362–369

    Article  Google Scholar 

  14. Ar M et al The Classification of skateboarding trick manoeuvres: a K-nearest neighbour approach, pp 341–347

    Google Scholar 

  15. Abdullah MA, Ibrahim MAR, Bin Shapiee MNA, Mohd Razman MA, Musa RM, Majeed APPA (2020) The classification of skateboarding trick manoeuvres through the integration of IMU and machine learning. In: Lecture notes in mechanical engineering, pp 67–74

    Google Scholar 

  16. Nur M et al The classification of skateboarding trick manoeuvres through the integration of image processing techniques and machine learning

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Ministry of Education, Malaysia and Universiti Malaysia Pahang for supporting and funding this research via FRGS/1/2019/TK03/UMP/02/6 (RDU1901115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Azraai Mohd Razman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ibrahim, M.A.R., Shapiee, M.N.A., Abdullah, M.A., Razman, M.A.M., Musa, R.M., Majeed, A.P.P.A. (2022). The Classification of Skateboarding Tricks: A Support Vector Machine Hyperparameter Evaluation Optimisation. In: Ab. Nasir, A.F., Ibrahim, A.N., Ishak, I., Mat Yahya, N., Zakaria, M.A., P. P. Abdul Majeed, A. (eds) Recent Trends in Mechatronics Towards Industry 4.0. Lecture Notes in Electrical Engineering, vol 730. Springer, Singapore. https://doi.org/10.1007/978-981-33-4597-3_93

Download citation

Publish with us

Policies and ethics