Skip to main content

First-Principle Molecular Dynamics Simulation of Terahertz Absorptive Hydrogenated TiO2 Nanoparticles

  • Chapter
  • First Online:
Advanced Materials for Future Terahertz Devices, Circuits and Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 727))

  • 495 Accesses

Abstract

Recently, terahertz (THz) materials are emerging as new promising material owing to its excellent electromagnetic response in the THz frequency range. While naturally occurring materials hardly respond to THz radiation, extensive research efforts have been dedicated to develop artificial absorbers in the THz region. Various encouraging new materials are being developed day to day having unique electromagnetic properties. TiO2 is one of that materials which engrossed extensive attention in the field of terahertz absorbing materials research. It has attracted significant importance because of its wide band gap, high permittivity as well as low dielectric loss characteristics. It has been reported that hydrogenated TiO2 nanoparticles can absorb 0.6–2.5 THz radiation and is very useful for THz optoelectronics like waveguides, filters, metamaterials, etc. This chapter with the help of density functional theory demonstrates effects of hydrogenation on properties of rutile titanium dioxide (TiO2) that shows significant improvement in absorption towards THz spectral range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Yan et al., Slightly hydrogenated TiO2 with enhanced photocatalytic performance. J. Mater. Chem. 2, 12708–12716 (2014)

    Google Scholar 

  2. X. Chen, et al., S.S. Mao,Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011)

    Google Scholar 

  3. Y.H. Hu, A highly efficient photocatalyst—hydrogenated black TiO2 for the photocatalytic splitting of water. Angew. Chem. Int. Ed. 51, 12410 (2012)

    Article  CAS  Google Scholar 

  4. J. Qiu, S. Zhang, Hydrogenation of nanostructured semiconductors for energy conversion and storage. Chin. Sci. Bull. 59, 2144 (2014)

    Article  CAS  Google Scholar 

  5. J. Buha, Solar absorption and microstructure of C-doped and H-co-doped TiO2 thin films. J. Phys. 45, 385305 (2012)

    Google Scholar 

  6. U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53 (2003)

    Article  CAS  Google Scholar 

  7. T. Xia et al., n/n junctioned g-C3N4 for enhanced photocatalytic H2 generation. Adv. Mater. 25(47), 6905–6910 (2013)

    Article  CAS  Google Scholar 

  8. L. Tian et al., Broad range energy absorption enabled by hydrogenated TiO2 nanosheets: from optical to infrared and microwave. J. Mater. Chem. 5, 4645–4653 (2017)

    CAS  Google Scholar 

  9. Y. Xu et al., Tuning defects in oxides at room temperature by lithium reduction. Energy Environ. Sci. 9, 2410–2417 (2016)

    Article  CAS  Google Scholar 

  10. Y. Lu et al., Self-hydrogenated shell promoting photocatalytic H2 evolution on anatase TiO2. Nat. Commun. 9, 2752 (2018)

    Article  CAS  Google Scholar 

  11. M. Pradena, et al.,Multivariate approach to hydrogenated TiO2 photocatalytic activity under visible light, 91(2), 157–164 (2019)

    Google Scholar 

  12. Q. Gao et al., Hydrogenated F-doped TiO2 for photocatalytic hydrogen evolution and pollutant degradation. Int. J. Hydrogen Energy 44(16), 8011–8019 (2019)

    Article  CAS  Google Scholar 

  13. S. Zhang et al., High performance hydrogenated TiO2 nanorod arrays as a photoelectrochemical sensor for organic compounds under visible light. Electrochem. Commun. 40, 24–27 (2014)

    Article  CAS  Google Scholar 

  14. Li. Shen et al., Photoelectrochemical characterization of hydrogenated TiO2 nanotubes as photoanodes for sensing applications. ACS Appl. Mater. Interf. 5(21), 11129–11135 (2013)

    Article  CAS  Google Scholar 

  15. J. Zheng et al., Hydrogenated anatase TiO2 as lithium-ion battery anode: size-reactivity correlation. ACS Appl. Mater. Interf. 8, 20074–20081 (2016)

    Article  CAS  Google Scholar 

  16. J. Wang et al., Synthesis of hydrogenated TiO2–reduced-graphene oxide nanocomposites and their application in high rate lithium ion batteries. J. Mater. Chem. 2, 9150–9155 (2014)

    Article  CAS  Google Scholar 

  17. Yan et al., Understanding the fast lithium storage performance of hydrogenated TiO2 nanoparticles. J. Mater. Chem. 1, 14507–14513 (2013)

    Article  CAS  Google Scholar 

  18. J. Qiu et al., Hydrogenation synthesis of blue TiO2 for high-performance lithium-ion batteries. J. Phys. Chem. 118(17), 8824–8830 (2014)

    CAS  Google Scholar 

  19. Z. Zhzng et al., Flower-like hydrogenated TiO2 (B) nanostructures as anode materials for high-performance lithium ion batteries. J. Power Sources 267, 388–393 (2014)

    Article  CAS  Google Scholar 

  20. V.H. Pham et al., Hydrogenated TiO2@reduced graphene oxide sandwich-like nanosheets for high voltage super capacitor applications. Carbon 126, 135–144 (2018)

    Article  CAS  Google Scholar 

  21. J. Liu, et al., Electrochemical hydrogenated TiO2 nanotube arrays decorated with 3D cotton-like porous MnO2 enables superior super capacitive performance. RSC Adv. 7, 31512–31518 (2017)

    Google Scholar 

  22. X. Lu et al., Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 12(3), 1690–1696 (2012)

    Article  CAS  Google Scholar 

  23. W. Li et al., An important factor affecting the super capacitive properties of hydrogenated TiO2 nanotube arrays: crystal structure. Nanoscale Res. Lett. 14, 229 (2019)

    Article  CAS  Google Scholar 

  24. L. Cui et al., Nitrogen and sulfur co-doped graphene aerogels as an efficient metal-free catalyst for oxygen reduction reaction in an alkaline solution. RSC Adv. 6, 22781–22790 (2016)

    Article  CAS  Google Scholar 

  25. J. Xu et al., Synthesis and enhanced microwave absorption properties: a strongly hydrogenated TiO2 nanomaterial. Nanotechnology 28(42), 425701 (2017)

    Article  CAS  Google Scholar 

  26. T. Xia et al., Strong microwave absorption of hydrogenated wide bandgap semiconductor nanoparticles. ACS Appl. Mater. Interf. 7(19), 10407–10413 (2015)

    Article  CAS  Google Scholar 

  27. J. Xu et al., Tuning the electromagnetic synergistic effects for enhanced microwave absorption via magnetic nickel core encapsulated in hydrogenated anatase TiO2 shell. ACS Sustain. Chem. Eng. 6(9), 12046–12054 (2018)

    Article  CAS  Google Scholar 

  28. Y. Xu et al., Pd-catalyzed instant hydrogenation of TiO2 with enhanced photocatalytic performance. Energy Environ. Sci. 9, 2410–2417 (2016)

    Article  CAS  Google Scholar 

  29. H. Matsuta,Coherent forward-scattering spectra of Cs I 852.1-nm with a light-emitting diode and a diode laser in a Voigt configuration. Spectrochimica Acta Part B Atom. Spectros. 105935 (2020)

    Google Scholar 

  30. A. El-Shaer et al., Towards low cost fabrication of inorganic white light emitting diode based on electrodeposited Cu2O thin film/TiO2 nanorods heterojunction. Mater. Res. Bull. 116, 111–116 (2019)

    Article  CAS  Google Scholar 

  31. H. Ferhati et al.,Highly improved responsivity of self-powered UV–Visible photodetector based on TiO2/Ag/TiO2 multilayer deposited by GLAD technique: effects of oriented columns and nano-sculptured surface. Appl. Surf. Sci. 529, 147069 (2020)

    Google Scholar 

  32. P. Bawuah et al., On the complex refractive index of N-doped TiO2 nanospheres and nanowires in the terahertz spectral region. Vib. Spectrosc. 68, 241–245 (2013)

    Article  CAS  Google Scholar 

  33. D.S. Ginley, C. Bright,Transparent conducting oxides, MRS Bull. 25, 15–18 (2000)

    Google Scholar 

  34. E. Fortunato et al., Transparent conducting oxides for photovoltaics, transparent conducting oxides for photovoltaics. MRS Bull. 32, 242–247 (2007)

    Article  CAS  Google Scholar 

  35. A.K. Rana, Transparent Co3O4/ZnO photovoltaic broadband photodetector. Mater. Sci. Semicond. Process. 117, 105192 (2020)

    Article  CAS  Google Scholar 

  36. E. Pulli, et al.,Transparent photovoltaic technologies: current trends towards upscaling. Energy Convers. Manage. 219, 112982 (2020)

    Google Scholar 

  37. B. Ung et al., High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss. J. Opt. Soc. Am. 28, 917–921 (2011)

    Article  CAS  Google Scholar 

  38. M. Dutta et al., Current Status of oxide dielectric materials for terahertz applications—an overview. Ferroelectronics 166, 108–139 (2015)

    Article  Google Scholar 

  39. A Argyros, et al.,Microstructures in polymer fibres for optical fibres, THz, 785162 (2013)

    Google Scholar 

  40. A. Argyros, Microstructures in polymer fibres for optical fibres, THz waveguides, and fibre-based metamaterials. ISRN Opt 785162 (2013)

    Google Scholar 

  41. J. Moon et al., Preparation and characterization of the Sb-doped TiO2 photocatalysts. J. Mater. Sci. 36, 949–955 (2001)

    Article  CAS  Google Scholar 

  42. L. Luoat, et al.,Topological-insulator passively Q-switched double-clad fiber laser at 2 μm wavelength. J. Nanomater. 0902708 (2014)

    Google Scholar 

  43. E. Hendry et al., Local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy. Nano Lett. 6, 755–759 (2006)

    Article  CAS  Google Scholar 

  44. E. Hendry et al., Electron transport in TiO2 probed by THz time-domain spectroscopy. Phys. Rev. 69, 081101 (2004)

    Article  CAS  Google Scholar 

  45. H. Nemec et al., Tuning the conduction mechanism in niobium-doped titania nanoparticle networks. J. Phys. Chem. 115, 6968–6974 (2011)

    CAS  Google Scholar 

  46. S.A. Jensen et al., Terahertz depolarization effects in colloidal TiO2 films reveal particle morphology. J. Phys. Chem. 118(2), 1191–1197 (2014)

    CAS  Google Scholar 

  47. T. Robin, et al.,Terahertz applications: trends and challenges, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 8985 (2014)

    Google Scholar 

  48. A.V. Raisfanen, et al.,A metamaterial absorber for the terahertz regime: design, fabrication and characterization, in IEEE 8th European Microwave Conference, ed. by H. Tao et al. (1998, Optics Express, 16(10)) (2008), pp. 7181–7188

    Google Scholar 

  49. T. Kolodiazhnyi, Development of Al2O3-TiO2 composite ceramics for high-power millimeter-wave applications. Acta Mater. 57(11), 3402–3409 (2009)

    Article  CAS  Google Scholar 

  50. H.T. Chen, et al.,Erratum: antireflection coating using metamaterials and identification of its mechanism. Phys. Rev. Lett. 105, 073901 (2010)

    Google Scholar 

  51. Q.-Y. Wen et al., Dual band terahertz metamaterial absorber: design, fabrication, and characterization. Appl. Phys. Lett. 95, 241111 (2009)

    Article  CAS  Google Scholar 

  52. X. Shen et al., Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Appl. Phys. Lett. 101, 154102 (2012)

    Article  CAS  Google Scholar 

  53. X.-Y. Peng et al., Ultrathin multi-band planar metamaterial absorber based on standing wave resonances. Opt. Express 20, 27756 (2012)

    Article  Google Scholar 

  54. Y.Q. Ye et al., Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. JOSA 27, 498 (2010)

    Article  CAS  Google Scholar 

  55. X. Zang et al., Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings. Sci. Rep. 5, 8901 (2015)

    Article  CAS  Google Scholar 

  56. D.-S. Kim et al., Broadband terahertz absorber realized by self-assembled multilayer glass spheres. Opt. Express 20, 13566 (2012)

    Article  CAS  Google Scholar 

  57. F.K. Mbakop, One-dimensional comparison of TiO2/SiO2 and Si/SiO2 photonic crystals filters for thermo photovoltaic applications in visible and infrared. Chinese J. Phys. 67, 124–134 (2020)

    Article  CAS  Google Scholar 

  58. T.Z.N. Sokkar, et al.,Dynamic investigations of opto-mechanical properties of iPP/TiO2 nanocomposites fibres using fringe analysis techniques. Optik 212, 164683 (2020)

    Google Scholar 

  59. F. Sordello, et al.,Photocatalytic metamaterials: TiO2 inverse opals. Chem. Commun. 47, 6147–6149 (2011)

    Google Scholar 

  60. M.C. Mathpal, et al.,Ag/TiO2/graphene stacking for plasmonic metamaterial-based transparent semiconducting thin films. Mater. Lett. 128(1), 306–309 (2014)

    Google Scholar 

  61. D.S. Rana et al., Terahertz emission functionality of high-temperature superconductors and similar complex systems. Adv. Opt. Mater. 8, 1900892 (2019)

    Article  CAS  Google Scholar 

  62. J.A. Fülöp, et al., Laser‐driven strong‐field terahertz sources. L Adv. Opt. Mater. 8, 1900681 (2019)

    Google Scholar 

  63. P. Kužel et al., Terahertz spectroscopy of nanomaterials: a close look at charge-carrier transport. T Adv. Opt. Mater. 8, 1900623 (2020)

    Article  CAS  Google Scholar 

  64. D. Zhao et al., Free carrier, exciton, and phonon dynamics in lead-halide perovskites studied with ultrafast terahertz spectroscopy. Adv. Opt. Mater. 8, 1900783 (2020)

    Article  CAS  Google Scholar 

  65. B.K. Nahak et al., An investigation on photocatalytic dye degradation of rhodamine 6G dye with Fe-and Ag-doped TiO2 thin films. Part Lect. Notes Electric. Eng. Book Ser. (LNEE) 673, 295–307 (2020)

    Article  Google Scholar 

  66. C. In, H. Choi,Dirac fermion and plasmon dynamics in graphene and 3D topological insulators. Adv. Opt. Mater. 8, 1801334 (2020)

    Google Scholar 

  67. N. Hoof et al., Terahertz time-domain spectroscopy and near-field microscopy of transparent silver nanowire networks. Adv. Opt. Mater. 8, 190079 (2020)

    Article  CAS  Google Scholar 

  68. Y. Zeng et al., Photonic engineering technology for the development of terahertz quantum cascade lasers. Adv. Opt. Mater. 8, 1900573 (2020)

    Article  CAS  Google Scholar 

  69. S. Mahata et al., Hydrothermal synthesis of aqueous nano-TiO2 sols. Mater. Sci. Poland 27(2), 463–470 (2009)

    CAS  Google Scholar 

  70. S. Mahata et al., Chemical modification of titanium isopropoxide for producing stable dispersion of titania nano-particles. Mater. Chem. Phys. 151, 267–274 (2015)

    Article  CAS  Google Scholar 

  71. S. Mahata et al., Preparation of high solid loading titania suspension in gelcasting using modified boiling rice extract (MBRE) as binder. Ceram. Int. 38, 909–918 (2012)

    Article  CAS  Google Scholar 

  72. S. Mahata et al., Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. Am. Inst. Phys. Conf. Proc. 1461, 225–228 (2012)

    CAS  Google Scholar 

  73. X. Chen et al., Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 41, 7909–7937 (2012)

    Article  CAS  Google Scholar 

  74. M.A. Henderson, A surface science perspective on TiO2. Photocatalysis Surf. Sci. Rep. 66, 185–297 (2011)

    Article  CAS  Google Scholar 

  75. X. Chen et al., Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011)

    Article  CAS  Google Scholar 

  76. H. Pan et al., Effects of H-, N-, and (H, N)-doping on the photocatalytic activity of TiO2. J. Phys. Chem. C 115, 12224–12231 (2011)

    Article  CAS  Google Scholar 

  77. J. Lu et al., Effective increasing of optical absorption and energy conversion efficiency of anatase TiO2 nanocrystals by hydrogenation. Phys. Chem. Chem. Phys. 13, 18063–18068 (2011)

    Article  CAS  Google Scholar 

  78. Z. Zheng et al., Hydrogenated titania: synergy of surface modification and morphology improvement for enhanced photocatalytic activity. Chem. Commun. 48, 5733–5737 (2012)

    Article  CAS  Google Scholar 

  79. D.P. Dash et al., A compact J-V model for solar cell to simplify parameter calculation. J. Renew. Sustain. Energy 7, 013127 (2015)

    Article  CAS  Google Scholar 

  80. B. Mondal et al., Synthesis and characterization of nanocrystalline TiO2 thin films for use as photoelectrodes in dye sensitized solar cell application. Trans. Ind. Ceram. Soc. 70(3), 173–177 (2011)

    Article  CAS  Google Scholar 

  81. S.P. Mallick et al., An empirical approach towards photovoltaic parameter extraction and optimization. Sol. Energy 153, 360–365 (2017)

    Article  Google Scholar 

  82. X. Chen et al., Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)

    Article  CAS  Google Scholar 

  83. X. Chen, Titanium dioxide nanomaterials and their energy applications. Chin. J. Catal. 30, 839–851 (2009)

    Article  CAS  Google Scholar 

  84. C.H. Sun et al., Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance. Chem. Commun. 46, 6129 (2010)

    Article  CAS  Google Scholar 

  85. M. Grätzel, Photoelectrochemical cells. Nature 414, 338 (2001)

    Article  Google Scholar 

  86. M. Green et al., Microwave absorption of magnesium/hydrogen-treated titanium dioxide nanoparticles. Nano Mater. Sci. 1(1), 48–59 (2019)

    Article  Google Scholar 

  87. T. Leshuk et al., Photocatalytic activity of hydrogenated TiO2. ACS Appl. Mater. Interf. 5(6), 1892–1895 (2013)

    Article  CAS  Google Scholar 

  88. J. Xu, et al.,Synthesis and enhanced microwave absorption properties: a strongly hydrogenated TiO2 nanomaterial. Nanotechnology, 28(42) (2017)

    Google Scholar 

  89. D.C. Cronemeyer, M.A. Gilleo, The optical absorption and photoconductivity of rutile. Phys. Rev. 82, 975–976 (1951)

    Article  CAS  Google Scholar 

  90. D.C. Cronemeyer, Electrical and optical properties of rutile single crystals. Phys. Rev. 87, 876 (1952)

    Article  CAS  Google Scholar 

  91. D.C. Cronemeyer, Infrared absorption of reduced rutile TiO2 single crystals. Phys. Rev. 113, 1222–1226 (1959)

    Article  CAS  Google Scholar 

  92. R.R. Hasiguti, E. Yagi, Electrical conductivity below 3 K of slightly reduced oxygen-deficient rutile TiO2-x. Phys. Rev. B 49, 7251–7256 (1994)

    Article  CAS  Google Scholar 

  93. E. Yagi et al., Electronic conduction above 4 K of slightly reduced oxygen-deficient rutile TiO2−x. Phys. Rev. 54, 7945–7956 (1996)

    Article  CAS  Google Scholar 

  94. T. Sekiya et al., Defects in anatase TiO2 single crystal controlled by heat treatments. J. Phys. Soc. Jpn. 73, 703–710 (2004)

    Article  CAS  Google Scholar 

  95. T. Xia et al., Hydrogenated black ZnO nanoparticles with enhanced photocatalytic performance. RSC Adv. 4, 41654–41658 (2014)

    Article  CAS  Google Scholar 

  96. C. Sun et al., Hydrogen incorporation and storage in well-defined nanocrystals of anatase titanium dioxide. J. Phys. Chem. 115, 25590–25594 (2011)

    CAS  Google Scholar 

  97. J. Qiu et al., Blue hydrogenated lithium titanate as a high-rate anode material for lithium-ion batteries. J. Mater. Chem. 2, 6353–6358 (2014)

    Article  CAS  Google Scholar 

  98. W. Wang et al., Hydrogenation of TiO2 nanosheets with exposed 001 facets for enhanced photo catalytc activity. RSC Adv. 2, 8286–8288 (2012)

    Article  CAS  Google Scholar 

  99. W. Wang et al., A new sight on hydrogenation of F and N-F doped 001 facets dominated anatase TiO2 for efficient visible light photocatalyst. Appl. Catal. B 127, 28–35 (2012)

    Article  CAS  Google Scholar 

  100. W. Wang et al., Hydrogenation temperature related inner structures and visible-light-driven photocatalysis of N-F co-doped TiO2 nanosheets. Appl. Surf. Sci. 290, 125–130 (2014)

    Article  CAS  Google Scholar 

  101. T. Leshuk et al., Hydrogenation processing of TiO2 nanoparticle. Canad. J. Chem. Eng. 91, 799–807 (2013)

    Article  CAS  Google Scholar 

  102. T. Leshuk et al., Photocatalytic activity of hydrogenated TiO2. ACS Appl. Mater. Interf. 5, 1892–1895 (2013)

    Article  CAS  Google Scholar 

  103. J.E. Rekoske, M.A. Barteau, Isothermal reduction kinetics of titanium dioxide-based materials. J. Phys. Chem. 101, 1113–1124 (1997)

    Article  CAS  Google Scholar 

  104. X. Yu, et al., Highly enhanced photoactivity of anatase TiO2 nanocrystals by controlled hydrogenation-induced surface defects. ACS Catal. 3,2479–2486 (2013)

    Google Scholar 

  105. G. Li et al., Mesoporous hydrogenated TiO2 microspheres for high rate capability lithium ion batteries. RSC Adv. 3, 11507–11510 (2013)

    Article  CAS  Google Scholar 

  106. A. Naldoni et al., Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 134, 7600–7603 (2012)

    Article  CAS  Google Scholar 

  107. C. Barzan et al., Defect sites in H2-reduced TiO2 convert ethylene to high density polyethylene without activator. ACS Catal. 4, 986–989 (2014)

    Article  CAS  Google Scholar 

  108. X. Jiang et al., Characterization of oxygen vacancy associates within hydrogenated TiO2: a positron annihilation study. J. Phys. Chem. 116(42), 22619–22624 (2012)

    CAS  Google Scholar 

  109. Z. Lu et al., Hydrogenated TiO2 nanotube arrays as high-rate anodes for lithium-ion microbatteries. Chem. Plus Chem. 77, 991–1000 (2012)

    CAS  Google Scholar 

  110. S. Li et al., Photoelectrochemical characterization of hydrogenated TiO2 nanotubes as photoanodes for sensing applications. ACS Appl. Mater. Interf. 5, 11129–11135 (2013)

    Article  CAS  Google Scholar 

  111. C. Zhang et al., Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells. Chem. Sus. Chem. 6, 659–666 (2013)

    Article  CAS  Google Scholar 

  112. G. Wang, et al., Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026–3033 (2011)

    Google Scholar 

  113. J.Y. Shin et al., Oxygen-deficient TiO2−δ nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem. Mater. 24, 543–551 (2012)

    Article  CAS  Google Scholar 

  114. W.D. Zhu et al., Enhanced field emission from hydrogenated TiO2 nanotube arrays. Nanotechnology 23, 455204 (2012)

    Article  CAS  Google Scholar 

  115. L. Shen et al., Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Adv. Mater. 24, 6502–6506 (2012)

    Article  CAS  Google Scholar 

  116. H. He et al., Hydrogenated TiO2 film for enhancing photovoltaic properties of solar cells and self-sensitized effect. J. Appl. Phys. 114, 213505 (2013)

    Article  CAS  Google Scholar 

  117. D. Wang et al., Photo electrochemical water splitting with rutile TiO2 nanowires array: synergistic effect of hydrogen treatment and surface modification with anatase nanoparticles. Electrochim. Acta 130, 290–295 (2014)

    Article  CAS  Google Scholar 

  118. M.V. Sofianou et al., Tuning the photocatalytic selectivity of TiO2 anatase nanoplates by altering the exposed crystal facets content. Appl. Catal. B 142–143, 761–768 (2013)

    Article  CAS  Google Scholar 

  119. D. Ariyanti et al., NaBH4 modified TiO2: defect site enhancement related to its photocatalytic activity. Mater. Chem. Phys. 199, 571–576 (2017)

    Article  CAS  Google Scholar 

  120. A. Das, Hierarchical ZnO-TiO2 nano heterojunction: a strategy driven approach to boost the photocatalytic performance through the synergy of improved surface area and interfacial charge. Appl. Surf. Sci. 534, 147321 (2020)

    Google Scholar 

  121. D.P. Ojha, Investigation of electrochemical performance of a high surface area mesoporous Mn doped TiO2 nanoparticle for a supercapacitor. Mater. Lett. 264, 127363 (2020)

    Article  CAS  Google Scholar 

  122. J. Lin et al., Controlled synthesis of mesoporous single-crystalline TiO2 nanoparticles for efficient photocatalytic H2 evolution. J. Hazard. Mater. 391, 122530 (2020)

    Article  CAS  Google Scholar 

  123. Y. Li et al., Effect of size and crystalline phase of TiO2 nanotubes on cell behaviors: a high throughput study using gradient TiO2 nanotubes. Bioactive Mater. 5, 1062–1070 (2020)

    Article  Google Scholar 

  124. C. Deng et al., Amorphous and crystalline TiO2 nanoparticle negative electrodes for sodium-ion batteries. Electrochim. Acta 321, 134723 (2019)

    Article  CAS  Google Scholar 

  125. M. Zhang, et al., Rapid fabrication of TiO2 nanobelts with controllable crystalline structure by microwave-assisted hydrothermal method and their photocatalytic activity. Ceram. Int. 45, Part B, 22558–22563 (2019)

    Google Scholar 

  126. https://en.wikipedia.org/wiki/Rutile

  127. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  128. T. Xia, X. Chen, Revealing the structural properties of hydrogenated black TiO2 nanocrystals. J. Mater. Chem. 1, 2983–2989 (2013)

    Article  CAS  Google Scholar 

  129. X. Chen et al., Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation. Sci. Rep. 3, 1510 (2013)

    Article  CAS  Google Scholar 

  130. W. Wang et al., Hydrogenation of TiO2 nanosheets with exposed 001 facets for enhanced photocatalytc activity. RSC Adv. 2, 8286 (2012)

    Article  CAS  Google Scholar 

  131. Z. Wang et al., H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv. Funct. Mater. 23(43), 5444–5450 (2013)

    Article  CAS  Google Scholar 

  132. N. Liu et al., Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano Lett. 14, 3309–3313 (2014)

    Article  CAS  Google Scholar 

  133. T. Xia et al., Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv. Mater. 25, 6905–6910 (2013)

    Article  CAS  Google Scholar 

  134. T. Xia et al., Enhancing microwave absorption of TiO2 nanocrystals via hydrogenation. J. Mater. Res. 29, 2198–2210 (2014)

    Article  CAS  Google Scholar 

  135. L.R. Grabstanowicz et al., Facile oxidative conversion of TiH2 to high-concentration Ti(3+)-self-doped rutile TiO2 with visible-light photoactivity. Inorg. Chem. 52, 3884–3890 (2013)

    Article  CAS  Google Scholar 

  136. M.M. Khader et al., Mechanism of reduction of rutile with hydrogen. J. Phys. Chem. 97, 6074–6077 (1993)

    Article  CAS  Google Scholar 

  137. Z. Wang et al., H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv. Func. Mater. 23(43), 5444–5450 (2013)

    Article  CAS  Google Scholar 

  138. H. Lu et al., Safe and facile hydrogenation of commercial Degussa P25 at room temperature with enhanced photocatalytic activity. RSC Adv. 4, 1128–1132 (2014)

    Article  CAS  Google Scholar 

  139. Y. Yan et al., Slightly hydrogenated TiO2 with enhanced photocatalytic performance. J. Mater. Chem. 2, 12708–12716 (2014)

    Article  CAS  Google Scholar 

  140. M. Pradenas et al., Multivariate approach to hydrogenated TiO2 photocatalytic activity under visible light. Water Environ. Res. 91, 157–164 (2019)

    Article  CAS  Google Scholar 

  141. S. Zhang et al., A portable photo electrochemical probe for rapid determination of chemical oxygen demand in wastewaters. Electrochem. Commun. 40, 24–27 (2014)

    Article  CAS  Google Scholar 

  142. J. Zheng et al., Hydrogenated anatase TiO2 as lithium-ion battery anode: size-reactivity correlation. ACS Appl. Mater. Interf. 8(31), 20074–20081 (2016)

    Article  CAS  Google Scholar 

  143. Y. Yan, et al., Understanding the fast lithium storage performance of hydrogenated TiO2 nanoparticles. J. Mater. Chem. 1, 14507–14513 (2013)

    Google Scholar 

  144. J. Qiu et al., Hydrogenation synthesis of blue TiO2 for high-performance lithium-ion batteries. J. Phys. Chem. C 118(17), 8824–8830 (2014)

    Article  CAS  Google Scholar 

  145. Z. Zhzng et al., Flower-like hydrogenated TiO2(B) nanostructures as anode materials for high-performance lithium ion batteries. J. Power Sources 267, 388–393 (2014)

    Article  CAS  Google Scholar 

  146. V.H. Pham et al., Hydrogenated TiO2@reduced graphene oxide sandwich-like nanosheets for high voltage supercapacitor applications. Carbon 126, 135–144 (2018)

    Article  CAS  Google Scholar 

  147. X. Lu et al., Hydrogenated TiO2 nanotube arrays for super capacitors. Nano Lett. 12, 1690–1696 (2012)

    Article  CAS  Google Scholar 

  148. L. Cui, et al.,Microwave-assisted facile synthesis of yellow fluorescent carbon dots from o-phenylenediamine for cell imaging and sensitive detection of Fe3+ and H2O2. RSC Adv. 6(15) (2016)

    Google Scholar 

  149. H. Chen et al., A metamaterial solid-state terahertz phase modulator. Nat. Photon 3, 148–151 (2009)

    Article  CAS  Google Scholar 

  150. S. Cherednichenko et al., A room temperature bolometer for terahertz coherent and incoherent detection. IEEE Trans. Terahertz Sci. Technol. 1, 395–402 (2011)

    Article  Google Scholar 

  151. M.L. Lu, et al., High-order THz band pass filters achieved by multilayer complementary metamaterial structures, in Proceedings of 35th International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-THz), pp. 1–2 (2010)

    Google Scholar 

  152. J. Yuan et al., Terahertz filters based on subwavelength polymer waveguide. Results Phys. 13, 102198 (2019)

    Article  Google Scholar 

  153. Y. Lin et al., Free-standing double-layer terahertz band-pass filters fabricated by femtosecond laser micro-machining. Opt. Express 25, 25125–25134 (2017)

    Article  CAS  Google Scholar 

  154. J. Li et al., Terahertz bandpass filter based on frequency selective surface. IEEE Photon. Technol. Lett. 30, 238–241 (2018)

    Article  CAS  Google Scholar 

  155. Y.H. Lo, R. Leonhardt, Aspheric lenses for terahertz imaging. Opt. Express 16, 15991–15998 (2008)

    Google Scholar 

  156. J. He et al., A broadband terahertz ultrathin multi-focus lens. Sci. Rep. 6, 28800 (2016)

    Article  CAS  Google Scholar 

  157. N.V. Chernomyrdin et al., Wide-aperture aspherical lens for high-resolution terahertz imaging. Rev. Sci. Instrum. 88, 014703 (2017)

    Article  CAS  Google Scholar 

  158. B. Scherger et al., Variable-focus terahertz lens. Opt. Express 19, 4528–4535 (2011)

    Article  Google Scholar 

  159. T.S. Moss, Photoconductivity in the Elements (Academic Press Inc., New York, 1952).

    Google Scholar 

  160. R. David, Penn, wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093–2097 (1962)

    Article  Google Scholar 

  161. N.M. Ravindra, S. Auluck, V.K. Srivastava,On the penn gap in semiconductors. Phys. Stat. Sol. (B) 93, 155–160 (1979)

    Google Scholar 

  162. V.P. Gupta, N.M. Ravindra,Comments on the moss formula. Phys. Stat. Sol. (B) 100,715 (1880)

    Google Scholar 

  163. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133 (1965)

    Article  Google Scholar 

  164. N. Hosaka et al., Optical properties of single-crystal anatase TiO2. J. Phys. Soc. Jpn. 66, 877–880 (1997)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mahata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahata, S., Mahato, S.S. (2021). First-Principle Molecular Dynamics Simulation of Terahertz Absorptive Hydrogenated TiO2 Nanoparticles. In: Acharyya, A., Das, P. (eds) Advanced Materials for Future Terahertz Devices, Circuits and Systems. Lecture Notes in Electrical Engineering, vol 727. Springer, Singapore. https://doi.org/10.1007/978-981-33-4489-1_8

Download citation

Publish with us

Policies and ethics