Skip to main content

Medical Imaging Technology and Imaging Agents

  • Chapter
  • First Online:
Visualized Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1199))

Abstract

Medical imaging is a technology that studies the interaction between human body and irradiations of X-ray, ultrasound, magnetic field, etc. and represents anatomical structures of human organs/tissues with the implication of irradiation attenuation in the form of grayscales. With these medical images, detailed information on health status and disease diagnosis may be judged by clinical physicians to determine an appropriate therapy approach. This chapter will give a systematic introduction on the modalities, classifications, basic principles, and biomedical applications of traditional medical imaging along with the types, construction, and major features of the corresponding contrast agents or imaging probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

153Sm:

Samarium-153

165Dy:

Dysprosium-165

166Ho:

Holmium-166

169Yb:

Ytterbium-169

201Tl:

Thallium-201

68Ga:

Gallium-68

82Rb:

Rubidium-82

BLI:

Bioluminescence imaging

CA:

Contrast agent

CARS:

Coherent anti-Stokes Raman scattering

CCD:

Charge-coupled device

cROMP:

Colloidal radio-opaque and polymer

CT:

Computed tomography

DMPE:

1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine

DOT:

Diffuse optical tomography

DTPA:

Diethylene triamine penta-acetic acid

EM:

Energy migration

EPR:

Enhanced permeability and retention

ESA:

Excited state absorption

ET:

Energy transfer

FDA:

Food and Drug Administration

FDG:

2-[18F] Fluoro-2-deoxy-D-glucose

FI:

Fluorescence imaging

FRET:

Fluorescence resonance energy transfer

Gd-DOTA:

Tetra-aza-cyclo-dodecane tetraacetic acid

GSA:

Ground state absorption

IND:

Investigational new drug

MB:

Microbubble

MOT:

Medical optical tomography

MRI:

Magnetic resonance imaging

NB:

Nanobubble

NIR:

Near-infrared

NMR:

Nuclear magnetic resonance

NPs:

Nanoparticles

OCT:

Optical coherence tomography

OI:

Optical imaging

PAI:

Photoacoustic imaging

PEO:

Polyethylene oxide

PET:

Positron emission tomography

PMT:

Photon migration tomography

PS-b-PAA:

Poly (styrene-b-poly-acrylic acid)

PTT:

Photo-thermal therapy

QDs:

Quantum dots

RGD:

Arginine-glycine-aspartic acid

SLNs:

Sentinel lymph nodes

SNPs:

Supramolecular nanoparticles

SNR:

Signal-to-noise ratio

SPECT:

Single-photon emission computed tomography

SRS:

Stimulated Raman scattering

TAI:

Thermo-acoustic imaging

TAT:

Thermos-acoustic tomography

TCO:

Trans-cyclo-octene

UCAs:

Ultrasound contrast agents

UCL:

Up-conversion luminescence

UCNP:

Up-converting nanoparticle

US:

Ultrasound

References

  1. Pan Y, Chen J, Yu R. Accurate imaging diagnosis and evaluation of pancreatic cancer. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2017;46:462.

    PubMed  Google Scholar 

  2. Jacobson JT. Role of imaging in the Management of Ventricular Arrhythmias. Cardiol Rev. 2019;27:308.

    Article  PubMed  Google Scholar 

  3. Li Y, You J. The research and application advances of medical imaging techniques in early renal function assessment of chronic kidney disease. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2019;36:511.

    CAS  PubMed  Google Scholar 

  4. Liu Z, Wang S, Dong D, Wei J, Fang C, Zhou X, Sun K, Li L, Li B, Wang M, Tian J. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges. Theranostics. 2019;9:1303.

    Article  PubMed  PubMed Central  Google Scholar 

  5. George E, Wortman JR, Fulwadhva UP, Uyeda JW, Sodickson AD. Dual energy CT applications in pancreatic pathologies. Br J Radiol. 2017;90:20170411.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kooraki S, Assadi M, Gholamrezanezhad A. Hot topics of research in musculoskeletal imaging: PET/MR imaging, MR fingerprinting, dual-energy CT scan, ultrashort echo time. PET Clin. 2019;14:175.

    Article  PubMed  Google Scholar 

  7. Youn H, Hong KJ. In vivo noninvasive small animal molecular imaging. Osong Public Health Res Perspect. 2012;3:48.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Balkay L, Emri M, Krizsan KA, Opposits G, Varga J. New trends and novel possibilities in functional medical imaging: imaging methods. Magy Onkol. 2015;59:4.

    PubMed  Google Scholar 

  9. Dierolf M, Menzel A, Thibault P, Schneider P, Kewish CM, Wepf R, Bunk O, Pfeiffer F. Ptychographic X-ray computed tomography at the nanoscale. Nature. 2010;467:436.

    Article  CAS  PubMed  Google Scholar 

  10. Schroder L, Lowery TJ, Hilty C, Wemmer DE, Pines A. Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor. Science. 2006;314:446.

    Article  PubMed  Google Scholar 

  11. Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature. 2008;452:580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science. 2012;335:1458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Salegio EA, Bringas J, Bankiewicz KS. MRI-guided delivery of viral vectors. Methods Mol Biol. 2016;1382:217.

    Article  CAS  PubMed  Google Scholar 

  14. Noroozian Z, Xhima K, Huang Y, Kaspar BK, Kugler S, Hynynen K, Aubert I. MRI-guided focused ultrasound for targeted delivery of rAAV to the brain. Methods Mol Biol. 2019;1950:177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li SK, Lizak MJ, Jeong EK. MRI in ocular drug delivery. NMR Biomed. 2008;21:941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Curtis WA, Fraum TJ, An H, Chen Y, Shetty AS, Fowler KJ. Quantitative MRI of diffuse liver disease: current applications and future directions. Radiology. 2019;290:23.

    Article  PubMed  Google Scholar 

  17. Peters M, Moerland MA, Noteboom JL, Eppinga WS, Lagendijk JJ, van der Voort VZJ. MRI-guided brachytherapy in prostate cancer. Ned Tijdschr Geneeskd. 2017;161:D1708.

    CAS  PubMed  Google Scholar 

  18. Hola K, Markova Z, Zoppellaro G, Tucek J, Zboril R. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol Adv. 2015;33:1162.

    Article  CAS  PubMed  Google Scholar 

  19. Wallyn J, Anton N, Akram S, Vandamme TF. Biomedical imaging: principles, technologies, clinical aspects, contrast agents, limitations and future trends in nanomedicines. Pharm Res. 2019;36:78.

    Article  PubMed  Google Scholar 

  20. Nagahama H, Shonai T, Takashima H, Hirano T, Suzuki J, Sakurai Y. MRI of perfusion: principles and clinical applications. Igaku Butsuri. 2016;36:103.

    PubMed  Google Scholar 

  21. Hao D, Ai T, Goerner F, Hu X, Runge VM, Tweedle M. MRI contrast agents: basic chemistry and safety. J Magn Reson Imaging. 2012;36:1060.

    Article  PubMed  Google Scholar 

  22. Mitchell DG. Liver I: currently available gadolinium chelates. Magn Reson Imaging Clin N Am. 1996;4:37.

    Article  CAS  PubMed  Google Scholar 

  23. Wood ML, Hardy PA. Proton relaxation enhancement. J Magn Reson Imaging. 1993;3:149.

    Article  CAS  PubMed  Google Scholar 

  24. Gandhi SN, Brown MA, Wong JG, Aguirre DA, Sirlin CB. MR contrast agents for liver imaging: what, when, how. Radiographics. 2006;26:1621.

    Article  PubMed  Google Scholar 

  25. Shokrollahi H. Contrast agents for MRI. Mater Sci Eng C Mater Biol Appl. 2013;33:4485.

    Article  CAS  PubMed  Google Scholar 

  26. Yaak N. Investigation of magnetic properties of various complexes prepared as contrast agents for MRI. J Mol Struct. 2008;892:392.

    Article  Google Scholar 

  27. Tang J, Sheng Y, Hu H, Shen Y. Macromolecular MRI contrast agents: structures, properties and applications. Prog Polym Sci. 2013;38:462.

    Article  CAS  Google Scholar 

  28. Korkusuz H, Ulbrich K, Welzel K, Koeberle V, Watcharin W, Bahr U, Chernikov V, Knobloch T, Petersen S, Huebner F, Ackermann H, Gelperina S, Kromen W, Hammerstingl R, Haupenthal J, Gruenwald F, Fiehler J, Zeuzem S, Kreuter J, Vogl TJ, Piiper A. Transferrin-coated gadolinium nanoparticles as MRI contrast agent. Mol Imaging Biol. 2013;15:148.

    Article  PubMed  Google Scholar 

  29. Lim J, Turkbey B, Bernardo M, Bryant LJ, Garzoni M, Pavan GM, Nakajima T, Choyke PL, Simanek EE, Kobayashi H. Gadolinium MRI contrast agents based on triazine dendrimers: relaxivity and in vivo pharmacokinetics. Bioconjug Chem. 2012;23:2291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kolhatkar AG, Jamison AC, Litvinov D, Willson RC, Lee TR. Tuning the magnetic properties of nanoparticles. Int J Mol Sci. 2013;14:15977.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Haag R, Kratz F. Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl. 2006;45:1198.

    Article  CAS  PubMed  Google Scholar 

  32. Rother M, Nussbaumer MG, Renggli K, Bruns N. Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Chem Soc Rev. 2016;45:6213.

    Article  CAS  PubMed  Google Scholar 

  33. Palivan CG, Goers R, Najer A, Zhang X, Car A, Meier W. Bioinspired polymer vesicles and membranes for biological and medical applications. Chem Soc Rev. 2016;45:377.

    Article  CAS  PubMed  Google Scholar 

  34. Gunkel-Grabole G, Sigg S, Lomora M, Lorcher S, Palivan CG, Meier WP. Polymeric 3D nano-architectures for transport and delivery of therapeutically relevant biomacromolecules. Biomater Sci. 2015;3:25.

    Article  CAS  PubMed  Google Scholar 

  35. Ay M. An introduction to PACS in radiology service: theory and practice. LAP LAMBERT Academic Publishing; 2012.

    Google Scholar 

  36. Brown RA. The mathematics of three N-localizers used together for stereotactic neurosurgery. Cureus. 2015;7:e341.

    PubMed  PubMed Central  Google Scholar 

  37. Peshkovsky AS, Peshkovsky SL, Bystryak S. Scalable high-power ultrasonic technology for the production of translucent nanoemulsions. Chem Eng Process Process Intensif. 2013;69:77.

    Google Scholar 

  38. Goldman LW. Principles of CT and CT technology. J Nucl Med Technol. 2007;35:115., 129.

    Article  PubMed  Google Scholar 

  39. Johns HE, Battista J, Bronskill MJ, Brooks R, Fenster A, Yaffe M. Physics of CT scanners: principles and problems. Int J Radiat Oncol Biol Phys. 1977;3:45.

    Article  CAS  PubMed  Google Scholar 

  40. Goldman LW. Principles of CT: multislice CT. J Nucl Med Technol. 2008;36:57., 75.

    Article  PubMed  Google Scholar 

  41. Willemink MJ, Persson M, Pourmorteza A, Pelc NJ, Fleischmann D. Photon-counting CT: technical principles and clinical prospects. Radiology. 2018;289:293.

    Article  PubMed  Google Scholar 

  42. Yu S, Watson AD. Metal-based X-ray contrast media. Chem Rev. 1999;99:2353.

    Article  CAS  PubMed  Google Scholar 

  43. Singh J. A Daftary: iodinated contrast media and their adverse reactions. J Nucl Med Technol. 2008;36:69., 76.

    Article  PubMed  Google Scholar 

  44. Hallouard F, Anton N, Choquet P, Constantinesco A, Vandamme T. Iodinated blood pool contrast media for preclinical X-ray imaging applications—a review. Biomaterials. 2010;31:6249.

    Article  CAS  PubMed  Google Scholar 

  45. Wang CL, Cohan RH, Ellis JH, Adusumilli S, Dunnick NR. Frequency, management, and outcome of extravasation of nonionic iodinated contrast medium in 69,657 intravenous injections. Radiology. 2007;243:80.

    Article  PubMed  Google Scholar 

  46. Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS. Molecular imaging in drug development. Nat Rev Drug Discov. 2008;7:591.

    Article  CAS  PubMed  Google Scholar 

  47. Cheon J, Lee JH. Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res. 2008;41:1630.

    Article  CAS  PubMed  Google Scholar 

  48. Pan D, Williams TA, Senpan A, Allen JS, Scott MJ, Gaffney PJ, Wickline SA, Lanza GM. Detecting vascular biosignatures with a colloidal, radio-opaque polymeric nanoparticle. J Am Chem Soc. 2009;131:15522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Raichle ME. Positron emission tomography. Annu Rev Neurosci. 1983;6:249.

    Article  CAS  PubMed  Google Scholar 

  50. Pollak PT, Brar G, Poinen K, Lydell CP. Treatment decisions in geriatric cardiac lymphoma facilitated by serial cardiac magnetic resonance imaging and positron emission tomography. CJC Open. 2019;1:153.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wu Q, Liu J, Zhang Y, Wu S, Xie X. Correction to: predictive value of positron emission tomography for the prognosis of immune checkpoint inhibitors (ICIs) in malignant tumors. Cancer Immunol Immunother. 2020;

    Google Scholar 

  52. Can TS, Uzan G. Comparison of the diagnostic accuracy of diffusion-weighted magnetic resonance imaging and positron emission tomography/computed tomography in pulmonary nodules: a prospective study. Pol J Radiol. 2019;84:e498.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kim SK, Ahn SG, Mun JY, Jeong MS, Bae SJ, Lee JS, Jeong J, Leem SH, Chu IS. Genomic signature of the standardized uptake value in (18)F-fluorodeoxyglucose positron emission tomography in breast cancer. Cancers (Basel). 2020;12

    Google Scholar 

  54. Despres AA, Perrot N, Poulin A, Tastet L, Shen M, Chen HY, Bourgeois R, Trottier M, Tessier M, Guimond J, Nadeau M, Engert JC, Theriault S, Bosse Y, Witztum JL, Couture P, Mathieu P, Dweck MR, Tsimikas S, Thanassoulis G, Pibarot P, Clavel MA, Arsenault BJ. Lipoprotein(a), oxidized phospholipids, and aortic valve microcalcification assessed by 18F-sodium fluoride positron emission tomography and computed tomography. CJC Open. 2019;1:131.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sengoz T, Yuksel D, Yaylali O, Arslan H, Bir F. Quantitative volumetric metabolic measurement of solitary pulmonary nodules by F-18 fluorodeoxyglucose positron emission tomography-computed tomography. Turk Gogus Kalp Damar Cerrahisi Derg. 2019;27:557.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Basu S, Hess S, Nielsen BP, Olsen BB, Inglev S, Hoilund-Carlsen PF. The basic principles of FDG-PET/CT imaging. PET Clin. 2014;9:355.

    Article  PubMed  Google Scholar 

  57. Disselhorst JA, Bezrukov I, Kolb A, Parl C, Pichler BJ. Principles of PET/MR imaging. J Nucl Med. 2014;55:2S.

    Article  PubMed  Google Scholar 

  58. Townsend DW. Physical principles and technology of clinical PET imaging. Ann Acad Med Singap. 2004;33:133.

    CAS  PubMed  Google Scholar 

  59. Decristoforo C. Gallium-68—a new opportunity for PET available from a long shelf-life generator—automation and applications. Curr Radiopharm. 2012;5:212.

    Article  CAS  PubMed  Google Scholar 

  60. Jodal L, Le Loirec C, Champion C. Positron range in PET imaging: non-conventional isotopes. Phys Med Biol. 2014;59:7419.

    Article  CAS  PubMed  Google Scholar 

  61. Mirshojaei SF, Ahmadi A, Morales-Avila E, Ortiz-Reynoso M, Reyes-Perez H. Radiolabelled nanoparticles: novel classification of radiopharmaceuticals for molecular imaging of cancer. J Drug Target. 2016;24:91.

    Article  CAS  PubMed  Google Scholar 

  62. Stockhofe K, Postema JM, Schieferstein H. TL Ross: Radiolabeling of nanoparticles and polymers for PET imaging. Pharmaceuticals (Basel). 2014;7:392.

    Article  CAS  PubMed  Google Scholar 

  63. Patel D, Kell A, Simard B, Xiang B, Lin HY, Tian G. The cell labeling efficacy, cytotoxicity and relaxivity of copper-activated MRI/PET imaging contrast agents. Biomaterials. 2011;32:1167.

    Article  CAS  PubMed  Google Scholar 

  64. Yankeelov TE, Peterson TE, Abramson RG, Izquierdo-Garcia D, Arlinghaus LR, Li X, Atuegwu NC, Catana C, Manning HC, Fayad ZA, Gore JC. Simultaneous PET-MRI in oncology: a solution looking for a problem? Magn Reson Imaging. 2012;30:1342.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bodet-Milin C, Eugene T, Bailly C, Lacombe M, Frampas E, Dupas B, Moreau P, Kraeber-Bodere F. FDG-PET in the evaluation of myeloma in 2012. Diagn Interv Imaging. 2013;94:184.

    Article  CAS  PubMed  Google Scholar 

  66. Fani M, Del PL, Abiraj K, Mansi R, Tamma ML, Cescato R, Waser B, Weber WA, Reubi JC, Maecke HR. PET of somatostatin receptor-positive tumors using 64Cu- and 68Ga-somatostatin antagonists: the chelate makes the difference. J Nucl Med. 2011;52:1110.

    Article  CAS  PubMed  Google Scholar 

  67. Holland JP, Divilov V, Bander NH, Smith-Jones PM, Larson SM, Lewis JS. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J Nucl Med. 2010;51:1293.

    Article  CAS  PubMed  Google Scholar 

  68. Hahn MA, Singh AK, Sharma P, Brown SC, Moudgil BM. Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal Bioanal Chem. 2011;399:3.

    Article  CAS  PubMed  Google Scholar 

  69. Almutairi A, Rossin R, Shokeen M, Hagooly A, Ananth A, Capoccia B, Guillaudeu S, Abendschein D, Anderson CJ, Welch MJ, Frechet JM. Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci U S A. 2009;106:685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hou S, Choi JS, Garcia MA, Xing Y, Chen KJ, Chen YM, Jiang ZK, Ro T, Wu L, Stout DB, Tomlinson JS, Wang H, Chen K, Tseng HR, Lin WY. Pretargeted positron emission tomography imaging that employs supramolecular nanoparticles with in vivo bioorthogonal chemistry. ACS Nano. 2016;10:1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mascalchi M, Vella A, Ceravolo R. Movement disorders: role of imaging in diagnosis. J Magn Reson Imaging. 2012;35:239.

    Article  PubMed  Google Scholar 

  72. Vogel RA, Kirch D, LeFree M. P Steele a new method of multiplanar emission tomography using a seven pinhole collimator and an Anger scintillation camera. J Nucl Med. 1978;19:648.

    CAS  PubMed  Google Scholar 

  73. Groch MW, Erwin WD. Single-photon emission computed tomography in the year 2001: instrumentation and quality control. J Nucl Med Technol. 2001;29:12.

    CAS  PubMed  Google Scholar 

  74. Meikle SR, Kench P, Kassiou M, Banati RB. Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol. 2005;50:R45.

    Article  CAS  PubMed  Google Scholar 

  75. Faber TL, Stokely EM, Templeton GH, Akers MS, Parkey RW, Corbett JR. Quantification of three-dimensional left ventricular segmental wall motion and volumes from gated tomographic radionuclide ventriculograms. J Nucl Med. 1989;30:638.

    CAS  PubMed  Google Scholar 

  76. Groch MW, Schippers DJ, Marshall RC, Groch PJ, Erwin WD. Quantitative gated blood pool SPECT: analysis of 3-dimensional models for the assessment of regional myocardial wall motion. J Nucl Cardiol. 2002;9:271.

    Article  PubMed  Google Scholar 

  77. Zanzonico P. Principles of nuclear medicine imaging: planar, SPECT, PET, multi-modality, and autoradiography systems. Radiat Res. 2012;177:349.

    Article  CAS  PubMed  Google Scholar 

  78. Kong FL, Ford RJ, Yang DJ. Managing lymphoma with non-FDG radiotracers: current clinical and preclinical applications. Biomed Res Int. 2013;2013:626910.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cherry SR. In vivo molecular and genomic imaging: new challenges for imaging physics. Phys Med Biol. 2004;49:R13.

    Article  CAS  PubMed  Google Scholar 

  80. Fullerton GD. The development of technologies for molecular imaging should be driven principally by biological questions to be addressed rather than by simply modifying existing imaging technologies. For the proposition. Med Phys. 2005;32:1231.

    Article  CAS  PubMed  Google Scholar 

  81. McVeigh ER. Emerging imaging techniques. Circ Res. 2006;98:879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Accorsi R. Brain single-photon emission CT physics principles. AJNR Am J Neuroradiol. 2008;29:1247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Seo Y, Aparici CM, Chen CP, Hsu C, Kased N, Schreck C, Costouros N, Hawkins R, Shinohara K, Roach IM. Mapping of lymphatic drainage from the prostate using filtered 99mTc-sulfur nanocolloid and SPECT/CT. J Nucl Med. 2011;52:1068.

    Article  PubMed  Google Scholar 

  84. Bradbury MS, Pauliah M, Zanzonico P, Wiesner U, Patel S. Intraoperative mapping of sentinel lymph node metastases using a clinically translated ultrasmall silica nanoparticle. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8:535.

    Article  CAS  PubMed  Google Scholar 

  85. Imai Y. The state of ultrasound technology in the diagnosis and treatment of liver diseases now and in the future. J Med Ultrason. 2018;45:199.

    Article  Google Scholar 

  86. Mokhtari-Dizaji M, Gorji-Ara T, Ghanaeati H. M Kalbasi ultrasound monitoring of temperature change in liver tissue during laser thermotherapy: 10 degrees C intervals. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:2130.

    CAS  Google Scholar 

  87. Porter TR, Xie F. Myocardial perfusion imaging with contrast ultrasound. JACC Cardiovasc Imaging. 2010;3:176.

    Article  PubMed  Google Scholar 

  88. Schneider M. Design of an ultrasound contrast agent for myocardial perfusion. Echocardiography. 2000;17:S11.

    Article  CAS  PubMed  Google Scholar 

  89. Vejdani-Jahromi M, Nagle M, Trahey GE, Wolf PD. Ultrasound shear wave elasticity imaging quantifies coronary perfusion pressure effect on cardiac compliance. IEEE Trans Med Imaging. 2015;34:465.

    Article  PubMed  Google Scholar 

  90. Lange C, Saugstad D, Solberg R. Assessment of cerebral perfusion with contrast-enhanced ultrasound during constriction of the neck mimicking malposition of the BD Odon device: a study in newborn piglets. BJOG. 2017;124(Suppl 4):26.

    Google Scholar 

  91. Vinke EJ, Eyding J, de Korte C, Slump CH, van der Hoeven JG, Hoedemaekers C. Quantification of macrocirculation and microcirculation in brain using ultrasound perfusion imaging. Acta Neurochir Suppl. 2018;126:115.

    Article  PubMed  Google Scholar 

  92. Foster FS, Pavlin CJ, Harasiewicz KA, Christopher DA, Turnbull DH. Advances in ultrasound biomicroscopy. Ultrasound Med Biol. 2000;26:1.

    Article  CAS  PubMed  Google Scholar 

  93. Turnbull DH, Bloomfield TS, Baldwin HS, Foster FS, Joyner AL. Ultrasound backscatter microscope analysis of early mouse embryonic brain development. Proc Natl Acad Sci U S A. 1995;92:2239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ihnatsenka B, Boezaart AP. Ultrasound: basic understanding and learning the language. Int J Shoulder Surg. 2010;4:55.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Aldrich JE. Basic physics of ultrasound imaging. Crit Care Med. 2007;35:S131.

    Article  PubMed  Google Scholar 

  96. de Leon A, Perera R, Nittayacharn P, Cooley M, Jung O, Exner AA. Ultrasound contrast agents and delivery systems in cancer detection and therapy. Adv Cancer Res. 2018;139:57.

    Article  PubMed  Google Scholar 

  97. Porter TR, Xie F, Kricsfeld A. The mechanism and clinical implication of improved left ventricular videointensity following intravenous injection of multi-fold dilutions of albumin with dextrose. Int J Card Imaging. 1995;11:117.

    Article  CAS  PubMed  Google Scholar 

  98. Leen E, Ceccotti P, Kalogeropoulou C, Angerson WJ, Moug SJ, Horgan PG. Prospective multicenter trial evaluating a novel method of characterizing focal liver lesions using contrast-enhanced sonography. AJR Am J Roentgenol. 2006;186:1551.

    Article  PubMed  Google Scholar 

  99. Tang MX, Mulvana H, Gauthier T, Lim AK, Cosgrove DO, Eckersley RJ, Stride E. Quantitative contrast-enhanced ultrasound imaging: a review of sources of variability. Interface Focus. 2011;1:520.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Agarwal A, Ng WJ, Liu Y. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere. 2011;84:1175.

    Article  CAS  PubMed  Google Scholar 

  101. Cai WB, Yang HL, Zhang J, Yin JK, Yang YL, Yuan LJ, Zhang L, Duan YY. The optimized fabrication of nanobubbles as ultrasound contrast agents for tumor imaging. Sci Rep. 2015;5:13725.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Rapoport N, Nam KH, Gupta R, Gao Z, Mohan P, Payne A, Todd N, Liu X, Kim T, Shea J, Scaife C, Parker DL, Jeong EK, Kennedy AM. Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J Control Release. 2011;153:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wu H, Rognin NG, Krupka TM, Solorio L, Yoshiara H, Guenette G, Sanders C, Kamiyama N, Exner AA. Acoustic characterization and pharmacokinetic analyses of new nanobubble ultrasound contrast agents. Ultrasound Med Biol. 2013;39:2137.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Boschi F, De Sanctis F. Overview of the optical properties of fluorescent nanoparticles for optical imaging. Eur J Histochem. 2017;61:2830.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Solomon M, Liu Y, Berezin MY, Achilefu S. Optical imaging in cancer research: basic principles, tumor detection, and therapeutic monitoring. Med Princ Pract. 2011;20:397.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Licha K, Olbrich C. Optical imaging in drug discovery and diagnostic applications. Adv Drug Deliv Rev. 2005;57:1087.

    Article  CAS  PubMed  Google Scholar 

  107. Cutler M. Transillumination of the breast. Ann Surg. 1931;93:223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Geslien GE, Fisher JR, DeLaney C. Transillumination in breast cancer detection: screening failures and potential. AJR Am J Roentgenol. 1985;144:619.

    Article  CAS  PubMed  Google Scholar 

  109. Etrych T, Lucas H, Janouskova O, Chytil P, Mueller T, Mader K. Fluorescence optical imaging in anticancer drug delivery. J Control Release. 2016;226:168.

    Article  CAS  PubMed  Google Scholar 

  110. Qian X, Xu Z. Fluorescence imaging of metal ions implicated in diseases. Chem Soc Rev. 2015;44:4487.

    Article  CAS  PubMed  Google Scholar 

  111. O'Neill K, Lyons SK, Gallagher WM, Curran KM, Byrne AT. Bioluminescent imaging: a critical tool in pre-clinical oncology research. J Pathol. 2010;220:317.

    Article  CAS  PubMed  Google Scholar 

  112. Arranz A, Ripoll J. Advances in optical imaging for pharmacological studies. Front Pharmacol. 2015;6:189.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Martelli C, Lo DA, Diceglie C, Lucignani G, Ottobrini L. Optical imaging probes in oncology. Oncotarget. 2016;7:48753.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Miao Q, Pu K. Organic semiconducting agents for deep-tissue molecular imaging: second near-infrared fluorescence, self-luminescence, and Photoacoustics. Adv Mater. 2018;30:e1801778.

    Article  PubMed  Google Scholar 

  115. Kim D, Lee N, Park YI, Hyeon T. Recent advances in inorganic nanoparticle-based NIR luminescence imaging: semiconductor nanoparticles and lanthanide nanoparticles. Bioconjug Chem. 2017;28:115.

    Article  CAS  PubMed  Google Scholar 

  116. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 2005;4:435.

    Article  CAS  PubMed  Google Scholar 

  117. Pham XH, Park SM, Ham KM, Kyeong S, Son BS, Kim J, Hahm E, Kim YH, Bock S, Kim W, Jung S, Oh S, Lee SH, Hwang DW, Jun BH. Synthesis and application of silica-coated quantum dots in biomedicine int. J Mol Sci. 2021;22:10116.

    Article  CAS  Google Scholar 

  118. Zhang Y, Hong G, Zhang Y, Chen G, Li F, Dai H, Wang Q. Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano. 2012;6:3695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hong G, Lee JC, Robinson JT, Raaz U, Xie L, Huang NF, Cooke JP, Dai H. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med. 2012;18:1841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chatterjee DK, Gnanasammandhan MK, Zhang Y. Small upconverting fluorescent nanoparticles for biomedical applications. Small. 2010;6:2781.

    Article  CAS  PubMed  Google Scholar 

  121. Zheng X, Zhu X, Lu Y, Zhao J, Feng W, Jia G, Wang F, Li F, Jin D. High-contrast visualization of Upconversion luminescence in mice using time-gating approach. Anal Chem. 2016;88:3449.

    Article  CAS  PubMed  Google Scholar 

  122. Chen G, Qiu H, Prasad PN, Chen X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev. 2014;114:5161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lv R, Wang D, Xiao L, Chen G, Xia J, Prasad PN. Stable ICG-loaded upconversion nanoparticles: silica core/shell theranostic nanoplatform for dual-modal upconversion and photoacoustic imaging together with photothermal therapy. Sci Rep. 2017;7:15753.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hill TK, Kelkar SS, Wojtynek NE, Souchek JJ, Payne WM, Stumpf K, Marini FC, Mohs AM. Near infrared fluorescent nanoparticles derived from hyaluronic acid improve tumor contrast for image-guided surgery. Theranostics. 2016;6:2314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hill TK, Abdulahad A, Kelkar SS, Marini FC, Long TE, Provenzale JM, Mohs AM. Indocyanine green-loaded nanoparticles for image-guided tumor surgery. Bioconjug Chem. 2015;26:294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bradbury MS, Phillips E, Montero PH, Cheal SM, Stambuk H, Durack JC, Sofocleous CT, Meester RJ, Wiesner U, Patel S. Clinically-translated silica nanoparticles as dual-modality cancer-targeted probes for image-guided surgery and interventions. Integr Biol (Camb). 2013;5:74.

    Article  CAS  PubMed  Google Scholar 

  127. Phillips E, Penate-Medina O, Zanzonico PB, Carvajal RD, Mohan P, Ye Y, Humm J, Gonen M, Kalaigian H, Schoder H, Strauss HW, Larson SM, Wiesner U, Bradbury MS. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med. 2014;6:149r.

    Article  Google Scholar 

  128. Liu C, Gong X, Lin R, Liu F, Chen J, Wang Z, Song L, Chu J. Advances in imaging techniques and genetically encoded probes for photoacoustic imaging. Theranostics. 2016;6:2414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Weber J, Beard PC, Bohndiek SE. Contrast agents for molecular photoacoustic imaging. Nat Methods. 2016;13:639.

    Article  CAS  PubMed  Google Scholar 

  130. Yang X, Stein EW, Ashkenazi S, Wang LV. Nanoparticles for photoacoustic imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:360.

    Article  CAS  PubMed  Google Scholar 

  131. Liu Y, Ma W, Wang J. Theranostics of gold nanoparticles with an emphasis on photoacoustic imaging and photothermal therapy. Curr Pharm Des. 2018;24:2719.

    Article  CAS  PubMed  Google Scholar 

  132. Ding D, Guo W, Guo C, Sun J, Zheng N, Wang F, Yan M, Liu S. MoO3-x quantum dots for photoacoustic imaging guided photothermal/photodynamic cancer treatment. Nanoscale. 2017;9:2020.

    Article  CAS  PubMed  Google Scholar 

  133. Lv R, Jiang X, Yang F, Wang Y, Feng M, Liu J, Tian J. Degradable magnetic-response photoacoustic/up-conversion luminescence imaging-guided photodynamic/photothermal antitumor therapy. Biomater Sci. 2019;7:4558.

    Article  CAS  PubMed  Google Scholar 

  134. De la Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Smith BR, Ma TJ, Oralkan O, Cheng Z, Chen X, Dai H, Khuri-Yakub BT, Gambhir SS. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol. 2008;3:557.

    Article  PubMed  Google Scholar 

  135. Qin H, Yang S, Xing D. Microwave-induced thermoacoustic computed tomography with a clinical contrast agent of NMG2[Gd(DTPA)]. Appl Phys Lett. 2012;100:33701.

    Article  Google Scholar 

  136. Huang L, Yao L, Liu L, Rong J, Jiang H. Quantitative thermoacoustic tomography: recovery of conductivity maps of heterogeneous media. Appl Phys Lett. 2012;101:244106.

    Article  Google Scholar 

  137. Song J, Li Y, Li Y, Liu G. Three-dimensional model of thermoacoustic tomography with electric excitation. J Appl Phys. 2018;124:164902.

    Article  Google Scholar 

  138. Qin H, Xu D, Yang S. Dextran-coated Fe3O4 magnetic nanoparticles as a contrast agent in thermoacoustic tomography for hepatocellular carcinoma detection. J Phys Conf Ser. 2011;277:12028.

    Article  Google Scholar 

  139. Cui S, Zhang S, Yue S. Raman spectroscopy and imaging for cancer diagnosis. J Healthc Eng. 2018;2018:8619342.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Larion M, Dowdy T, Ruiz-Rodado V, Meyer MW, Song H, Zhang W, Davis D, Gilbert MR, Lita A. Detection of metabolic changes induced via drug treatments in live cancer cells and tissue using Raman imaging microscopy. Biosensors (Basel). 2018;9

    Google Scholar 

  141. Pal S, Ray A, Andreou C, Zhou Y, Rakshit T, Wlodarczyk M, Maeda M, Toledo-Crow R, Berisha N, Yang J, Hsu HT, Oseledchyk A, Mondal J, Zou S, Kircher MF. DNA-enabled rational design of fluorescence-Raman bimodal nanoprobes for cancer imaging and therapy. Nat Commun. 2019;10:1926.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Schie IW, Krafft C, Popp J. Applications of coherent Raman scattering microscopies to clinical and biological studies. Analyst. 2015;140:3897.

    Article  CAS  PubMed  Google Scholar 

  143. Hoesli RC, Orringer DA, McHugh JB, Spector ME. Coherent Raman scattering microscopy for evaluation of head and neck carcinoma. Otolaryngol Head Neck Surg. 2017;157:448.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Harmsen S, Wall MA, Huang R, Kircher MF. Cancer imaging using surface-enhanced resonance Raman scattering nanoparticles. Nat Protoc. 2017;12:1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sun C, Gao M, Zhang X. Surface-enhanced Raman scattering (SERS) imaging-guided real-time photothermal ablation of target cancer cells using polydopamine-encapsulated gold nanorods as multifunctional agents. Anal Bioanal Chem. 2017;409:4915.

    Article  CAS  PubMed  Google Scholar 

  146. Vanden-Hehir S, Tipping WJ, Lee M, Brunton VG, Williams A, Hulme AN. Raman imaging of nanocarriers for drug delivery. Nanomaterials (Basel). 2019;9

    Google Scholar 

  147. Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He C, Tsai JC, Kang JX, Xie XS. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science. 2008;322:1857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nandakumar P, Kovalev A, Volkmer A. Vibrational imaging based on stimulated Raman scattering microscopy. New J Phys. 2009;11:33026.

    Article  Google Scholar 

  149. Ozeki Y, Dake F, Kajiyama S, Fukui K, Itoh K. Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy. Opt Express. 2009;17:3651.

    Article  CAS  PubMed  Google Scholar 

  150. Min W, Freudiger CW, Lu S, Xie XS. Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annu Rev Phys Chem. 2011;62:507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Cheng JX, Xie XS. Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine. Science. 2015;350:a8870.

    Article  Google Scholar 

  152. JZAE Annemarie Nadorta. Lanthanide upconversion luminescence at a nanoscale: fundamentals and optical properties. Nanoscale. 2016;8:13099.

    Article  Google Scholar 

  153. Hielscher AH, Bluestone AY, Abdoulaev GS, Klose AD, Lasker J, Stewart M, Netz U, Beuthan J. Near-infrared diffuse optical tomography. Dis Markers. 2002;18:313.

    Article  CAS  PubMed  Google Scholar 

  154. Low AF, Tearney GJ, Bouma BE, Jang IK. Technology insight: optical coherence tomography—current status and future development. Nat Clin Pract Cardiovasc Med. 2006;3:154., 172.

    Article  PubMed  Google Scholar 

  155. Lee J, Moon S, Lim J, Gwak MJ, Kim JG, Chung E, Lee JH. Imaging of the finger vein and blood flow for anti-spoofing authentication using a laser and a MEMS scanner. Sensors (Basel). 2017;17

    Google Scholar 

  156. Ell PJ. The contribution of PET/CT to improved patient management. Br J Radiol. 2006;79:32.

    Article  CAS  PubMed  Google Scholar 

  157. Tsukamoto E, Ochi S. PET/CT today: system and its impact on cancer diagnosis. Ann Nucl Med. 2006;20:255.

    Article  PubMed  Google Scholar 

  158. Beuthien-Baumann B. PET/MRI. Radiologe. 2018;58:211.

    Article  PubMed  Google Scholar 

  159. Plecha DM, Faulhaber P. PET/MRI of the breast. Eur J Radiol. 2017;94:A26.

    Article  PubMed  Google Scholar 

  160. Yoder JS, Kogan F, Gold GE. PET-MRI for the study of metabolic bone disease. Curr Osteoporos Rep. 2018;16:665.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Almansory KO, Fraioli F. Combined PET/MRI in brain glioma imaging. Br J Hosp Med (Lond). 2019;80:380.

    Article  PubMed  Google Scholar 

  162. Thorp-Greenwood FL, Coogan MP. Multimodal radio- (PET/SPECT) and fluorescence imaging agents based on metallo-radioisotopes: current applications and prospects for development of new agents. Dalton Trans. 2011;40:6129.

    Article  CAS  PubMed  Google Scholar 

  163. Cai W, Chen X. Multimodality molecular imaging of tumor angiogenesis. J Nucl Med. 2008;49(Suppl 2):113S.

    Article  CAS  PubMed  Google Scholar 

  164. Galvez N, Kedracka EJ, Carmona F, Cespedes-Guirao FJ, Font-Sanchis E, Fernandez-Lazaro F, Sastre-Santos A, Dominguez-Vera JM. Water soluble fluorescent-magnetic perylenediimide-containing maghemite-nanoparticles for bimodal MRI/OI imaging. J Inorg Biochem. 2012;117:205.

    Article  CAS  PubMed  Google Scholar 

  165. Tan W, Wang Y, Yang M, Amos RA, Li W, Ye J, Gary R, Shen W, Hu D. Analysis of geometric variation of neck node levels during image-guided radiotherapy for nasopharyngeal carcinoma: recommended planning margins. Quant Imaging Med Surg. 2018;8:637.

    Article  PubMed  PubMed Central  Google Scholar 

  166. van Oosterom MN, Kreuger R, Buckle T, Mahn WA, Bunschoten A, Josephson L, van Leeuwen FW, Beekman FJ. U-SPECT-BioFluo: an integrated radionuclide, bioluminescence, and fluorescence imaging platform. EJNMMI Res. 2014;4:56.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Lee C, Han S, Kim S, Jeon M, Jeon MY, Kim C, Kim J. Combined photoacoustic and optical coherence tomography using a single near-infrared supercontinuum laser source. Appl Opt. 2013;52:1824.

    Article  PubMed  Google Scholar 

  168. Xi L, Jiang H. Integrated photoacoustic and diffuse optical tomography system for imaging of human finger joints in vivo. J Biophotonics. 2016;9:213.

    Article  PubMed  Google Scholar 

  169. Arami H, Khandhar A, Liggitt D, Krishnan KM. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev. 2015;44:8576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wang H, Kumar R, Nagesha D, Duclos RJ, Sridhar S, Gatley SJ. Integrity of (111)in-radiolabeled superparamagnetic iron oxide nanoparticles in the mouse. Nucl Med Biol. 2015;42:65.

    Article  PubMed  Google Scholar 

  171. Lin X, Xie J, Niu G, Zhang F, Gao H, Yang M, Quan Q, Aronova MA, Zhang G, Lee S, Leapman R, Chen X. Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Lett. 2011;11:814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Blanco VM, Chu Z, LaSance K, Gray BD, Pak KY, Rider T, Greis KD, Qi X. Optical and nuclear imaging of glioblastoma with phosphatidylserine-targeted nanovesicles. Oncotarget. 2016;7:32866.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the China Postdoctoral Science Foundation of China (No. 2019M661027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanhuan Qiao .

Editor information

Editors and Affiliations

2.1 Electronic Supplementary Material

Medical Imaging Technology and Imaging Agents (MP4 105957 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, J., Qiao, H. (2023). Medical Imaging Technology and Imaging Agents. In: Liu, Z. (eds) Visualized Medicine. Advances in Experimental Medicine and Biology, vol 1199. Springer, Singapore. https://doi.org/10.1007/978-981-32-9902-3_2

Download citation

Publish with us

Policies and ethics