Skip to main content

Multiphase Phenomena and Design of Gas-Solid-Liquid Stirred Tanks

  • Reference work entry
  • First Online:
Handbook of Multiphase Flow Science and Technology
  • 610 Accesses

Abstract

Mechanically stirred reactors using single or multiple traditional impeller systems are extensively utilized in the chemical industry for different mixing processes such as crystallization, fermentation, hydrogenation, and so on. The proposed chapter analyzes prior experimental work documented in the literature and several other traditional methodologies. These are used to measure the precise operating quantities in terms of minimum or critical impeller speed for solid suspension. The whole study critically includes a review of current literature with beneficial suggestions to estimate the suitable semiempirical correlations and operational parameters that may effectively aid in designing such types of equipment. This proposed assessment presents all relevant literature, which helps validate the work as reported earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • N. Arbiter, C.C. Harris, R.F. Yap, The air flow number in flotation machine scale-up. Int. J. Miner. Process. 3, 257–280 (1976)

    Article  Google Scholar 

  • G. Baldi, R. Conti, E. Alaria, Complete suspension of particles in mechanically agitated vessels. Chem. Eng. Sci. 76, 21–25 (1978)

    Article  Google Scholar 

  • A. Bakker, J.B. Fasano, K.J. Myers, Effect of flow pattern on solids distribution in a stirred tank, Published in ‘The Online CFM Book’ (1998)

    Google Scholar 

  • A.A. Barresi, N. Kuzmanic, G. Baldi, Continuous sampling of a slurry from a stirred vessel: Analysis of the sampling efficiency and affecting parameters. Chem. Eng. Res. Des. 136, 17–24 (1994)

    Google Scholar 

  • J.R. Bourne, R.N. Sharma, Homogeneous particle suspension in propeller-agitated flat bottom tanks. Chem. Eng. J. 8, 243–250 (1974)

    Article  Google Scholar 

  • J. Brayant, S. Sadeghzadeh, Circulation rates in stirred and aerated tanks. 3rd European Conference on Mixing (1979), pp. 325–331

    Google Scholar 

  • A. Brucato, G. Micale, L. Rizzuti, Determination of the amount of unsuspended solid particles inside stirred tanks by means of pressure measurements. Récent Progrès en Gènie Chimique 11, 3–10 (1997)

    Google Scholar 

  • W. Bujalski, PhD Thesis, University of Brimingham, England (1986)

    Google Scholar 

  • W. Bujalski, M. Konno, A.W. Nienow, Scale-up of 45° pitch-blade agitators for gas dispersion and solid suspension. 6th European Conference on Mixing Pavia, Italy. 389–398 (1988)

    Google Scholar 

  • W. Bujalski, K. Takenaka, S. Paolini, M. Jahoda, A. Paglianti, A. Takahashi, A.W. Nienow, A.W. Etchells, Suspensions and liquid homogenisation in high solids concentration stirred chemical reactors. Chem. Eng. Res. Des. 77, 241–247 (1999)

    Article  Google Scholar 

  • C. Buurman, G. Resoort, A. Plaschekes, Scaling-up rules for solids suspension in stirred vessels. Chem. Eng. Sci. 41, 2865–2871 (1986)

    Article  Google Scholar 

  • C.M. Chapman, A.W. Nienow, J.C. Middleton, Particle suspension in a gas Sparged Rushton-turbine agitated vessel. Chem. Eng. Res. Des. 59, 134–137 (1981)

    Google Scholar 

  • C.M. Chapman, A.W. Nienow, M. Cooke, J.C. Middleton, Particle-gas-liquid mixing in stirred vessels. Part I: Particle-liquid mixing. Chem. Eng. Res. Des. 61, 71–81 (1983a)

    Google Scholar 

  • C.M. Chapman, A.W. Nienow, M. Cooke, J.C. Middleton, Particle-gas-liquid mixing in stirred vessels. Part II: Gas-liquid mixing. Chem. Eng. Res. Des. 61, 82–95 (1983b)

    Google Scholar 

  • C.M. Chapman, A.W. Nienow, M. Cooke, J.C. Middleton, Particle-gas-liquid mixing in stirred vessels. Part III: Three phase mixing. Chem. Eng. Res. Des. 61, 167–181 (1983c)

    Google Scholar 

  • N. Dohi, N.Y. Matsuda, N. Itano, K. Shimizu, K. Minekawa, Y. Kawase, Mixing in multiple impeller stirred tank reactors with boiling liquids. Can. J. Chem. Eng. 77, 786–792 (1999)

    Article  Google Scholar 

  • N. Dohi, Y. Matsuda, N. Itano, N. Minekawa, T. Takahashi, Y. Kawase, Suspension of solid particles in multi-impeller three-phase stirred tank reactors. Can. J. Chem. Eng. 79, 107–111 (2001)

    Article  Google Scholar 

  • N. Dohi, N.Y. Matsuda, K. Shimizu, K. Minekawa, Y. Kawase, An experimental investigation into vapor dispersion and solid suspension in boiling stirred tank reactors. Chem. Eng. Process. 41, 267–279 (2002)

    Article  Google Scholar 

  • N.N. Dutta, V.G. Pangarkar, Critical impeller speed for solid suspension in multi-impeller three phase agitated contactors. Can. J. Chem. Eng. 73, 273–283 (1995)

    Article  Google Scholar 

  • N.N. Dutta, V.G. Pangarkar, Particle-liquid mass transfer in multi-impeller agitated three phase reactors. Chem. Eng. Commun. 146, 65–84 (1996)

    Article  Google Scholar 

  • M. Dylag, J. Talaga, Hydrodynamics of mechanical mixing in a three-phase liquid-gas-solid system. Int. Chem. Eng. 34, 539–551 (1994)

    Google Scholar 

  • W.D. Einenkel, A. Mersmann, Verfahrenstechnik 11, 90–94 (1977)

    Google Scholar 

  • A.W. Etchells, Mixing of floating solids. International Symposium on Mixing in Industrial Processes-ISMIP 4, Toulouse (France) (2001)

    Google Scholar 

  • D. Fajner, F. Magelli, M. Nocentini, G. Pasquali, Solid concentration profiles in a mechanically stirred and staged column slurry reactor. Chem. Eng. Res. Des. 63, 235–240 (1985)

    Google Scholar 

  • J.J. Frijlink, M. Kolijn, J.M. Smith, Suspension of solids with aerated pitched blade turbine. Inst. Chem. Engrs. Symp. Ser. 89, 49–58 (1984)

    Google Scholar 

  • J.J. Frijlink, A. Bakker, J.M. Smith, Suspension of solid particles with gassed impellers. Chem. Eng. Sci. 45, 1703–1718 (1990)

    Article  Google Scholar 

  • D.J. Gray, Impeller clearance effect on off-bottom particle suspension in agitated vessels. Chem. Eng. 83, 144–150 (1987)

    Google Scholar 

  • P. Harriot, Mass transfer to particles part I: Suspended in agitated tanks. AICHE J. 8, 93–101 (1962)

    Article  Google Scholar 

  • M.T. Hicks, K.J. Myers, A. Bakker, Cloud height in solids suspension agitation. Chem. Eng. Commun. 160, 137–155 (1997)

    Article  Google Scholar 

  • D.B. Holmes, R.M. Voncken, J.A. Dekker, Fluid flow in turbine-stirred, baffled tanks-I: Circulation time. Chem. Eng. Sci. 19, 201–208 (1964)

    Article  Google Scholar 

  • J.B. Joshi, A.B. Pandit, M.M. Sharma, Mechanically agitated gas-liquid reactors. Chem. Eng. Sci. 37, 813–844 (1982)

    Article  Google Scholar 

  • V. Kolar, Suspending solid particles in liquids by means of mechanical agitation. Coll. Czech. Chem. Commun. 26, 601–627 (1961)

    Article  Google Scholar 

  • M. Kraume, Mixing time in stirred suspensions. Chem. Eng. Technol. 15, 313–318 (1992)

    Article  Google Scholar 

  • M.C. Lehn, K.J. Myers, A. Bakker, Agitator design for solid suspension under gassed conditions. Can. J. Chem. Eng. 77, 1065–1071 (1999)

    Article  Google Scholar 

  • G. Micale, V. Carrera, F. Grisafi, A. Brucato, Solids suspension in three-phase stirred tanks. Chem. Eng. Res. Des. 78, 319–326 (2000)

    Article  Google Scholar 

  • L. Musil, J. Vlk, Suspending solid particles in an agitated conical-bottom tank. Chem. Eng. Sci. 33, 1123–1131 (1978)

    Article  Google Scholar 

  • S. Narayanan, V.K. Bhatia, D.K. Gupta, M.N. Rao, Suspension of solids by mechanical agiataion. Chem. Eng. Sci. 24, 223–230 (1969)

    Article  Google Scholar 

  • J.W. Neale, A. Pinches, Determination of gas-liquid mass-transfer and solid-suspension parameters in mechanically-agitated three-phase slurry reactors. Miner. Eng. 7, 289–403 (1994)

    Article  Google Scholar 

  • A.W. Nienow, Suspension of solid particles in turbine agitated baffled vessels. Chem. Eng. Sci. 23, 1453–1459 (1968)

    Article  Google Scholar 

  • A.W. Nienow, D.J. Wisdom, J.C. Middleton. The effect of scale and geometry in flooding, recirculation, and power in gassed stirred vessel. 2nd European Conference on Mixing (BHRA, Carnfield), F1–1 to F1–16 (1978)

    Google Scholar 

  • A.W. Nienow, M. Konno, W. Bujalski, Studies on three-phase mixing: A review and recent results. 5th European Conference on Mixing, Wurzburg, Germany (1985), pp. 1–12.

    Google Scholar 

  • A.W. Nienow, The suspension of solid particles, in Mixing in the Process Industries, ed. by N. Harnby, M.F. Edwards, A.W. Nienow, 2nd edn., (Butterworths, London, 1992), pp. 364–393

    Chapter  Google Scholar 

  • M. Nocentini, F. Magelli, G. Pasquali, On the modelling of the gas behaviour of gas-liquid vessels stirred with multiple impellers. 6th European Conference on Mixing, Italy (1988)

    Google Scholar 

  • J.Y. Oldshue, R.N. Sharma, The effect of off-bottom distance of an impeller for the ‘just suspended speed Njs. A.I.Ch.E. Symp. Ser. 88, 72–78 (1992)

    Google Scholar 

  • P.R.K. Pantula, N. Ahmed, The impeller speed required for complete solids suspension in aerated vessels: A simple correlation? Récent Progrès en Gènie Chimique 11, 11–18 (1997)

    Google Scholar 

  • R.R.K. Pantula, N. Ahmed, Solid suspension and gas hold-up in three phase mechanically agitated contactor. Proceedings of the 26th Australian chemical engineering conference (Chemica 98) Port Douglas, Australia (1998)

    Google Scholar 

  • P.B. Queneau, R.J. Jan, R.S. Richard, D.F. Lowe, Metall. Trans. B 6B, 149 (1975)

    Article  Google Scholar 

  • K.S.M.S. Raghava Rao, V.B. Rewatkar, J.B. Joshi, Critical impeller speed for solid suspension in mechanically agitated contactors. AICHE J. 34, 1332–1340 (1988)

    Article  Google Scholar 

  • K.S.M.S. Raghava Rao, J.B. Joshi, Liquid phase mixing in mechanically agitated three phase contactors. 6th European Conference on Mixing, Pavia Italy (1988), pp. 427–433

    Google Scholar 

  • V.B. Rewatkar, K.S.M.S. Raghav Rao, J.B. Joshi, Some aspects of solid suspension in mechanically agitated reactors. AICHE J. 35, 1577–1584 (1989)

    Google Scholar 

  • V.B. Rewatkar, Studies in mechanically agitated multiphase reactors, Ph.D. thesis, University of Mumbai. (1990)

    Google Scholar 

  • V.B. Rewatkar, K.S.M.S. Raghav Rao, J.B. Joshi, Critical impeller speed for solid suspension in mechanically agitated three-phase reactors. 1. Experimental part. Ind. Eng. Chem. Res. 30, 1770–1784 (1991a)

    Article  Google Scholar 

  • V.B. Rewatkar, K.S.M.S. Raghav Rao, J.B. Joshi, Critical impeller speed for solid suspension in mechanically agitated three-phase reactors. 1. Mathematical model. Ind. Eng. Chem. Res. 30, 1784–1791 (1991b)

    Article  Google Scholar 

  • F. Rieger, P. Ditl, Suspension of solid particles. Chem. Eng. Sci. 49, 2219–2227 (1994)

    Article  Google Scholar 

  • R.N. Sharma, A.A. Shaikh, Solid suspension in stirred tanks with pitched blade turbine. Chem. Eng. Sci. 58, 2123–2140 (2003)

    Article  Google Scholar 

  • D. Subbrao, V.K. Taneja, Three phase suspension in agitated vessels. 3rd European Conference on Mixing, BHRA, Carnfield 229–240 (1979)

    Google Scholar 

  • K. Takenaka, G. Ciervo, D. Monti, W. Bujalski, A.W. Etchells, A.W. Nienow, Mixing of three-phase Systems at High Solids Content (up to 40% w/w) using radial and mixed flow impellers. J. Chem. Eng. Jpn. 34, 606–612 (2001)

    Article  Google Scholar 

  • M.M.C.G. Warmoeskerken, M.C. van Houwelingen, J.J. Frijlink, J.M. Smith, Role of cavity formation in stirred gas-liquid-solid reactors. Chem. Eng. Res. Des. 62, 197–200 (1984)

    Google Scholar 

  • J.A. Wiedmann, A. Steiff, P.M. Weinspach, Experimental investigation of suspension, dispersion, power, gas hold-up and flooding characteristics in stirred gas-solid-liquid systems. Chem. Eng. Commun. 6, 245–256 (1980)

    Article  Google Scholar 

  • C.W. Wong, J.P. Wang, S.T. Haung, Investigations of fluid dynamics in mechanically stirred aerated slurry reactors. Can. J. Chem. Eng. 65, 412–419 (1987)

    Article  Google Scholar 

  • Y. Zu, J. Wu, Critical impeller speed for suspending solids in aerated agitation tanks. Can. J. Chem. Eng. 80, 1–6 (2002)

    Google Scholar 

  • T.N. Zwietering, Suspending of solid particles in liquid by agitators. Chem. Eng. Sci. 8, 244–253 (1958)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniruddha B. Pandit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pandit, A.B. (2023). Multiphase Phenomena and Design of Gas-Solid-Liquid Stirred Tanks. In: Yeoh, G.H., Joshi, J.B. (eds) Handbook of Multiphase Flow Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-287-092-6_50

Download citation

Publish with us

Policies and ethics