Skip to main content

Quadruplexes Are Everywhere…On the Other Strand Too: The i-Motif

  • Reference work entry
  • First Online:
Handbook of Chemical Biology of Nucleic Acids

Abstract

i-Motif (the name stems from “intercalated”), also known as i-DNA, is a pH-dependent four-stranded nucleic acid structure formed by cytosine-rich sequences via hemi-protonated and intercalated C·C+ base pairs. Although this structure is favored at acidic pH, recent evidence has demonstrated its existence in vivo, stimulating the exploration of its biological roles. Before that, it was mostly regarded as a mere structural oddity, or a tool for bio- and nanotechnologies: its unique pH-sensitive nature makes it a remarkable candidate as a nanodevice and pH sensor. In this chapter, we provide a general panorama of this structure. The history and basic knowledge of i-motif are provided first. Then, we present the main characterization methods of i-motif and factors affecting i-motif stability. Following that, we focus on the applications of i-motif in nanotechnology and analytical chemistry. Last, the interaction between i-motif and ligands and the physiological roles of i-motif are briefly introduced. We argue that the i-motif, similar to its complementary G-quadruplex, is an attractive structure for multidisciplinary approaches. It serves as a basic component for various applications and has been proposed to play biological roles in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhamid MA, Fábián L, MacDonald CJ, Cheesman MR, Gates AJ, Waller ZA (2018) Redox-dependent control of i-motif DNA structure using copper cations. Nucleic Acids Res 46(12):5886–5893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alba JJ, Sadurní A, Gargallo R (2016) Nucleic acid i-motif structures in analytical chemistry. Crit Rev Anal Chem 46(5):443–454

    Article  CAS  PubMed  Google Scholar 

  • Alberti P, Mergny JL (2003) DNA duplex-quadruplex exchange as the basis for a nanomolecular machine. Proc Natl Acad Sci 100(4):1569–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assi HA, Garavís M, Gonzaleź C, Damha MJ (2018) i-motif DNA: structural features and significance to cell biology. Nucleic Acids Res 46(16):8038–8056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benabou S, Aviňό A, Eritja R, González C, Gargallo R (2014) Fundamental aspects of the nucleic acid i-motif structures. RSC Adv 4(51):26956–26980

    Article  CAS  Google Scholar 

  • Benabou S, Ruckebusch C, Ml S, Aviñó A, Eritja R, Gargallo R, de Juan A (2019) Study of conformational transitions of i-motif DNA using time-resolved fluorescence and multivariate analysis methods. Nucleic Acids Res 47(13):6590–6605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnet H, Morel M, Devaux A, Boissieras J, Granzhan A, Elias B, Lavergne T, Dejeu J, Defrancq E (2022) Assessment of presumed small-molecule ligands of telomeric i-DNA by biolayer interferometry (BLI). Chem Commun 58(33):5116–5119

    Article  CAS  Google Scholar 

  • Chen L, Cai L, Zhang X, Rich A (1994) Crystal structure of a four-stranded intercalated DNA, d(C4). Biochemistry 33(46):13540–13546

    Article  CAS  PubMed  Google Scholar 

  • Cheng M, Chen J, Ju H, Zhou J, Mergny JL (2021a) Drivers of i-DNA formation in a variety of environments revealed by four-dimensional UV melting and annealing. J Am Chem Soc 143(20):7792–7807

    Article  CAS  PubMed  Google Scholar 

  • Cheng M, Qiu D, Tamon L, Ištvánková E, Víšková P, Amrane S, Guédin A, Chen J, Lacroix L, Ju H, Trantírek L, Sahakyan AB, Zhou J, Mergny JL (2021b) Thermal and pH stabilities of i-DNA: Confronting in vitro experiments with models and in-cell NMR data. Angew Chem Int Ed 60(18):10286–10294

    Article  CAS  Google Scholar 

  • Chen X, Zhou X, Han T, Wu J, Zhang J, Guo S (2013) Stabilization and induction of oligonucleotide i-motif structure via graphene quantum dots. ACS Nano 7(1):531–537

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Majima T (2013) Reversible conformational switching of i-motif DNA studied by fluorescence spectroscopy. Photochem Photobiol 89(3):513–522

    Article  CAS  PubMed  Google Scholar 

  • Chu B, Zhang D, Paukstelis PJ (2019) A DNA G-quadruplex / i-motif hybrid. Nucleic Acids Res 47(22):11921–11930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Day HA, Huguin C, Waller ZAE (2013) Silver cations fold i-motif at neutral pH. Chem Commun 49(70):7696–7698

    Article  CAS  Google Scholar 

  • Day HA, Pavlou P, Waller ZAE (2014) i-Motif DNA: Structure, stability and targeting with ligands. Bioorg Med Chem 22(16):4407–4418

    Article  CAS  PubMed  Google Scholar 

  • Debnath M, Fatma K, Dash J (2019) Chemical regulation of DNA i-motifs for nanobiotechnology and therapeutics. Angew Chem Int Ed 58(10):2942–2957

    Article  CAS  Google Scholar 

  • Dong Y, Yang Z, Liu D (2014) DNA nanotechnology based on i-motif structures. Acc Chem Res 47(6):1853–1860

    Google Scholar 

  • Dzatko S, Krafcikova M, Hansel-Hertsch R, Fessl T, Fiala R, Loja T, Krafcik D, Mergny JL, Foldynova-Trantirkova S, Trantirek L (2018) Evaluation of the stability of DNA i-motifs in the nuclei of living mammalian cells. Angew Chem Int Ed 57(8):2165–2169

    Article  CAS  Google Scholar 

  • Fedoroff OY, Rangan A, Chemeris VV, Hurley LH (2000) Cationic porphyrins promote the formation of i-motif DNA and bind peripherally by a nonintercalative mechanism. Biochemistry 39(49):15083–15090

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Hou XM (2021) Opposite effects of potassium ions on the thermal stability of i-motif DNA in different buffer systems. ACS Omega 6(13):8976–8985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehring K, Leroy JL, Guéron M (1993) A tetrameric DNA structure with protonated cytosine·cytosine base pairs. Nature 363(6429):561–565

    Article  CAS  PubMed  Google Scholar 

  • Ghodke HB, Krishnan R, Vignesh K, Kumar G, Narayana C, Krishnan Y (2007) The i-tetraplex building block: Rational design and controlled fabrication of robust 1D DNA scaffolds through non Watson-Crick interactions. Angew Chem Int Ed 46(15):2646–2649

    Article  CAS  Google Scholar 

  • Hänsel R, Löhr F, Foldynová-Trantírková S, Bamberg E, Trantírek L, Dötsch V (2011) The parallel G-quadruplex structure of vertebrate telomeric repeat sequences is not the preferred folding topology under physiological conditions. Nucleic Acids Res 39(13):5768–5775

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang H, Hong X, Liu F, Li N (2015) A simple approach to study the conformational switching of i-motif DNA by fluorescence anisotropy. Analyst 140(17):5987–5991

    Article  CAS  PubMed  Google Scholar 

  • Hur JH, Kang CY, Lee S, Parveen N, Yu J, Shamim A, Yoo W, Ghosh A, Bae S, Park C, Kim KK (2021) AC-motif: a DNA motif containing adenine and cytosine repeat plays a role in gene regulation. Nucleic Acids Res 49(17):10150–10165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iaccarino N, Cheng M, Qiu D, Pagano B, Amato J, Di Porzio A, Zhou J, Randazzo A, Mergny JL (2021) Effects of sequence and base composition on the CD and TDS profiles of i-DNA. Angew Chem Int Ed 60(18):10295–10303

    Article  CAS  Google Scholar 

  • Jamroskovic J, Deiana M, Sabouri N (2022) Probing the folding pathways of four-stranded intercalated cytosine-rich motifs at single base-pair resolution. Biochimie 199:81–91

    Google Scholar 

  • Jonchhe S, Pandey S, Emura T, Hidaka K, Hossain MA, Shrestha P, Sugiyama H, Endo M, Mao H (2018) Decreased water activity in nanoconfinement contributes to the folding of G-quadruplex and i-motif structures. Proc Natl Acad Sci 115(38):9539–9544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kendrick S, Kang HJ, Alam MP, Madathil MM, Agrawal P, Gokhale V, Yang D, Hecht SM, Hurley LH (2014) The dynamic character of the BCL2 promoter i-motif provides a mechanism for modulation of gene expression by compounds that bind selectively to the alternative DNA hairpin structure. J Am Chem Soc 136(11):4161–4171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khristenko N, Amato J, Livet S, Pagano B, Randazzo A, Gabelica V (2019) Native ion mobility mass spectrometry: When gas-phase ion structures depend on the electrospray charging process. J Am Soc Mass Spectrom 30(6):1069–1081

    Article  CAS  PubMed  Google Scholar 

  • Krishnan-Ghosh Y, Stephens E, Balasubramanian S (2005) PNA forms an i-motif. Chem Commun 42:5278–5280

    Article  Google Scholar 

  • Kumar N, Nielsen JT, Maiti S, Petersen M (2007) i-motif formation with locked nucleic acid (LNA). Angew Chem Int Ed 46(48):9220–9222

    Article  CAS  Google Scholar 

  • Lacroix L, Mergny JL, Leroy JL, Hélène C (1996) Inability of RNA to form the i-motif: Implications for triplex formation. Biochemistry 35(26):8715–8722

    Article  CAS  PubMed  Google Scholar 

  • Largy E, Mergny JL (2014) Shape matters: size-exclusion HPLC for the study of nucleic acid structural polymorphism. Nucleic Acids Res 42(19):e149

    Article  PubMed  PubMed Central  Google Scholar 

  • Largy E, Mergny JL, Gabelica V (2016) Role of alkali metal ions in G-quadruplex nucleic acid structure and stability. Met Ions Life Sci 16:203–258

    Article  CAS  PubMed  Google Scholar 

  • Lee IJ, Patil SP, Fhayli K, Alsaiari S, Khashab NM (2015) Probing structural changes of self-assembled i-motif DNA. Chem Commun 51(18):3747–3749

    Article  CAS  Google Scholar 

  • Lepper CP, Williams MAK, Edwards PJB, Filichev VV, Jameson GB (2019) Effects of pressure and pH on the physical stability of an i-motif DNA Structure. Chemphyschem 20(12):1567–1571

    Article  CAS  PubMed  Google Scholar 

  • Leroy JL (2003) T·T pair intercalation and duplex interconversion within i-motif tetramers. J Mol Biol 333(1):125–139

    Article  CAS  PubMed  Google Scholar 

  • Leroy JL, Guéron M (1995) Solution structures of the i-motif tetramers of d(TCC), d(5methylCCT) and d(T5methylCC): novel NOE connections between amino protons and sugar protons. Structure 3(1):101–120

    Article  CAS  PubMed  Google Scholar 

  • Li T, Famulok M (2013) i-Motif-programmed functionalization of DNA nanocircles. J Am Chem Soc 135(4):1593–1599

    Article  CAS  PubMed  Google Scholar 

  • Li X, Peng YH, Ren J, Qu X (2006) Carboxyl-modified single-walled carbon nanotubes selectively induce human telomeric i-motif formation. Proc Natl Acad Sci 103(52):19658–19663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liedl T, Simmel FC (2005) Switching the conformation of a DNA molecule with a chemical oscillator. Nano Lett 5(10):1894–1898

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Balasubramanian S (2003) A proton-fuelled DNA nanomachine. Angew Chem Int Ed 42(46):5734–5736

    Article  CAS  Google Scholar 

  • Liu L, Kim BG, Feroze U, Macgregor Jr RB, Chalikian TV (2018) Probing the ionic atmosphere and hydration of the c-MYC i-motif. J Am Chem Soc 140(6):2229–2238

    Article  CAS  PubMed  Google Scholar 

  • Ma DL, Kwan HT, DSH C, Lee P, Yang H, VPY M, Bai LP, Jiang ZH, Leung CH (2011) Crystal violet as a fluorescent switch-on probe for i-motif: label-free DNA-based logic gate. Analyst 136(13):2692–2696

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Feng Y, Yang Y, Li X, Shi Y, Tao S, Cheng X, Huang J, Wang X, Chen C, Monchaud D, Zhang W (2022) Genome-wide characterization of i-motifs and their potential roles in the stability and evolution of transposable elements in rice. Nucleic Acids Res 50(6):3226–3238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martella M, Pichiorri F, Chikhale RV, Abdelhamid MAS, Waller ZAE, Smith SS (2022) i-Motif formation and spontaneous deletions in human cells. Nucleic Acids Res 50(6):3445–3455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez CDP, Zeraati M, Rouet R, Mazigi O, Gloss B, Chan CL, Bryan TM, Smith NM, Dinger ME, Kummerfeld S, Christ D (2022) Human genomic DNA is widely interspersed with i-motif structures. https://doi.org/10.1101/2022.04.14.488274

  • Matsumoto S, Sugimoto N (2021) New insights into the functions of nucleic acids controlled by cellular microenvironments. Top Curr Chem 379(3):17

    Article  CAS  Google Scholar 

  • Mergny JL (1999) Fluorescence energy transfer as a probe for tetraplex formation: the i-motif. Biochemistry 38(5):1573–1581

    Article  CAS  PubMed  Google Scholar 

  • Mergny JL, Duval-Valentin G, Nguyen CH, Perrouault L, Faucon B, Rougée M, Montenay-Garestier T, Bisagni E, Hélène C (1992) Triple-helix specific ligands. Science 256(5064):1681–1684

    Article  CAS  PubMed  Google Scholar 

  • Mergny JL, Lacroix L, Han XG, Leroy JL, Hélène C (1995) Intramolecular folding of pyrimidine oligodeoxynucleotides into an I-DNA motif. J Am Chem Soc 117(35):8887–8898

    Article  CAS  Google Scholar 

  • Mergny JL, Li J, Lacroix L, Amrane S, Chaires JB (2005) Thermal difference spectra: a specific signature for nucleic acid structures. Nucleic Acids Res 33(16):e138

    Article  PubMed  PubMed Central  Google Scholar 

  • Mergny JL, Sen D (2019) DNA quadruple helices in nanotechnology. Chem Rev 119(10):6290–6325

    Google Scholar 

  • Modi S, Nizak C, Surana S, Halder S, Krishnan Y (2013) Two DNA nanomachines map pH changes along intersecting endocytic Pathways inside the same cell. Nat Nanotechnol 8(6):459–467

    Article  CAS  PubMed  Google Scholar 

  • Modi S, Swetha MG, Goswami D, Gupta GD, Mayor S, Krishnan Y (2009) A DNA nanomachine maps spatiotemporal pH changes in living cells. Nat Nanotechnol 4(5):325–330

    Article  CAS  PubMed  Google Scholar 

  • Modi S, Wani AH, Krishnan Y (2006) The PNA-DNA hybrid i-motif: implications for sugar-sugar contacts in i-motif tetramerization. Nucleic Acids Res 34(16):4354–4363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mimura M, Tomita S, Shinkai Y, Hosokai T, Kumeta H, Saio T, Shiraki K, Kurita R (2021) Quadruplex folding promotes the condensation of linker histones and DNAs via liquid–liquid phase separation. J Am Chem Soc 143(26):9849–9857

    Article  CAS  PubMed  Google Scholar 

  • Mukundan VT, Phan AT (2013) Bulges in G-quadruplexes: broadening the definition of G-quadruplex-forming sequences. J Am Chem Soc 135(13):5017–5028

    Article  CAS  PubMed  Google Scholar 

  • Nakano S, Miyoshi D, Sugimoto N (2014) Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chem Rev 114(5):2733–2755

    Article  CAS  PubMed  Google Scholar 

  • Nesterova IV, Nesterov EE (2014) Rational design of highly responsive pH sensors based on DNA i-motif. J Am Chem Soc 136(25):8843–8846

    Article  CAS  PubMed  Google Scholar 

  • Phan AT, Mergny JL (2002) Human telomeric DNA: G-quadruplex, i-motif and Watson-Crick double helix. Nucleic Acids Res 30(21):4618–4625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pramanik S, Nagatoishi S, Sugimoto N (2012) DNA tetraplex structure formation from human telomeric repeat motif (TTAGGG):(CCCTAA) in nanocavity water pools of reverse micelles. Chem Commun 48(40):4815–4817

    Article  CAS  Google Scholar 

  • Rosu F, Gabelica V, Joly L, Gregoire G, De Pauw E (2010) Zwitterionic i-motif structures are preserved in DNA negatively charged ions produced by electrospray mass spectrometry. Phys Chem Chem Phys 12(41):13448–13454

    Article  CAS  PubMed  Google Scholar 

  • Snoussi K, Nonin-Lecomte S, Leroy JL (2001) The RNA i-motif. J Mol Biol 309(1):139–153

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Ren J, Qu X (2016) Carbon nanomaterials and DNA: from molecular recognition to applications. Acc Chem Res 49(3):461–470

    Article  CAS  PubMed  Google Scholar 

  • Surana S, Bhat JM, Koushika SP, Krishnan Y (2011) An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism. Nat Commun 2:340

    Article  PubMed  Google Scholar 

  • Takahashi S, Sugimoto N (2015) Pressure-dependent formation of i-motif and G-quadruplex DNA structures. Phys Chem Chem Phys 17(46):31004–31010

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Bhattacharjee S, Ghosh S, Sugimoto N, Bhowmik S (2020) Preferential targeting cancer-related i-motif DNAs by the plant flavonol fisetin for theranostics applications. Sci Rep 10(1):2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tateishi-Karimata H, Nakano M, Pramanik S, Tanaka S, Sugimoto N (2015) i-Motifs are more stable than G-quadruplexes in a hydrated ionic liquid. Chem Commun 51(32):6909–6912

    Article  CAS  Google Scholar 

  • Tateishi-Karimata H, Sugimoto N (2018) Biological and nanotechnological applications using interactions between ionic liquids and nucleic acids. Biophys Rev 10(3):931–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng WH, Chang CK, Wu PC, Hu NJ, Lee GH, Tzeng CC, Neidle S, Hou MH (2017) Induced-fit recognition of CCG trinucleotide repeats by a nickel-chromomycin complex resulting in large-scale DNA deformation. Angew Chem Int Ed 56(30):8761–8765

    Article  CAS  Google Scholar 

  • Wang B (2019) The RNA i-motif in the primordial RNA world. Orig Life Evol Biosph 49(1-2):105–109

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Fang R, Hou J, Zhang H, Tian Y, Wang H, Jiang L (2017) Oscillatory reaction induced periodic C-quadruplex DNA gating of artificial ion channels. ACS Nano 11(3):3022–3029

    Article  CAS  PubMed  Google Scholar 

  • Wright EP, Huppert JL, Waller ZAE (2017) Identification of multiple genomic DNA sequences which form i-motif structures at neutral pH. Nucleic Acids Res 45(6):2951–2959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Li B, Xie X, Li X, Shen L, Shao Y (2010) An i-DNA based electrochemical sensor for proton detection. Talanta 82(4):1122–1125

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Liu G, Liu H, Li D, Fan C, Liu D (2010) An electrochemically actuated reversible DNA switch. Nano Lett 10(4):1393–1397

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zhou C, Zhang T, Cheng E, Yang Z, Liu D (2012) DNA pillars constructed from an i-motif stem and duplex branches. Small 8(4):552–556

    Article  CAS  PubMed  Google Scholar 

  • Zeraati M, Langley DB, Schofield P, Moye AL, Rouet R, Hughes WE, Bryan TM, Dinger ME, Christ D (2018) I-motif DNA structures are formed in the nuclei of human cells. Nat Chem 10(6):631–637

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Qu X (2013) Recent progress in G-quadruplex DNA in deep eutectic solvent. Methods 64(1):52–58

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Amrane S, Korkut DN, Bourdoncle A, He HZ, Ma DL, Mergny JL (2013) Combination of i-motif and G-quadruplex structures within the same strand: formation and application. Angew Chem Int Ed 52(30):7742–7746

    Article  CAS  Google Scholar 

  • Zhou J, Bourdoncle A, Rosu F, Gabelica V, Mergny JL (2012) Tri-G-quadruplex: Controlled assembly of a G-quadruplex structure from three G-rich strands. Angew Chem Int Ed 51(44):11002–11005

    Article  CAS  Google Scholar 

  • Zhou J, Wei C, Jia G, Wang X, Feng Z, Li C (2010a) Formation of i-motif structure at neutral and slightly alkaline pH. Mol Biosyst 6(3):580–586

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Wei C, Jia G, Wang X, Feng Z, Li C (2010b) Formation and stabilization of G-quadruplex in nanosized water pools. Chem Commun 46(10):1700–1702

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22177047), State Key Laboratory of Analytical Chemistry for Life Science (5431ZZXM2202), ANR grant ANR-21-CE44-0005-01 “ICARE,” and Scientific Research Foundation for High-level Faculty, China Pharmaceutical University (3150110048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhou .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mergny, JL., Cheng, M., Zhou, J. (2023). Quadruplexes Are Everywhere…On the Other Strand Too: The i-Motif. In: Sugimoto, N. (eds) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. https://doi.org/10.1007/978-981-19-9776-1_5

Download citation

Publish with us

Policies and ethics