
Chapter 5
Advancements in the Sine Cosine
Algorithm

In the last few decades, the development and advancement of meta-heuristic algo-
rithms have become the focus of the research community as these algorithms face
various challenges like, balance between exploration and exploitation, tuning of
parameters, getting trapped in local optima, and very slow convergence rate. Sine
Cosine Algorithm (SCA) also faces similar kinds of challenges and sometimes fails
to perform effectively in finding the global optimal solution. Sine and Cosine are
trigonometric operators with a 90◦ phase shift from each other. The range of sine and
cosine functions lies in the range [−1, 1]. Sine and cosine functions in the position
update equation of SCA help solutions to perform search procedure. However, in
some situations, SCA promotes similar solutions in the search space, which results
in the loss of diversity in the population, and the search process is susceptible to
trapping in the region of local optimum [1]. Motivated by these challenges, SCA has
beenmodified to improve its capability and efficiency in several ways. Several strate-
gies have been employed to alter the basic version of SCA [2], aiming to enhance
its effectiveness and optimization capabilities. In this chapter, we will discuss about
these modifications and strategies, which have been incorporated into the sine cosine
algorithm (SCA) in past few years. Apart from this, we will briefly describe the
applications of the modified versions of SCA.

The modifications and ensemble of new strategies into the SCA algorithm
include—modification in the update mechanism, change in the parameters involved,
the introduction of elitism, the introduction of new operators, the introduction of
an encoding scheme, the introduction of several statistical distributions for random
number generations, etc. For the sake of brevity, we will briefly describe about these
modifications and developments in the following manner,

1. Modifications in the position update mechanism
2. Opposition-based learning (OBL) in SCA
3. Quantum-inspired SCA
4. Hybridization of SCA with other meta-heuristics.
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5.1 Modifications in the Position Update Mechanism

The position update mechanism or position update operator can be considered as
the core of any population-based meta-heuristic algorithm. The movement of the
search agents in the search space is controlled by the position update mechanism. It
is responsible for updating the current position of the search agents in an intelligent
stochastic manner. In the literature of SCA, various modifications in the position
update mechanism have been proposed to modify SCA in different ways.

Long et al. [1] proposed an improved version of the SCA (ISCA) for solving
high-dimensional problems. This approach is inspired by the integration of the inertia
weight (w) in the particle swarm optimizer (PSO) [3]. In this approach, the position
update equation is modified by including the concept of inertia weight coefficient (w)
to speed up the convergence and prevent local optima entrapment. Furthermore, a
new nonlinearly decreasing conversion parameter based on the Gaussian function is
introduced to keep the fine-tune balance between SCA’s exploration and exploitation
phases. The suggested modifications in the position update equation is given by
Eq. (5.1).
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wherew ∈ [0, 1] is the inertia weight coefficient. The value ofw is linearly decreased
from the initial value (ws) to the final value (we) according to the following equation:

w(t + 1) = we + (ws − we) × (T − t)

t
(5.2)

where T denotes the maximum number of iterations, and t is the current iteration
number.

Along with the introduction of the weight coefficient, Long et al. [1] proposed
modifications in the control parameter r1. The control parameter r1 is the critical
control parameter in the SCA algorithm which helps in controlling the exploration
and exploitation phase of the algorithm by controlling the step size. The linearly
decreasing value of r1 helps the algorithm in choosing large step sizes in the initial
phase and small step sizes at later phases of the optimization process [2]. However,
the linearly decreasing value of r1 might restrict its convergence rate and accuracy.
Long et al. [1] presented a new nonlinearly decreasing strategy for control parameter
r1 based on the Gaussian function, mentioned in Eq. (5.3).

r1(t) = ae + (as − ae) × exp

( −t2

(m × T )2

)

(5.3)
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where t indicates the current iteration, T indicates themaximumnumber of iterations,
m is the nonlinear modulation index, and as and ae are the initial and final values of
constant a, respectively.

Suid et al. [4] proposed modifications in its update position and in the control
parameter r1 by utilizing the mean of the best search agent’s position and the posi-
tion of the current search agent. In this approach, each agent updates its position
dimension-wise with respect to the average of its current position and the best search
agent’s position to avoid premature convergence. Themodified position update equa-
tion is given in Eq. (5.4).

Xt+1
i j =

⎧
⎨

⎩

Xt
i j+Pt

g j

2 + r1 · sin (r2) ×
∣
∣
∣r3 · Pt

g j − Xt
i j

∣
∣
∣ if r4 < 0.5

Xt
i j+Pt

g j

2 + r1 · cos (r2) ×
∣
∣
∣r3 · Pt

g j − Xt
i j

∣
∣
∣ if r4 ≥ 0.5

(5.4)

The control parameter r1 is updated using a nonlinear decreasing mechanism,
instead of the linearly decreasing mechanism, as mentioned in Eq. (5.5).

r1 = b ·
(

1 −
(
t

T

)α)β

(5.5)

where b is the constant parameter (a = 2), T denotes the number of maximum
iteration, t is the current iteration, and both α and β are positive real numbers.

Kumar et al. [5] proposed Weibull Pareto sine cosine optimization algorithm
(WPSCO), amodification in the sine cosine algorithm (SCA) to solve the peak power
detection problem in solar PV panels. In WPSCO, Weibull and Pareto distributions
functions are integrated with the SCA algorithm in the position update equation,
which improves the convergence rate and enhances the exploitation of the search
spaces [5]. In the first stage, the SCA is applied to find the optimal place for all
variables (see Eq. 5.6).
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In the second stage, the positions of all variables are analyzed by the Weibull and
Pareto distribution function, and the worst regions of the search space are filtered.
The position update mechanism for the second stage is given in Eq. (5.7).

Xt+1
i j = � ×
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)

× P(0, ε, 0)

}]

(5.7)

where � is the inertia constant. W (1, ε) is Weibull random number. P(0, ε, 0) is
Pareto random number. ε is the error modulation index described as:
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Formaximumpower point tracking (MPPT)of partially shadedPVsystem,Kumar
et al. [6] proposed another variant of SCA, called Cauchy and Gaussian sine cosine
optimization (CGSCO) algorithm. TheCGSCOalgorithm combines theCauchy den-
sity [7] and Gaussian distribution function (GCF) [8] with the sine cosine algorithm
(SCA). In the proposedmethod, firstly initial population is updated using the position
update mechanism of the SCA algorithm, and then Cauchy and Gaussian mutation
mechanisms are employed on the updated population matrix � at every iteration.
The Cauchy-Gauss mutation mechanism is given in Eq. (5.10).

Xnew = � + [1 + δ × {η × N (0, 1) + (1 − η) × C(0, 1)}] (5.10)

where N (0, 1) andC(0, 1) are Gaussian and Cauchy random numbers, δ is an inertia
constant, η = t

T , t is the current iteration, andT is themaximumnumber of iterations.
The Cauchy density function enhances the global exploration ability and prevents
the algorithm from trapping into the region of local minima. And, the Gaussian
distribution function increases the local exploitation capabilities to enhance the rate
of convergence of the proposed CGSCO algorithm.

In the position update mechanism, random components are drawn from different
distributions. For example, normal distribution, Gaussian distribution, or Cauchy dis-
tribution play a very important role in managing the stochasticity of the underlying
meta-heuristic algorithm. These random components are responsible for the move-
ment in the search agent’s position in the search space by deciding direction and step
lengths randomly. In simpler terms, position update mechanisms can be considered
as random walks followed by the agents or particles in the search space. A Lévy
flight is a specific class of random walk in which the step lengths have a heavy-tailed
probability distribution, that is, agents will take a large step sizes occasionally, which
in turn improves the exploration capabilities of the underlying algorithm and helps
the search agents in escaping local optimal regions of the search space [9].

Inspired by the concept of Lévy flight, Attia et al. [10] proposed a modified sine
cosine technique for solving the optimal power flow (OPF) problem by embedding
Lévy flight into the position update mechanism of the sine cosine algorithm (SCA).
The introduction of Lévy flights in the position update mechanism enhances the
global search capabilities of the algorithm, andprevents the agents frombeing trapped
in the regions of local optima. In addition, a fine-tuning capability (i.e., adaptive
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tuning of population size strategy) is utilized, in which the size of the population is
updated in the following manner:

if
fmin(t) < { fmin(t − 1), fmin(t − 2), fmin(t − 3), fmin(t − 4)}, here t is iteration

counter.
Then,
population size = Number of search agents in the (t − 1)th iteration×(1 − α)

else
population size does not change
α is a constant whose value is taken to be 0.05. This adaptive strategy for the

population size provides a fast convergence rate to the proposed algorithm.
Similarly, inspired by the concept of Lévy flights, Qu et al. [11] proposed another

SCA variant involving Lévy flight. For maintaining a better balance between the
exploration and exploitation capabilities of the algorithm, the method of exponen-
tially decreasing conversion (see Eq. 5.11) was applied to the control parameter r1,
and the method of linearly decreasing inertia weight (see Eq. 5.12) was adopted
on w. This helps in achieving a smooth transition from global exploration to local
development.

r1 = b · e t
T (5.11)

w = wmax − (wmax − wmin) · t

T
(5.12)

Here, T is the maximum number of iterations, t is the current iteration. wmax and
wmin denote the maximum andminimum value of the weight parameter, respectively.

Alongwith the adaptive control parameter strategy, a randomneighborhood search
strategy is employed, in which a random solution in the vicinity of the optimal
solution is used in the position update equation. This allows the algorithm to quickly
jump out of the local optimum and increases the diversity of the population. The
modified position update equation is mentioned in Eq. (5.13).

Xt+1
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i j | if r4 ≥ 0.5

(5.13)
where r1 and w are the same as mentioned in Eqs. (5.12) and (5.13), respectively. λ
is a constant parameter, and r2, r3, and r4 are control parameters.

A self-adapting greedy Lévy mutation strategy is applied to perturb the optimal
solution to enhance the local exploitation ability of the algorithm, and to eliminate
the defect of low efficiency in a later period [11]. The optimal solution is updated
using the following equation:

Pt+1
g j = Pt

g j + η( j) · L · Pt
g j (5.14)

Here, L is a random number drawn from Lévy distribution. Pgj is the optimal
solution, g is a solution index, and j denotes the dimension at iteration counter t .
η( j) is the coefficient of self-adapting variation defined in Eq. (5.15).
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η( j) = e(
−ε· t
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)
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Here in Eq. (5.15), ε is a control parameter whose value is chosen to be 30.
r( j) denotes the adjusted optimal solution’s position given by Eq. (5.16), and rmax

denotes the difference between the maximum andminimum value of all the solutions
in dimension j (see Eq. 5.17)
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i, j (5.16)
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)

(5.17)

whereN is the population size, t is the current iteration, and T denotes the maximum
iteration.

5.2 Opposition-Based Learning Inspired Sine Cosine
Algorithm

In this section, we briefly discuss about the concept of opposition-based learning
in the sine cosine algorithm. Opposition-based learning (OBL) is a search strategy
proposed by Tizhoosh [12] for machine learning applications. It takes into con-
sideration the opposite position of solutions in the search space to increase the
chance of finding better solutions in the search space. For a given population, say
X , the opposition-based population X is calculated in a given manner. Suppose
Xi = [xi,1, xi,2, . . . , xi,D] is a solution in X , then Xi is calculated using the follow-
ing equation:

xi j = u j + l j − xi j , i = 1, 2 . . . N ; j = 1, 2 . . . D (5.18)

where u j and l j are the upper and lower bounds of j th dimension, respectively.
The concept of OBL increases the chances of better exploration in the search

space and utilizing the opposite positions of solutions in the search space helps
in generating a more refined population. For instance, suppose X is a randomly
generated population of size N . Using the concept of OBL, a new population X is
generated using X . Now, there are 2N solutions in the search space, and out of these
2N solutions, N solutions are selected on the basis of fitness value. That is, fitness
values of X and X are calculated, and N number of solutionswith better fitness values
is retained in the population, and the rest of the solutions are eliminated or deleted.
For the sake of brevity, two modifications of SCA algorithm using the concept of
opposition-based learning (OBL) are discussed below.
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Elaziz et al. [13] proposed opposition-based sine cosine algorithm (OBSCA).
The authors combined the opposition-based learning strategy with SCA in both
the initialization phase and updating phase. In the initialization phase, a randomly
generated population (say, X ) containing N solutions is initialized, and the concept
of OBL is employed to generate the opposition-based population (say, X ). The fitness
values of both X and X are calculated and N better solutions are retained for the
updating phase. In the updating phase, the population is updated using the SCA
algorithm, and the opposition-based learning is employed in the updated population.
The fitness values of both the population are calculated, and N better solutions are
retained for the next iterations, and the rest of the solutions are eliminated. The
iterative process is repeated until the termination criteria is satisfied.

Chen et al. [14] proposed a multi-strategy enhanced sine cosine algorithm based
on Nelder–Mead simplex (NMs) [15] concept and the opposition-based learning
(OBL) strategy for the parameter estimation of photovoltaic models. The Nelder–
Mead simplex method is used to deal with unconstrained minimization problems
and nonlinear optimization problems. It is a derivative-free direct search method
based on functional value comparison. In every iteration, the algorithm first executes
the SCA algorithm for updating the population, and then, the OBL mechanism is
employed to diversify the population in order to enhance the exploration capability of
the algorithm. After the OBLmethod, the NMs mechanism is incorporated as a local
search technique on every solution in order to exploit the potential neighborhood
regions of the search space. In detail, the best solution found after using the OBL
mechanism in the current population is selected to construct a primary simplex. Then,
the simplex is updated according to the NMs simplex mechanism for some k number
of iterations, and then the algorithm switched back to the SCA algorithm. The k is
a vital parameter whose value is chosen to be D + 1, if the optimization problem
is D dimensional. The concept of OBL enhances the diversity of the population
and benefits the exploration capabilities of the meta-heuristic algorithms. For more
applications in the field of soft computing, machine learning, and fuzzy systems, an
interested reader can refer to the literature review of opposition-based learning by
Mahdavi et al. [16].

5.3 Quantum-Inspired Sine Cosine Algorithm

Apart from the above-mentioned strategies and techniques, researchers have also
employed many other methods to modify the sine cosine algorithm. The quantum-
inspired meta-heuristics are also becoming popular in recent times. Quantum-
inspired meta-heuristics take their inspiration from the various quantum mechanics
principles like superposition, uncertainty, inference, entanglement, etc., to model
various optimization algorithms [17–19]. The concept of quantum computing, like
quantum bits (Q-bits), quantum gates (Q-gates), and their superposition have been
combined with various existing meta-heuristic algorithms like particle swarm opti-
mizer [17], gravitational search algorithm [18], gray wolf optimizer [19], to incor-
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porate the merits of quantum computing to some extent. Inspired by the concept
of quantum computing, Fu et al. proposed chaos quantum sine cosine algorithm
(CQSCA) [20]. In the proposed algorithm, a chaotic initialization method and the
quantum concept of superposition are used to improve the performance of the SCA
algorithm. CQSCA is employed to produce the optimal values for the parameters
involved in the support vector machine (SVM) in order to recognize the pattern of
different kinds of faults. In the proposed algorithm, the population is initialized with
a chaotic variable using a duffing system to enhance the quality of searching global
optima [21]. The dynamical equation of the duffing system is given below:

x ′′(t) + ηx ′(t) − ξ x(t) + μx3(t) = A · cos(τ t) (5.19)

where A is the amplitude of driving force. The coefficient η is the damping degree
whose value is taken to be 0.1, and ξ is the toughness degree whose value is chosen
as 1. μ is the nonlinearity of power and its value is taken to be 0.25. τ is the circular
frequency of the driving force and its value is taken to be 2.

After the chaotic initialization, the inherent characteristics of the qubits and quan-
tum gate concepts help in achieving a better balance between the exploration and
exploitation phase of the search process. The proposed algorithm uses quantum bits
or qubits1 to encode the position of search agents in the search space to avoid prema-
ture convergence [20]. A qubit can be expressed by probability amplitude Pi using
the following equation:

Pi =
[
cos(θ)

sin(θ)

]

=
[
pci
psi

]

(5.20)

where θ denotes the phase shift of a qubit.
Every search agent occupies two positions in the search space, namely the sine

position (psi ) and the cosine position (pci ), represented by Eqs. (5.21) and (5.22),
respectively.

psi = [sin(θi1), sin(θi2), . . . , sin(θi D)] (5.21)

pci = [cos(θi1), cos(θi2), . . . , cos(θi D)] (5.22)

where θi j = 2π × α, and α is a random number in the range [0, 1].
All the encoded search agents update their positions based on an update equation

utilizing the features of the SCA algorithm and quantummechanics. The movements
in the search agents are implemented using quantum rotation gate. The position
update mechanism of the proposed mechanism is given in Eq. (5.23).

Pinew =
[
pcinew
psinew

]

(5.23)

1 A qubit is the smallest unit of information in quantum theory.



5.3 Quantum-Inspired Sine Cosine Algorithm 95

where pcinew and psinew are calculated using Eqs. (5.24) and (5.25).

pcinew = (
cos(θ k

i1 + �θ k+1
i1 ), cos(θ k

i2 + �θ k+1
i2 ), · · · cos(θ k

i D + �θ k+1
i D )

)
(5.24)

psinew = (
sin(θ k

i1 + �θ k+1
i1 ), sin(θ k

i2 + �θ k+1
i2 ), · · · sin(θ k

i D + �θ k+1
i D )

)
(5.25)
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{
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g

r1 · cos(r2) × �θ k
g

(5.26)

and,

�θg =

⎧
⎪⎨

⎪⎩

2π + θg j − θi j , θg j − θi j < −π

θg j − θi j , −π ≤ θg j − θi j < π

θg j − θi j − 2π, θg j − θi j > π

(5.27)

Then a mutation operator with quantum non-gate is adopted to avoid local opti-
mum and increase the population diversity [20]. For each search agent, a random
number is generated between (0, 1) and is compared with the mutation probabil-
ity pm. Then the probability amplitudes of randomly chosen qubits are updated as
follows:

Pi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
cos(θi j )

sin(θi j )

]

if randi < pm

[
sin(θi j )

cos(θi j )

]

otherwise

(5.28)

Similarly, Lv et al. [22] proposed a quantum encoding scheme inspired modifi-
cation in the encoding scheme of the search agents in the SCA algorithm. In the
proposed algorithm, instead of using real-valued coding for the search agents, the
idea of quaternion coding is used. In quaternion encoding, a search agent is expressed
as a hyper-complex number containing one real part and three imaginary parts. The
real part and imaginary parts of a solution are updated in parallel using the position
update mechanism of the SCA algorithm. Quaternions are super-complex numbers
represented as mentioned in Eq. (5.29) [23]

q = a0 + a1i + a2 j + a3k (5.29)

Here, a0, a1, a2, and a3 are real numbers, and i, j , and k are imaginary numbers
following given algebraic rules (Eq. 5.30),
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i · j = k j · i = −k j · k = i
k · j = −i k · i = j i · k = − j;

i · i = j · j = k · k = −1
(5.30)

The quaternion (q) described in Eq. (5.29) can be further simplified as,

q = a0 + a1i + a2 j + a3k = c + dj (5.31)

Here, both c and d are complex numbers, and j is an imaginary part defined as
follows,

c = a0 + a1i (5.32)

d = a2 + a3i (5.33)

A random population of quaternion encoded search agents (Q) is initialized in the
problem’s definition domain [L, U], using Eq. (5.34),

Q = QR + QI · i (5.34)

where QR and QI are complex numbers given by the following equations (see
Eqs. 5.35 and 5.36).

QR = QRR + QRI · i = ρR cos θR + ρR sin θR · i (5.35)

QI = QIR + QII · i = ρI cos θI + ρI sin θI · i (5.36)

where ρR, ρI are random numbers generated in the range,

ρR, ρI ∈
[

0,

(
L −U

2

)]

(5.37)

and, θI, θR are random numbers generated in the range,

θI, θR ∈ [−2π, 2π ] (5.38)

The quaternion encoded search agents (Q) could be converted to their real-value
counterpart X using Eqs. (5.39)–(5.41),

XR = ρRsgn

(

sin

(
QRR

ρR

))

+ L +U

2
(5.39)

X I = ρIsgn

(

sin

(
QII

ρI

))

+ L +U

2
(5.40)
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X =
√(

X2
R + X2

I

)
(5.41)

The position the search agents (Qk) is updated using the following position update
mechanism mentioned in the equation below:

Qt+1
k =

{
Qt

k + r1 × sin (r2) × ∣
∣r3 × QPtk − Stk

∣
∣ if r4 < 0.5

Qt
k + r1 × sin (r2) × ∣

∣r3 × QPtk − Qt
k

∣
∣ if r4 ≥ 0.5

(5.42)

where k = RR, IR,RI, II. And, QP represents the best solution obtained so far and
is represented in the quaternion form as follows in Eq. (5.43),

QP = QPR + QPI · i (5.43)

Here, QPR and QPI are given as follows,

QPR = QPRR + QPRI · i (5.44)

QPI = QPIR + QPII · i (5.45)

The incorporationof quantum techniques in the sine cosine algorithm improves the
exploration-exploitation capabilities of the algorithm.However, in digital computers,
one can not exactly simulate the true nature of quantum computing. Despite of having
the limitations, quantum-inspired techniques can be realized as effective techniques
for advancements in the existing meta-heuristic algorithms.

5.4 Covariance Guided Sine Cosine Algorithm

Liu et al. [24] proposed an improved version of sine cosine algorithm called covari-
ance guided sine cosine algorithm (COSCA). In COSCA, sine cosine algorithm
(SCA) is embedded with the covariance concept to speed up its convergence, and
the OBL mechanism to improve the diversity in the population. In every iteration,
search agents in the population are sorted based on their fitness value in ascending
order. The top H = �N/4� agents are selected to create a guiding population, say,
(PGuide). For updating the position of the agents, the position update mechanism of
the SCA algorithm is utilized. After updating the position of every search agent in the
population, the opposition-based learning (OBL) strategy is employed. The opposite
positions of all the agents are calculated to form an opposite population. The best
agents are selected from both the current population and its opposite population to
proceed with the search process. The concept of covariance is utilized in the guided
population PGuide. The value of the covariance C j,k between any two dimensions j
and k in the guided population is calculated using the following equation:
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C j,k = 1

H − 1
×

H∑

h=1

(Gh, j − G j ) ∗ (Gh,k − Gk) j, k = 1, 2, . . . D (5.46)

where Gh, j , and Gh,k represent the j th and kth dimensions of the hth variable in the
guided population (PGuide), respectively. G j and Gk denote the mean of the j th and
kth dimensions of the guided population. The value of the covariance C j,k forms a
covariance matrix C with the size D × D.

Further, eigenvalue decomposition is performed on the covariance matrix C as
given in Eq. (5.47).

C = OM2OT (5.47)

Here, M is a diagonal matrix whose elements are equals to the eigenvalues of C ,
O is an orthogonal matrix, such that each column of O comprises the orthogonal
basis for each eigenvector of the covariance matrix C .

For i th search agent Xi , its candidate position Yi is calculated using the following
equation:

Yi = G + σ · O · M · γ (5.48)

where G is the mean value of the guided population. σ is a zoom factor whose
value is taken to be 1.5, γ is a D-dimensional random vector, and the range of
each component of γ lies in the [0, 1]. If Yi is better than Xi , Xi is replaced by Yi ,
otherwise, Xi remains unchanged.

5.5 Hybridization of SCA with Other Meta-heuristics

In the context of meta-heuristic algorithms, hybridization refers to the process of
integrating two or more existing meta-heuristic algorithms to form a new variant
or hybrid algorithm. The hybrid algorithm produced by integrating two or more
different algorithms are meant to report better performance when compared to the
algorithms, which are used in the process of hybridization. The basic idea of merg-
ing two or more existing algorithms is to utilize the merits and strengths of used
algorithms while improving their drawbacks. For instance, suppose an algorithm
(say)A is known for better exploration capabilities but suffers from the drawback of
weak exploitation, and on the other hand, a different algorithm (say) B owns better
exploitation capabilities but is prone to get stuck in the region of local optimum.
The hybrid algorithm (say) C produced by integrating algorithms A and B is sup-
posed to contain the merits of both of the parent algorithms and perform relatively
better when compared to both of the algorithms. However, utilizing the techniques
of hybridization is a challenging task and requires careful analysis. The process of
hybridization can also be achieved using different classical algorithms like simplex
methods, Nelder-Mead simplex methods, and local random search techniques [25].
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Sine cosine algorithm (SCA) holds the decent ability to achieve a fine balance
between the exploration and exploitation phase. However, the performance of SCA
can be enhanced using the technique of hybridization for any specific application-
oriented problems. Sine cosine algorithm (SCA) has been successfully hybridized
with the algorithms like particle swarm optimizer (PSO) [25, 26], genetic algorithm
(GA) [27], differential evolution (DE) [28], simulated annealing (SA) [29], gray
wolf optimizer (GWO) [30], and artificial bee colony (ABC) algorithm [31], etc. It
is beyond the scope of this book to discuss about all the hybridization techniques
employed in the SCA algorithm. However, for giving a fair idea to the readers, some
of the hybrid algorithms concerning to SCA algorithm are discussed below.

Elaziz et al. [28] proposed a hybridization of sine cosine algorithm (SCA) with
differential evolution (DE) algorithm for tackling the feature selection problem. The
proposed hybrid algorithm is called SCADE,which has the strengths ofDE algorithm
and SCA algorithm combined. The feature selection problem is a binary optimization
problem, so that solutions in the population represent the binary vectors with length
equal to the number of features. Suppose Xi is a solution, and elements of xi will
take values 1 or 0, where 1 represents the selection of the particular feature, while
0 represents the non-selection of the feature. The underlying objective function for
evaluating the fitness of the solutions is mentioned below:

f (Xi ) = ψ × ErrXi + (1 − ψ) ×
(

1 −
( |S|

D

))

(5.49)

where ErrXi represents the classification error of the logistic regression classifier
with respect to the solution Xi , |S| is the number of selected features, and D is the
total number of features in the given data set. ψ ∈ [0, 1] is a random number used
to balance the accuracy of the classifier and the number of selected features.

The normalized fitness value for each solution Xi , s.t. (i = 1, 2, . . . , N , and N is
the total number of features), is computed using the following equation:

Fiti = fi
∑N

i=1 fi
(5.50)

The best solution (say) Pg is determined from the population after assigning a
fitness value to every solution in the population. In updating phase, the position update
mechanism of the DE algorithm or SCA algorithm is used, according to a random
value p ∈ [0, 1]. Suppose Xi is a solution and Fiti represents the normalized fitness
value of the solution Xi , if Fiti > P , then position updatemechanismofDEalgorithm
is utilized, else (Fiti ≤ P) position update mechanism of the SCA algorithm is used.
The performance of the hybrid SCADE was tested on UCI datasets, and significant
improvement in the classification accuracy of the logistic regression classifier is
reported [28]. The hybridization technique is an effective technique for improving the
performance and robustness of the underlyingmeta-heuristic algorithm. In the similar
fashion, we will discuss below the hybridization of sine cosine algorithm (SCA) with
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gray wolf optimizer (GWO), and the hybridization of sine cosine algorithm with
Particle Swarm Optimizer (PSO).

Singh et al. [30] proposed a hybridization of gray wolf optimizer (GWO) [32] and
sine cosine algorithm (SCA) [2]. In the proposed hybrid algorithm, the exploitation
phase utilizes the GWO algorithm, while the exploration phase incorporates the
exploration capabilities of the SCA algorithm. A randomly generated population
is initialized, and the fitness value of each search agent is calculated. Based on
the fitness value of the search agents, the best search agent (alpha wolf xα), the
2nd best search agent (beta wolf Xβ), and the 3rd best search agent (delta wolf
Xδ) is selected, in the same manner as in the GWO algorithm. After this, for the
movement of Xα , the position update mechanism of sine cosine algorithm is utilized.
The other parameters involved in the GWO algorithm are kept the same, except the
position updatemechanism of alphawolf or the best solution Xα . The position update
mechanism of Xα is mentioned in Eq. (5.51).

dα =
{
r1 × sin (r2) × |r3 × Xα − Xi | if r4 < 0.5

r1 × cos (r2) × |r3 × Xα − Xi | if r4 ≥ 0.5
(5.51)

Xl = Xα − al × dα (5.52)

where r1, r2, r3, and r4 are control parameters, as mentioned in the SCA algorithm
[2]. And, dα represents the movement in the Xα . Xl is the next position of the alpha
gray wolf [30].

Issa et al. [25] proposed a hybridization of particle swarm optimizer (PSO) with
sine cosine algorithm (SCA) in an adaptive manner, and called this hybrid algorithm
ASCA-PSO.The proposed hybrid algorithmmaintains two layers, namely the bottom
layer and the top layer of the solutions based on their fitness value. The bottom
layer divides the population into M—different groups, and each group contains N—
number of search agents. From every group, a leader yk (best search agent in a
particular group K ) is selected for the top layer, and the position update mechanism
of PSO is utilized to update the position of the group leaders yk , k = 1, 2, . . . , M . The
bottom layer is responsible for the exploration of the search space and, on the other
hand, the top layer is responsible for performing the exploitation phase in the hybrid
algorithm [25]. This hybridization ensures a good balance between the exploration
and exploitation phase in the entire optimization process [25].

Following the similar trend, Nenavath et al. [33] proposed a hybrid sine cosine
algorithm with teaching–learning-based optimization algorithm (SCA–TLBO) to
solve global optimization problems and visual tracking. In hybrid SCA–TLBO, first,
the standard SCAalgorithm is utilized to increase the diversification in the population
at the early stages of the search process for exploring the search space extensively,
and helping the algorithm in avoiding local optimal regions. After applying the SCA
algorithm, search agents are then passed to the teacher-learning phase of the TLBO
algorithm in order to move solutions in the direction of the best solution found
so far. This strategy helps the proposed algorithm to maintain a fine-tune balance
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between the exploration and exploitation phase to perform the global and local search
effectively.

Gupta et al. [34] proposed the sine cosine artificial bee colony (SCABC) algorithm,
which hybridizes the ABC algorithm with the sine cosine algorithm (SCA). The
proposed algorithm improves the exploitation and exploration capabilities of the
artificial bee colony (ABC) algorithm. In the ABC algorithm, the employed bee
phase plays an important role in exploring more promising regions during the search
process. The employed bee phase of the ABC is improved using the SCA, it helps
the employed bees to prevent irregular exploration, and increases the efficiency of
the proposed hybrid algorithm. The position update mechanism of the employed bee
phase in the proposed algorithm utilizes the best solution (or elite solution), and is
given in Eq. (5.53).

Xt+1
i =

⎧
⎪⎪⎨

⎪⎪⎩

Pt
g +

∣
∣
∣

fbest
fworst

∣
∣
∣ × sin r2 × ∣

∣r3 × Pt
g − Xt

i

∣
∣ if rand < 0.5

Pt
g +

∣
∣
∣

fbest
fworst

∣
∣
∣ × cos r2 × ∣

∣r3 × Pt
g − Xt

i

∣
∣ otherwise

(5.53)

where Pt
g represents the elite (best) solution at the iteration t . fbest and fworst represent

the best fitness and worst fitness respectively.

Practice Exercises

1. Discuss the rationale behind opposition-based SCA.
2. Explain the levy flight walk. How this concept is implemented in SCA?
3. Discuss the rationale behind using the covariance concept in SCA.
4. Explain the notion of chaos in Chaotic quantum SCA.
5. What do you mean by encoding? Discuss quantum encoding with suitable exam-

ples.
6. How is hybridization going to help SCA in giving better results?
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