
Chapter 2
Sine Cosine Algorithm

Sine cosine algorithm (SCA) [1] is relatively a new algorithm, in the field of meta-
heuristic algorithms. SCA is a population-based probabilistic search method that
updates the position of search agents in the population using simple concept of
trigonometric functions sine and cosine. SCA algorithm is inspired from the periodic
property of the sine and cosine functions. The periodicity of the sine and cosine
function in the range [−1, 1] provides great capacity to exploit the search space
and helps in maintaining a fine balance between exploration and exploitation. In
previous Chap. 1, we have already discussed about the criticality of the exploration
and exploitation capabilities of any meta-heuristic algorithm.

Trigonometric functions sine and cosine are periodic functions with a period of
2π . The range of both the functions is [−1, 1]. The variation of these functions
between −1 and +1 offers a great capacity to scan the local regions in the search
space containing global optima and provides the required diversity to the search
agents in the search space. Like any other meta-heuristic algorithm, SCA is a ran-
dom search technique that is not a problem-dependent technique, and it does not
require gradient information of the objective function. SCA is a population-based
probabilistic search technique, it starts the search process with multiple randomly
initialized representative solutions or search agents in the search space, and updates
the position of search agents toward or away from the best candidate solution using
a mathematical model based on the sine and cosine functions.

Sine cosine algorithm (SCA) is becoming increasingly popular over the past few
years. The SCA’s popularity is evident from the SCA-related papers published in
several reputed journals over the time. Figure 2.1 gives a fair idea about the number
of research publications in the last six years. All these research publications contain
the sine cosine algorithm in their title, abstract, and keywords. The upward trend
of increasing interest in the SCA is due to its robust optimization capabilities and
simplicity in implementation. It has successfully been applied to tackle the complex
real-world optimization problems of different scientific disciplines, such as elec-
trical engineering, control engineering, combinatorial problems, machine learning,
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Fig. 2.1 Number of papers published on sine cosine algorithm in the title, abstract and keywords.
Source SCOPUS database, till July 2022

robotics, supply chain problems, and environmental science problems, to name a few.
The spectrum of SCA applications is broad and spans over diverse fields of science
and technology.

The purpose of this chapter is to serve the readers about the insights of the basic
sine cosine algorithm. The present chapter covers the fundamentals of the sine cosine
algorithm with a step-by-step implementation of the algorithm. A simple numerical
example with a MATLAB code is added for the readers to fully understand the
procedure involved in the working of the sine cosine algorithm. The strengths and
weaknesses of the SCA algorithm are also discussed in this chapter to give readers
a fair idea on the utility of the algorithm in the different fields of scientific research.
The present chapter will encourage the researchers to modify the original SCA and
implement it to solve various optimization problems.

The chapter is organized as follows: Sect. 2.1 describes the basic principles of the
SCA algorithm and its pseudo-code. The control parameters involved in the SCA
algorithm and the impact of these control parameters on the performance of the
algorithm are discussed in Sect. 2.2. A simple numerical example explaining the
computational procedure of the basic SCA algorithm is described in Sect. 2.3. The
MATLAB code of the SCA algorithm handling the numerical example mentioned in
Sect. 2.4, and for summarizing the chapter, concluding remarks are given in Sect. 2.5.

2.1 Description of the Sine Cosine Algorithm (SCA)

Similar to any other population-based optimizers, sine cosine optimization process
begins with randomly initializing a set of representative solutions or search agents in
the search space. The set containing all search agents is also referred as the population.
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In the population, each search agent can be treated as a vector in a d-dimensional
search space. Search agents in the search space update their position with the help
of stochastic equations containing the trigonometric sine and cosine functions.

The population in the search space is randomly initialized within the search space
bounds using Eq. (2.1). The i th search agent Xi = (Xi1, Xi2 . . . Xid) is initialized
using the following equation:

Xi j = X lb
i j + rand() ∗ (

Xub
i j − X lb

i j

)
, j = 1 : d, i = 1 : Np (2.1)

where Xi j represents the j th dimension of the i th solution, X lb
i j and Xub

i j denote
the lower bound and upper bound of the i th solution in the j th dimension of the
search space, respectively. The function rand() generates uniformly distributed ran-
dom numbers in the range [0, 1], and Np denotes the number of the search agents in
the population, i.e., the population size.

The next step after initializing the population in the search space is to update the
position of each search agent to look for the optimal solution. For this purpose, the
position of the each agent is evaluated using the underlying objective function, and
based on the optimization criteria, a fitness value or a goodness value is assigned
to each agent. The search agent with the highest fitness is considered as the best
search agent, and the position of the best search agent is referred as the destination
point. After locating the destination point, other search agents update their position
in the search space (or design space) using the destination point as a reference. The
following equations are position update equations:

Xt+1
i j = Xt

i j + r1 × sin(r2) × ∣∣r3 × Pt
g − Xt

i j

∣∣ (2.2)

Xt+1
i j = Xt

i j + r1 × cos(r2) × ∣∣r3 × Pt
g − Xt

i j

∣∣ (2.3)

where, j = 1 : d, and i = 1 : Np.
Xt
i = (Xt

i1, X
t
i2 . . . Xt

id) denotes the position of the i th search agent in the t th
iteration. Pt

g = (Pt
g1, P

t
g2, . . . P

t
gd) is the gth search agent having the best fitness and

considered as the destination point at t th iteration. |.| represents themodulus operator.
r1 is a function of iteration counter t, calculated using Eq. (2.4), here b is a constant
parameter and T denotes the maximum number of iterations. r2 and r3 are uniformly
distributed random numbers generated using Eqs. (2.5) and (2.6), respectively:

r1 = b − b ×
(
t

T

)
(2.4)

r2 = 2 × π × rand() (2.5)

r3 = 2 × rand() (2.6)
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Fig. 2.2 Trajectory of r1 sin(r2) and r1 cos(r2) considering c = 2

A proper balance between exploration and exploitation is of paramount impor-
tance in any population-based optimization algorithm. At the initial phase of the
optimization process or in early iterations, an algorithm should focus on the explo-
ration process to sufficiently scan the design space. At a later stage or in later itera-
tions, the algorithm should use the exploitation process to search the promising local
regions to find the global optimal location in the search space and guarantee con-
vergence. So with the increasing number of iterations, the exploration ability of the
algorithm should decrease, while exploitation capabilities should increase. In sine
cosine algorithm, the control parameter r1 is responsible for maintaining the balance
between the exploration and exploitation process. This parameter ensures a smooth
transition from the exploration phase to exploitation phase during the search. The
control parameter r1 is linearly decreasing function of iteration counter t , which a
linearly reduces the value of the constant parameter b. The trigonometric functions
sine and cosine in Eqs. (2.2) and (2.3) aremultiplied by the control parameter r1. That
means, the range of these terms is dependent on the value of the control parameter
r1. The value of r1 is dependent on the constant parameter b, whose value is linearly
decreasing with the increasing number of iterations. So, by controlling the value of
the constant parameter b, SCA algorithm controls the range of the terms r1 · sin(r2)
and r1 · cos(r2). The trajectory of the range of r1 · sin(r2) and r1 · cos(r2) during the
search process is illustrated in Fig. 2.2.

Moreover, it is not a difficult observation to make for a reader that the control
parameter r1 works as a scaling factor for the step size in the position update equations
given by Eqs. (2.2) and (2.3). In early iterations, larger values of r1 is used by
the SCA algorithm to perform larger movements by the search agents to explore
the search space, and at later iterations, value of r1 will decrease to perform small
movements by the search agents to ensure exploitation in the potential local regions
of the search space. So, the control parameter is a critical component in the SCA
algorithm for maintaining a fine-tune balance between exploration and exploitation.
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Adetailed discussion about the control parameters associatedwith theSCAalgorithm
is presented in subsequent Sect. 2.2.

To increase the robustness of the sine cosine algorithm, two position update equa-
tions, or in other words two separate mechanisms, are used in the SCA algorithm.
To determine whether Eqs. (2.2) or (2.3) should be used to update the position of the
search agents, a switch probability p(p = 0.5) is used, depending on a generated
random number r4 ∈ [0, 1]. If r4 < p, Eq. (2.2) is used to update the position of the
search agents, otherwise Eq. (2.3) is used. The following equation summarizes the
above mechanism,

Xt+1
i j =

⎧
⎪⎪⎨

⎪⎪⎩

Xt
i j + r1 × sin(r2) ×

∣∣∣r3 × Pt
g j − Xt

i j

∣∣∣ if r4 < p

Xt
i j + r1 × cos(r2) ×

∣∣∣r3 × Pt
g j − Xt

i j

∣∣∣ if r4 ≥ p

(2.7)

It is evident from Eq. (2.7) that it gives 50% chance to each update equation.
The search agents in the SCA algorithm follow a nonlinear search route because

of the presence of the absolute value term and the trigonometric functions sine cosine
in the position update equations. Figure 2.3 illustrates the movement of the search
agents with respect to the destination point (Pg) in a two-dimensional search space.
It demonstrates that the search agents follow a circular path, with the best solution
or destination point in the center and all other search agents positioned around it.
The value of constant parameter b is taken to be 2 in the SCA algorithm that means
the sine and cosine functions will operate in the range [−2, 2]. Each search agent
updates its position either in the direction opposite to the destination point or toward
anywhere between its current position and the destination point. The potential local
regions where search agent Xi canmove are described by dividing the circular search
domain into sub-regions as shown in Fig. 2.3. The value of r1 controls the movement
of Xi , if r1 < 1, then Xi moves toward destination point Pg (exploitation step),
and when r1 ≥ 1, the search agent moves far away from the destination point Pg
(exploration step).

The pseudo-code for the basic sine cosine algorithm is given in Algorithm 1, and
the flowchart is shown in Fig. 2.4 to provide a concise description of the underlying
working procedure of the SCA algorithm.

2.2 Parameters Associated with the SCA

The convergence speed and optimization capabilities of a population-based meta-
heuristic algorithm are greatly influenced by the associated parameters. The choice
of the parameters’ values determines the convergence rate of an algorithm. The
control parameters associated with the sine cosine algorithm are r1, r2, r3, and r4.
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Fig. 2.3 Impact of the parameter r1 on the sine and cosine function or decreasing pattern

Algorithm 1 Sine cosine algorithm (SCA)
Initialize the population {X1, X2, . . . , XN } randomly in the search space
Initialize the parameters associated with SCA
Calculate the objective function value for each search agent in the population
Identify the best solution obtained so far as the destination point Pg
initialize t = 0, where t is iteration counter
while Termination criteria is met do
Calculate r1, using Eq. (2.4) and generate the parameters r2, r3, r4 randomly
for each search agent do
Update the position of search agents using Eq. (2.7)

end for
Update the current best solution (or destination point) Pg
t = t + 1

end while
Return the best solution Pg

In SCA algorithm, the control parameter r1 regulates both the global and local
search operations. It determines whether to advance the search agents in the direction
of the best solution (destination point (r1 > 1)) or move the search agents away from
the destination point (r1 < 1) in the search space. With the increasing number of
iterations, its value declines linearly from the initial parameter value ‘b’ to 0. This
adaptive behavior of r1 assists theSCAalgorithm in ensuring the exploration behavior
in early iterations and controls the exploitation behavior at later iterations.

The control parameter r2 determines how far the search agents should travel
toward or away from the destination point. Its value lies in the range [0, 2π ]. The
parameter r3 in the SCA algorithm is the random weight associated with the destina-
tion point. It controls how much the destination point will contribute in updating the
position of other search agents in subsequent iterations. It is a random scaling factor,
and responsible for boosting (r3 > 1) or lowering (r3 < 1) the influence of the best
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Fig. 2.4 Flowchart of SCA



22 2 Sine Cosine Algorithm

solution by controlling the length of the movement. In other words, a weight greater
than one indicates that the influence of the destination point is higher in finding the
next position of the other search agents. On the other hand, a weight less than one
indicates the lower influence of the destination point in updating the position of rest
of the search agents.

The parameter r4 is employed to randomly switch between the sine and cosine
components of the position update equations. If r4 is less than 0.5, the position
update equation with the sine function is selected, and if the value of r4 is greater
than or equal to 0.5, the position update equation containing the cosine function is
used. It aids the SCA’s ability to avoid local optimal points in the search space and
enhances the robustness of the algorithm. The value of parameter r4 is generated
using uniformly distributed random number in the range [0, 1]. Another additional
important parameter in the SCA algorithm is the constant parameter ‘b’. It is a preset
parameter that ensures that the algorithm transit smoothly from the exploration phase
to the exploitation phase. The value of the constant parameter ‘b’ is suggested to
be 2 in the basic SCA algorithm. Like any other population-based algorithm, the
performance of the SCA algorithm is also sensitive to the population size. The size
of the population is a user-controlled parameter whose value is often selected on the
basis of the complexity of the underlying optimization problem.

Broadly, the advantages and disadvantages of SCA can be summarized as below:

Advantages Disadvantages
Sine cosine algorithm is a simple
population-based algorithm. It is easy
to implement and user-friendly

As compared to other types of problems, its
performance is good for continuous opti-
mization problems only

It has a tendency toward the best regions of
the search space as it updates its position
around the best solution

It lacks internal memory (i.e., it does
not keep the track of previously obtained
potential or best solutions)

It has a higher explorative ability as it uses
four random parameters r1, r2, r3 and r4

It has a weak exploitative ability as it does
not preserve the previously obtained poten-
tial solutions capable of converging to the
global optimal solution

Attributing to its simple code, its speed is
fast

Being a stochastic technique, it does not
guarantee the global optimal solution

SCA transits smoothly from the explo-
ration to the exploitation phase

It shows slow convergence in some of the
complex optimization problems

Population-based optimizers are in great demand in the field of academic research
and industrial applications. A simple and user-friendly practical optimization tech-
nique can be considered as a good optimizer if it follows certain characteristics like:

1. Optimizer should be robust, problem independent, and capable of handling black-
box optimization problems.

2. The ability to locate the global optimal or near global optimal solution regardless
of the complexity of the search space and modality of the objective function with
a high convergence rate.
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3. It should have less number of control parameters and tuning of the parameters
should not be a challenging task.

Sine cosine algorithm significantly fulfills all the criteria for considering as a good
optimizer. SCA has shown its robust performance capabilities in many complex,
real-world optimization problems where traditional methods fail or have limited
applicability. The simplicity of the SCA algorithm makes it user-friendly and simple
to implement in any computer language. The less number of control parameters and
adaptive nature in managing the balance between exploration and exploitation is one
of themajor characteristics of theSCAalgorithm.The performance of SCAalgorithm
is exceptional in dealing with various benchmark problems. Ease of implementation,
wide range of applicability, and high level of reliability make sine cosine algorithm
a worthy candidate in the class of meta-heuristics.

2.3 Biases of Sine Cosine Algorithm

The major drawback of any meta-heuristic algorithm is(are) its intrinsic bias(es), or
in other words, the tendency of the algorithm to accumulate solutions in a particular
region(s) of the search space. For example, if the intrinsic bias of an algorithm is
central bias, the algorithmwill accumulate solutions in the central region, irrespective
of the underlying objective function. This implies that if the objective function’s true
optima lies in the central region of the search space, the chances for finding the near
optimal solution are favorable to the algorithm. However, on the other hand, if true
optima is lying in some different regions of the search space, the chances for finding
the near optimal solution will be very less; that is, the algorithm’s performance
will deplete on the set of objective functions in which true optima do not lie in
the central region. Similarly, an algorithm may have edge bias, in which solutions
accumulate in the edges of constrained search space, or axial bias, where algorithm
favors distribution of solutions along any axes of the bounded search space, or any
other type of biases, like exploitation bias, in which solutions accumulate around
a position with no specific characteristics, demonstrating that the algorithm is over
exploiting that particular region. So, the information about the intrinsic bias(es)might
help the researchers better understand these stochastic optimizers’ limitations.

In theory, the intrinsic characteristics of any meta-heuristic algorithm can be
accessed with the help of the mathematical analysis of the algorithm. However, in
practice, it is a difficult task to detect these biases of the algorithm by simply inspect-
ing the formula. An experimental approach is suggested, in which these stochastic
algorithms are assigned to optimize an impossible ‘flat’ problem, that is, a constant
function. The problem of optimizing a constant function with the help of a stochastic
algorithmcan be considered impossible to solve because all the solutions in the search
space are equivalent. That means the solutions of an unbiased meta-heuristic algo-
rithm should attain positions statistically similar to a purely random search. For this,
the successive positions of solutions are examined to highlight the intrinsic bias(es)
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Fig. 2.5 Experiment 1—signature of SCA with 10,000 points

of the algorithm. A graphical illustration called ‘Optimizer Signature’ is used in the
experimental approach to identify these stochastic algorithms’ intrinsic bias(es). The
intrinsic bias(es) of the sine cosine algorithm (SCA) are discussed below.

2.3.1 Experimental Setup

In order to obtain the idea about the intrinsic bias(es), 10 successive execution of
SCA algorithm are performed on the constant objective function f (x1, x2) = 1 in
the range [−1, 1]. In each execution, 1000 points have been generated, which means
in 10 execution, 10,000 points are generated. All the points in the search space are
graphically illustrated using a scatter plot to get the signature of the SCA algorithm.
It is interesting to note that signature of any meta-heuristic algorithm may change
upon executing the experiment several times, but the bias(es) of an algorithm is
identifiable. In Figs. 2.5 and 2.6, two representative signatures of the SCA algorithm
with 10,000 points are illustrated. Both of the figures may have slight differences
from each other, but the patterns for intrinsic bias(es) are identifiable.

It is evident from the illustration of signature that SCA is majorly central biased
and axial biased, and partially edge biased algorithm. The depiction of the signature
indicates that the performance of the SCA algorithm will be badly affected if the
true optima of the objective function lie in the second and fourth quadrants of the
search space. On the other hand, SCA will perform better on the objective functions
whose true optimum lies in the central or axial region of the search space. Further
research is required to understand this biased behavior and possible modifications to
eliminate the same.
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Fig. 2.6 Experiment 2—signature of SCA with 10,000 points

2.4 Numerical Example

In this section, a simple numerical example is taken to demonstrate the step-by-step
working procedure of the SCA algorithm. For the sake of simplicity, the two-variable
sphere function (2.8) in the range [−5, 5] is considered as the underlying objective
function and the optimization problem is formulated as of minimization type.

Min f (X) = X2
1 + X2

2 s.t (2.8)

X = (X1, X2); X1, X2 ∈ [−5, 5] (2.9)

The sphere function is a simple 2-variable problemwith the globalminima situated
at (0, 0). For a simple demonstration of the computational procedure involved in the
SCA algorithm, a small population size of 5 is taken, and the hand calculation for
2 iterations is added. As a first step, the population is randomly initialized in the
range [−5, 5] using Eq. (2.1), and the fitness values of search agents are calculated.
The fitness of an individual solution is usually defined as the value of the objective
function corresponding to it. Substituting X1,1 = −0.6126 and X1,2 = −0.1024 in
the objective function f = X2

1,1 + X2
1,2, we get 0.3857. Similarly, we will calculate

the objective function value for all other search agents (see Table 2.1).
Better objective function values represent better solutions. In this example, a

solution or search agent with the least objective function value is regarded as the best
solution. As one can observe from Table 2.1, the minimum objective function value
is 0.3857, and therefore, (−0.6126,−0.1024) is the best solution or the destination
point (shown in bold). Now, the main loop of the algorithm starts, and the iteration
counter (t) is initialized, t = 0.
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Table 2.1 Initial population

Agent No. Xi1 Xi2 Fitness value

1 −0.6126 −0.1024 0.3857

2 −1.1844 −0.5441 1.6989

3 2.6552 1.4631 9.1907

4 2.9520 2.0936 13.0977

5 −3.1313 2.5469 16.2914

First Iteration
The destination point is (−0.6126,−0.1024).
The destination fitness is 0.3857.

Updating first search agent (i = 1)1

Consider the first search agent X1, and its first component X1,1 = −0.6126 is
updated. To update X1,1, we need r1, and it is calculated using Eq. (2.4), while
r2, and r3 are generated randomly using Eqs. (2.5) and (2.6), respectively. Consider
r1 = 2, r2 = 1.7343, r3 = 1.3594, and r4 = 0.6551.2

X1
1,1 = (−0.6126) + 2 × cos(1.7343)

× |1.3594 × (−0.6126) − (−0.6126)| = −0.6842

Since the updated position of X1,1 lies in the range [−5, 5], we will accept the
update. Similarly, we will update the second component X1,2 = −0.1024 by consid-
ering r2 = 1.0217, r3 = 0.2380, and r4 = 0.49840 as follows;

X1
1,2 = (−0.1024) + 2 × sin(6.1720)

× |1.5381 × (−0.1024) − (−0.1024)| = 0.0307

The updated value of X1,2 is also within the search space [−5, 5]. Thus, the
updated position of the first search agent is X1 = (−0.6842, 0.0307). A similar pro-
cess is used to update the all other search agents.

Updating second search agent (i = 2)
(first component) ( j = 1)
Consider r2 = 6.0302, r3 = 0.6808, and r4 = 0.5853

X1
2,1 = (−1.1844) + 2 × cos(6.0302)

× |0.6808 × (−0.6126) − (−1.1844)| = 0.3016

1 Note that all calculations are carried out component wise.
2 All random numbers are generated using MATLAB rand function.
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(second component) ( j = 2)
r2 = 1.4063, r3 = 1.5025, and r4 = 0.2551

X1
2,2 = (−0.5441) + 2 × sin(1.4063)

× |1.5025 × (−0.1024) − (−0.5441)| = 0.2260

Updating third search agent (i = 3)
(first component) ( j = 1)
r2 = 3.1790, r3 = 1.3982, and r4 = 0.8909

X1
3,1 = (2.6552) + 2 × cos(3.1790)

× |1.3982 × (−0.6126) − (2.6552)| = −1.8088

(second component) ( j = 2)
r2 = 6.0274, r3 = 1.0944, and r4 = 0.1386

X1
3,2 = (1.4631) + 2 × sin(6.0274) × |1.0944 × (−0.1024) − (1.4631)| = 0.8479

Updating fourth search agent (i = 4)
(first component) ( j = 1)
r2 = 0.9380, r3 = 0.5150, and r4 = 0.8407

X1
4,1 = (2.9520) + 2 × cos(0.9380) × |0.5150 × (−0.6126) − (2.9520)| = 6.2597

The updated position is 6.2597, which is out of the search space. Therefore the
position is set as X1

4,1 = 5 because the updated value is near to 5, the upper bound
of the search space
(second component) ( j = 2)
r2 = 1.5977, r3 = 1.6286, and r4 = 0.2435

X1
4,2 = (2.0936) + 2 × sin(1.5977) × |1.6286 × (−0.1024) − (2.0936)| = 5.5436

Again the updated position is out of the search space. Therefore, the updated
position is set as X1

4,2 = 5.

Updating fifth search agent (i = 5)
(first component) ( j = 1)
r2 = 5.8387, r3 = 0.7000, and r4 = 0.1966

X1
5,1 = (−3.1313) + 2 × sin(5.8387)

× |0.7000 × (−0.6126) − (−3.1313)| = −6.0054
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Table 2.2 Updated position of the search agents

Agent No. Xi1 Xi2 Fitness value

1 −0.6842 0.0307 0.4691

2 0.3016 0.2260 0.1420

3 −1.8088 0.8479 3.9907

4 5.0000 5.0000 50

5 −5.0000 5.0000 50

The updated component position is −6.0054, which is out of the search space.
Therefore, the updated position is set as X1

5,1 = −5 because the lower bound of the
search space is −5
(second component) ( j = 2)
r2 = 1.5776, r3 = 1.2321, r4 = 0.4733

X1
5,2 = (2.5469) + 2 × sin(1.5776) × |1.2321 × (−0.1024) − (2.5469)| = 7.0836

Again the updated component position is out of the search space. Therefore, the
updated position is set as X1

5,2 = 5. Finally, updated population after first iteration.
Now, termination criteria is checked. Since we planned to run the algorithm for 2

iterations and till now only one iteration is complete, we will move to iteration 2.

Second Iteration
Clearly, from Table 2.2, the minimum objective function value is 0.1420, which cor-
responds to the second search agent. Therefore, the best solution is (0.3016, 0.2260)
and the best fitness is 0.1420.

Updating first search agent (i = 1)
r1 = 1
(first component) ( j = 1)
r2 = 2.2095, r3 = 1.6617, r4 = 0.5853

X2
1,1 = (−0.0284) + 1 × cos(2.2095)

× |1.6617 × (0.3016) − (−0.0284)| = −1.3909

(second component) ( j = 2)
r2 = 3.4540, r3 = 1.8344, r4 = 0.2858

X2
1,2 = (1.7795) + 1 × sin(3.4540) × |1.8344 × (0.2260) − (1.7795)| = −0.0873

Updating second search agent (i = 2)
(first component) ( j = 1)
r2 = 5.8678, r3 = 1.1504, r4 = 0.1178
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X2
2,1 = (0.3016) + 1 × sin(5.8678) × |1.1504 × (0.3016) − (0.3016)| = 0.1487

(second component) ( j = 2)
r2 = 3.5677, r3 = 0.1517, r4 = 0.0540

X2
2,2 = (0.2260) + (1 × sin(3.5677)) × |(0.1517 × (0.2260) − 0.2260)| = 0.1468

Updating third search agent (i = 3)
(first component) ( j = 1)
r2 = 3.3351, r3 = 1.5583, r4 = 0.9340

X2
3,1 = (−1.8088) + 1 × cos(3.3351)

× |1.5583 × (0.3016) − (−1.8088)| = −3.8112

(second component) ( j = 2)
r2 = 0.8162, r3 = 1.1376, r4 = 0.4694

X2
3,2 = (0.8479) + 1 × sin(0.8162) × |1.1376 × (0.2260) − (0.8479)| = 1.3441

Updating fourth search agent (i = 4)
(first component) ( j = 1)
r2 = 0.0748, r3 = 0.6742, r4 = 0.1622

X2
4,1 = (5.0000) + 1 × sin(0.0748) × |0.6742 × (0.3016) − (5.0000)| = 5.3661

The updated component position is 5.3661, which is out of the search space.
Therefore, the updated position is set as X2

4,1 = 5
(second component) ( j = 2)
r2 = 4.9906, r3 = 0.6224, r4 = 0.5285

X2
2,2 = (5.0000) + 1 × cos(4.9906) × |0.6224 × (0.2260) − (5.0000)| = 6.3483

Again the updated component position is 6.3483, which is out of the search space.
Therefore, the updated position is taken as X2

4,2 = 5.

Updating fifth search agent (i = 5)
(first component) ( j = 1)
r2 = 1.0408, r3 = 1.2040, r4 = 0.2630

X2
5,1 = (−5.0000) + 1 × sin(1.0408)

× |0.2040 × (0.3016) − (−5.0000)| = −0.5315

(second component) ( j = 2)
r2 = 4.1097, r3 = 1.3784, r4 = 0.7482
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Table 2.3 Updated positions of the search agents after iteration 2

Agent No. x1 x2 Fitness value

1 −1.3909 −0.0837 1.9423

2 0.1487 0.1468 0.0436

3 −3.8112 1.3441 16.3318

4 5.0000 5.0000 50.000

5 −0.5315 2.2804 5.4826

X2
5,2 = (5.0000) + 1 × cos(4.1097) × |1.3784 × (0.2260) − (5.0000)| = 2.2804

Finally, the updated search agents are given inTable 2.3.Now, the iteration counter
is increased by one and is set to two. Since the termination criterion is met, the best
solution identified by the SCA algorithm is (0.1487, 0.1468), and the optimal value
of the objective function determined by the SCA algorithm is 0.0436, both of which
are near to the exact solution (0, 0) and exact value 0. In the similar fashion, more
iterations can be performed to further refine the obtained solution.

2.5 Source Code

In this section, the source code (2.1) of the basic SCA algorithm in MATLAB is
illustrated. For simplicity and to be consistent with the numerical example presented
in Sect. 2.4, the sphere function given by Eq. (2.8) is used as an objective function.
The source code of the objective function which we need to minimize by using the
SCA algorithm is shown in Listing 2.2.

Listing 2.1 The basic code of the SCA algorithm in MATLAB

1 % Sine Cosine Algorithm (SCA)
2 % MATLAB Version 2015a
3 % Reference Paper: S. Mirjalili , SCA: A Sine ...

Cosine Algorithm for solving optimization ...
problems

4 % Knowledge -Based Systems , DOI: ...
http ://dx.doi.org /10.1016/j.knosys .2015.12.022

5 % Remark: This code is for academic purposes ...
only. For any query or suggestion write to us;

6 %J.C. Bansal (jcbansal@sau.ac.in)
7 %Prathu Bajpai (prathu.bajpai1812@gmail.com)
8 %=======================%
9

10 % Initialization of Sine Cosine Algorithm
11 clc;
12 clear all;
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13

14 Np = 50; % Population size
15 Dim = 30; % Dimension of the search space
16 Objf = @cost_function; % Cost function or ...

objective function
17 lb = -5.*ones(1,Dim); % Lower bound of the ...

search space
18 ub = 5.* ones(1,Dim); % Upper bound of the ...

search space
19

20 X = zeros( Np, Dim ); % Container to ...
store population

21 fit = zeros( 1, Dim ); % Initialize ...
fitness vector

22 T = 1000; % Maximum Iterations
23 t = 0; % Iteration counter
24

25 % Initialize parameters
26 b = 2; % Constant parameter
27 p = 0.5 % Probability switch
28

29 r1 = b; r2 = 1; r3 = 1; r4 = 1; %Initial control ...
parameters

30

31 % Initialize population
32 for i=1:Np
33 X(i,:) = lb + rand(1,Dim).*(ub-lb);
34 fit(i) = Objf(X(i,:));
35 end
36 pop = X; % Initial Population
37 [best_fit ,ind] = min(fit); % Best solution is ...

destination point
38 best_agent = pop(ind ,:); % Best agent in the ...

population
39

40 %%Iteration Loop
41

42 while t < T
43 r1 = b - t*(b/T);
44

45 %Position update equations
46 for i=1:Np
47 % Update control parameters
48 r2 = (2*pi)*rand();
49 r3 = 2*rand();
50 r4 = rand();
51

52 % Apply switch
53 if r4 < p
54 pop(i,:) = pop(i,:)+ ...

r1*sin(r2)*abs(r3*best_agent - ...
pop(i,:)); %Equation 2.2

55 else
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56 pop(i,:) = pop(i,:)+ ...
r1*cos(r2)*abs(r3*best_agent - ...
pop(i,:)); %Equation 2.3

57 end
58 end
59

60 % Check bounds
61 for i=1:Np
62 for j=1:Dim
63 if pop(i,j) < lb(1)
64 pop(i,j) = lb(1);
65

66 elseif pop(i,j) > ub(1)
67 pop(i,j) = ub(1);
68 end
69 end
70 end
71

72 % Evaluate fitness of updated population
73 for i=1:Np
74 fit(i) = Objf(pop(i,:));
75 end
76

77 %Update the best fitness and best solution
78 [best_fit ,ind] = min(fit);
79 best_agent = pop(ind ,:);
80

81 %Increase iteration counter
82 t=t+1;
83 end
84

85 display (['Optimum value obtained by SCA alg. is ...
:', num2str(best_fit)]);

86 display (['Optimum solution obtained by SCA alg. ...
is :', num2str(best_agent)]);

Listing 2.2 Cost function defined in MATLAB

1 %Sphere Function
2 function f = cost_function(x)
3 f = sum(x.^2);
4 end

Practice Exercises

1. Apply SCA to solve the sphere function problem for 10, 30, 50, and 100 variables.
Compare and analyze the obtained results.

2. Discuss the influence of the population size on the performance of SCA.
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3. Maximum number of iterations plays an important role in ensuring quality solu-
tions. Explain?

Reference
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