Skip to main content

Research Progress and Prospect of Printed Batteries

  • Conference paper
  • First Online:
Innovative Technologies for Printing and Packaging (CACPP 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 991))

Included in the following conference series:

  • 835 Accesses

Abstract

With the continuous progress of flexible functional materials, the intelligent development of portable devices, and the gradual popularization of the Internet of Things, society urgently need a new type of battery that is light, thin, environmentally friendly, and has high power and high energy density. The printed battery is prepared by printing technology, which has the characteristics of lightness, flexibility, environmental protection and low cost., which are in line with the development trend and have shown great application potential in flexible wearable devices, flexible displays, flexible RFID, sensors and other fields. This paper reviews the latest progress of printed batteries based on screen printing, inkjet printing and 3D printing technologies, and introduces the latest technologies of printed zinc-manganese batteries, printed lithium batteries and other types of printed batteries. Then, the opportunities and challenges faced by printed batteries are put forward, and the development prospects of the printed battery industry are prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ginley, D.S., Cahen, D.: Fundamentals of materials for energy and environmental sustainability, Cambridge University Press (2011)

    Google Scholar 

  2. Campanari, S., Manzolini, G., Garcia de la Iglesia, F.: Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations. J. Power Sour. 186, 464–477 (2009)

    Google Scholar 

  3. Hall, P.J., Bain, E.J.: Energy-storage technologies and electricity generation. Energy Policy 36, 4352–4355 (2008)

    Article  Google Scholar 

  4. Lawes, S., Riese, A., Sun, Q., Cheng, N., Sun, X.: Printing nanostructured carbon for energy storage and conversion applications. Carbon 92, 150–176 (2015)

    Article  Google Scholar 

  5. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54, 2787–2805 (2010)

    Article  MATH  Google Scholar 

  6. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a vision, architectural elements, and future directions. Futur. Gener. Comput. Syst. 29, 1645–1660 (2013)

    Article  Google Scholar 

  7. Sousa, R.E., Costa, C.M., Lanceros-Méndez, S.: Advances and future challenges in printed batteries. Chemsuschem 8, 3539–3555 (2015)

    Article  Google Scholar 

  8. Lanceros-Méndez, S., Costa, C.M.: Printed batteries: materials, technologies and applications, John Wiley & Sons (2018)

    Google Scholar 

  9. Choi, K.-H., Ahn, D.B., Lee, S.-Y.: Current status and challenges in printed batteries: toward form factor-free, monolithic integrated power sources. ACS Energy Lett. 3, 220–236 (2018)

    Article  Google Scholar 

  10. Dommati, H., Ray, S.S., Wang, J.-C., Chen, S.-S.: A comprehensive review of recent developments in 3D printing technique for ceramic membrane fabrication for water purification. RSC Adv. 9, 16869–16883 (2019)

    Article  Google Scholar 

  11. Crompton, T.P.J.: Battery Reference Book, Elsevier Science (2000)

    Google Scholar 

  12. Dell, R., Rand, D.A.J., Bailey, R., Connor, P.: Chemistry RSo. Royal Society of Chemistry, Understanding Batteries (2001)

    Google Scholar 

  13. Cassagneau, T., Fendler, J.H.: High density rechargeable lithium-ion batteries self-assembled from graphite oxide nanoplatelets and polyelectrolytes. Adv. Mater. 10, 877–881 (1998)

    Article  Google Scholar 

  14. Gören, A., Costa, C.M., Silva, M.M., Lanceros-Méndez, S.: State of the art and open questions on cathode preparation based on carbon coated lithium iron phosphate. Compos. B Eng. 83, 333–345 (2015)

    Article  Google Scholar 

  15. Mishra, A., Mehta, A., Basu, S., Malode, S.J., Shetti, N.P., Shukla, S.S., et al.: Electrode materials for lithium-ion batteries. Mater. Sci. Energy Technol. 1, 182–187 (2018)

    Google Scholar 

  16. Takahashi, M., Tobishima, S., Takei, K., Sakurai, Y.: Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries. J. Power Sour. 97–98, 508–511 (2001)

    Article  Google Scholar 

  17. Lao-atiman, W., Julaphatachote, T., Boonmongkolras, P., Kheawhom, S.: Printed transparent thin film Zn-MnO2 battery. J. Electrochem. Soc. 164, A859–A863 (2017)

    Article  Google Scholar 

  18. Zhang, X.C.: Paper batteries and printed electronics. China Mater. Prog. 36(3), 186–188 (2019)

    Google Scholar 

  19. Seifert, T., Sowade, E., Roscher, F., Wiemer, M., Gessner, T., Baumann, R.R.: Additive manufacturing technologies compared: morphology of deposits of silver ink using inkjet and aerosol jet printing. Ind. Eng. Chem. Res. 54, 769–779 (2015)

    Article  Google Scholar 

  20. Suárez, L., Domínguez, M.: Sustainability and environmental impact of fused deposition modelling (FDM) technologies. Int. J. Adv. Manuf. Technol. 106(3–4), 1267–1279 (2019). https://doi.org/10.1007/s00170-019-04676-0

    Article  Google Scholar 

  21. Sun, C., Liu, S., Shi, X., Lai, C., Liang, J., Chen, Y.: 3D printing nanocomposite gel-based thick electrode enabling both high areal capacity and rate performance for lithium-ion battery. Chem. Eng. J. 381, 122641 (2020)

    Article  Google Scholar 

  22. Yu, L., Fan, Z., Shao, Y., Tian, Z., Sun, J., Liu, Z.: Versatile N-doped mxene ink for printed electrochemical energy storage application. Adv. Energy Mater. 9, 1901839 (2019)

    Article  Google Scholar 

  23. Gaikwad, A.M., Arias, A.C., Steingart, D.A.: Recent progress on printed flexible batteries: mechanical challenges, printing technologies, and future prospects. Energ. Technol. 3, 305–328 (2015)

    Article  Google Scholar 

  24. Chang, P., Mei, H., Zhou, S., Dassios, K.G., Cheng, L.: 3D printed electrochemical energy storage devices. J. Mater. Chem. A. 7, 4230–4258 (2019)

    Article  Google Scholar 

  25. Sousa, R.E., Oliveira, J., Gören, A., Miranda, D., Silva, M.M., Hilliou, L., et al.: High performance screen printable lithium-ion battery cathode ink based on C-LiFePO4. Electrochim. Acta. 196, 92–100 (2016)

    Article  Google Scholar 

  26. Kim, S.-H., Kim, J.-H., Cho, S.-J., Lee, S.-Y.: All-solid-state printed bipolar Li–S batteries. Adv. Energy Mater. 9, 1901841 (2019)

    Article  Google Scholar 

  27. Li, J., Liang, X., Liou, F., Park, J.: Macro-/micro-controlled 3D lithium-ion batteries via additive manufacturing and electric field processing. Sci. Rep. 8, 1846 (2018)

    Article  Google Scholar 

  28. Gaikwad, A.M., Whiting, G.L., Steingart, D.A., Arias, A.C.: Highly flexible, printed alkaline batteries based on mesh-embedded electrodes. Adv. Mater. 23, 3251–3255 (2011)

    Article  Google Scholar 

  29. Gaikwad, A.M., Chu, H.N., Qeraj, R., Zamarayeva, A.M., Steingart, D.A.: Reinforced electrode architecture for a flexible battery with paperlike characteristics. Energ. Technol. 1, 177–185 (2013)

    Article  Google Scholar 

  30. Wang, X., Zheng, S., Zhou, F., Qin, J., Shi, X., Wang, S., et al.: Scalable fabrication of printed Zn//MnO2 planar micro-batteries with high volumetric energy density and exceptional safety. Natl. Sci. Rev. (2019)

    Google Scholar 

  31. Berchmans, S., Bandodkar, A.J., Jia, W., Ramírez, J., Meng, Y.S., Wang, J.: An epidermal alkaline rechargeable Ag–Zn printable tattoo battery for wearable electronics. J. Mater. Chem. A. 2, 15788–15795 (2014)

    Article  Google Scholar 

  32. Kumar, R., Shin, J., Yin, L., You, J.-M., Meng, Y.S., Wang, J.: All-printed, stretchable Zn-Ag2O rechargeable battery via hyperelastic binder for self-powering wearable electronics. Adv. Energy Mater. 7, 1602096 (2017)

    Article  Google Scholar 

  33. Wongrujipairoj, K., Poolnapol, L., Arpornwichanop, A., Suren, S., Kheawhom, S.: Suppression of zinc anode corrosion for printed flexible zinc-air battery. physica status solidi (b). 254, 1600442 (2017)

    Google Scholar 

  34. Wang, Z., Meng, X., Chen, K., Mitra, S.: Synthesis of carbon nanotube incorporated metal oxides for the fabrication of printable. Flexible Nickel-Zinc Batteries. Adv. Mater. Interf. 5, 1701036 (2018)

    Google Scholar 

  35. Costa, G., Lopes, P.A., Sanati, A.L., Silva, A.F., Freitas, M.C., Almeida, A.T.D., Tavakoli, M.: Adv. Funct. Mater. 32, 2113232 (2022)

    Google Scholar 

Download references

Acknowledgement

This work has been financially supported by the National Natural Science Foundation (61973127), Science and Technology Program of Guangdong Province (2017B090901064), Foshan National High-tech Industrial Development Zone(FSBG2021021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangxue Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, Z., Chen, G. (2023). Research Progress and Prospect of Printed Batteries. In: Xu, M., Yang, L., Zhang, L., Yan, S. (eds) Innovative Technologies for Printing and Packaging. CACPP 2022. Lecture Notes in Electrical Engineering, vol 991. Springer, Singapore. https://doi.org/10.1007/978-981-19-9024-3_72

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9024-3_72

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9023-6

  • Online ISBN: 978-981-19-9024-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics