Skip to main content

Molecular Mechanisms for Electromagnetic Field Biosensing

  • Chapter
  • First Online:
Biological Effects of Static Magnetic Fields

Abstract

Almost all types of life that have been appropriately investigated have shown some indication of biological response to magnetic fields. An alluring application of this ever-increasing amount of information describing how biological systems sense magnetic fields and transduce this information into physiological response is to treat human disease. Toward that goal, this chapter summarizes electromagnetic biosensing in a diverse set of organisms across several phyla, and discusses how the underlying mechanisms apply or do not apply to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agliassa C, Narayana R, Christie JM, Maffei ME (2018) Geomagnetic field impacts on cryptochrome and phytochrome signaling. J Photochem Photobiol B 185:32–40

    Article  CAS  PubMed  Google Scholar 

  • Ahlbom IC, Cardis E, Green A, Linet M, Savitz D, Swerdlow A (2001) Review of the epidemiologic literature on EMF and health. Environ Health Perspect 109(Suppl 6):911–933

    Article  PubMed  PubMed Central  Google Scholar 

  • Amoon AT, Swanson J, Magnani C, Jaohansen C, Kheifets L (2022) Pooled analysis of recent studies of magnetic fields and childhood leukemia. Environ Res 204:111993

    Article  CAS  PubMed  Google Scholar 

  • Anderson JM, Clegg TM, Véras LVMVQ, Holland KN (2017) Insight into shark magnetic field perception from empirical observations. Sci Rep 7:11042

    Article  PubMed  PubMed Central  Google Scholar 

  • Anonymous (2002) IARC monographs on the evaluation of carcinogenic risks to humans. In: Non-ionizing radiation, part 1: static and extremely low-frequency (ELF) electric and magnetic fields, vol 80. World Health Organization, Geneva, pp 1–395

    Google Scholar 

  • Anonymous (2015) General wellness: policy for low risk devices—guidance for Industry and Food and Drug Administration staff. US Food and Drug Administration Document number 1300013: http://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm429674.pdf

  • Arakaki A, Nakazawa H, Nemoto M, Mori T, Matsunaga T (2008) Formation of magnetite by bacteria and its application. J R Soc Interface 5(26):977–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araujo AC, Morillo V, Cypriano J, Teixeira LC, Leão P, Lyra S, Almeida LG, Bazylinski DA, Vasconcellos AT, Abreu F, Lins U (2016) Combined genomic and structural analyses of a cultured magnetotactic bacterium reveals its niche adaptation to a dynamic environment. BMC Genomics 17(Suppl 8):726

    Article  PubMed  PubMed Central  Google Scholar 

  • Bainbridge C, McDonald J, Ahlert A, Benefield Z, Stein W, Vidal-Gadea AG (2019) Unbiased analysis of C. elegans behavior reveals the use of distinct turning strategies during magnetic orientation. bioRxiv 2019:688408. https://doi.org/10.1101/688408

    Article  Google Scholar 

  • Banaclocha MA, Bókkon I, Banaclocha HM (2010) Long-term memory in brain magnetite. Med Hypotheses 74(2):254–257

    Article  PubMed  Google Scholar 

  • Begall S, Burda H, Malkemper EP (2014) Chapter 2: Magnetoreception in mammals. In: Naguib M, Barrett L, Brockmann HJ, Healy S, Mitani JC, Roper TJ, Simmons LW (eds) Advances in the study of behavior, vol 46. Elsevier Inc, Oxford, pp 45–88

    Google Scholar 

  • Bellinger MR, Wei J, Hartmann U, Banks MA (2022) Conservation of magnetite biomineralization genes in all domains of life and implications for magnetic sensing. Proc Natl Acad Sci U S A 119(3):e2108655119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellini S (1963) Su di un particolare comportamento di batteri d’acqua dolce. Instituto di Microbiologia dell'Universita di Pavia, Pavia

    Google Scholar 

  • Ben-Shimon DS, Zarivach R (2021) Current view of iron biomineralization in magnetotactic bacteria. J Struct Biol X 5:100052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertini I, Luchinat C, Parigi G (2012) Chapter 8: Paramagnetic molecules. In: Bertini I, McGreevy KS, Parigi G (eds) NMR of biomolecules: towards mechanistic systems biology. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim

    Chapter  Google Scholar 

  • Betancur C, Dell'Omo G, Alleva E (1994) Magnetic field effects on stress-induced analgesia in mice: modulation by light. Neurosci Lett 182(2):147–150

    Article  CAS  PubMed  Google Scholar 

  • Blakemore R (1975) Magnetotactic bacteria. Science 190(4212):377–379

    Article  CAS  PubMed  Google Scholar 

  • Blakemore RP (1982) Magnetotactic bacteria. Annu Rev Microbiol 36:217–238

    Article  CAS  PubMed  Google Scholar 

  • Blanco G, Köhler RC, Ilieva M, Åkesson S (2022) The importance of time of day for magnetic body alignment in songbirds. J Comp Physiol A 208:135–144

    Article  Google Scholar 

  • Boggs E (2020) Sensing symbiosis: investigating the symbiotic magnetic sensing hypothesis in fish using genomics. University of Central Florida, Orlando

    Google Scholar 

  • Bolte P, Bleibaum F, Einwich A, Günther A, Liedvogel M, Heyers D, Depping A, Wöhlbrand L, Rabus R, Janssen-Bienhold U, Mouritsen H (2016) Localisation of the putative magnetoreceptive protein cryptochrome 1b in the retinae of migratory birds and homing pigeons. PLoS One 11(3):e0147819

    Article  PubMed  PubMed Central  Google Scholar 

  • Braganza LF, Blott BH, Coe TJ, Melville D (1984) The superdiamagnetic effect of magnetic fields on one and two component multilamellar liposomes. Biochim Biophys Acta 801(1):66–75

    Article  CAS  PubMed  Google Scholar 

  • Buskirk RE, O’Brien PJ Jr (2013) Magnetic remanence and response to magnetic fields in Crustacea. In: Kirschvink JL, Jones DS, MacFadden BJ (eds) Magnetite biomineralization and magnetoreception in organisms: a new biomagnetism, vol 5. Springer Science & Business Media, New York

    Google Scholar 

  • Cadiou H, McNaughton PA (2010) Avian magnetite-based magnetoreception: a physiologist’s perspective. J R Soc Interface 7:S193–S205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carles C, Esquirol Y, Turuban M, Piel C, Migault L, Pouchieu C, Bouvier G, Fabbro-Peray P, Lebailly P, Baldi I (2020) Residential proximity to power lines and risk of brain cancer tumor in the general population. Environ Res 185:109473

    Article  CAS  PubMed  Google Scholar 

  • Carlson RO, Masco D, Brooker D, Speigel S (1994) Endogenous ganglioside GM 1 modulates L-type calcium channel activity in N 18 neuroblastoma cells. J Neurosci 14(4):2272–2281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter CS, Huang SC, Searby CC, Cassaidy B, Miller MJ, Grzesik WJ, Piorczynski TB, Pak TK, Walsh SA, Acevedo MZ, Qihong KA, Mapuskar GL, Milne AO, Hinton D-F Jr, Guo R, Weiss K, Bradberry EB, Taylor AJ, Rauckhorst DW, Dick AF-H, Vamsidhar KC, Wagner BA, Carter WA, Wang K, Norris AW, Rahmouni K, Buettner GR, Hansen JM, Spitz DR, Abel ED, Sheffield VC (2020) Exposure to static magnetic and electric fields treats type 2 diabetes. Cell Metab 32(4):561–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caspar KR, Moldenhauer K, Moritz R, Němec P, Malkemper EP, Begall S (2020) Eyes are essential for magnetoreception in a mammal. J R Soc Interface 17:20200513

    Article  PubMed  PubMed Central  Google Scholar 

  • Červený J, Begall S, Koubek P, Nováková P, Burda H (2011) Directional preference may enhance hunting accuracy in foraging foxes. Biol Lett 7(3):355–357

    Article  PubMed  PubMed Central  Google Scholar 

  • Chae K-S, Oh I-T, Lee S-H, Kim S-C (2019) Blue light-dependent human magnetoreception in geomagnetic food orientation. PLoS One 14(10):e0223635

    Article  PubMed  PubMed Central  Google Scholar 

  • Chew GL, Brown GE (1989) Orientation of rainbow trout (Salmo gairdneri) in normal and null magnetic fields. Can J Zool 67(3):641–643

    Article  Google Scholar 

  • Choleris E, Del Seppia C, Thomas AW, Luschi P, Ghione G, Moran GR, Prato FS (2002) Shielding, but not zeroing of the ambient magnetic field reduces stress-induced analgesia in mice. Proc Biol Sci 269(1487):193–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clites BL, Pierce JT (2017) Identifying cellular and molecular mechanisms for magnetosensation. Annu Rev Neurosci 40:231–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cranfield CG, Dawe A, Karloukovski V, Dunin-Borkowski RE, de Pomerai D, Dobson J (2004) Biogenic magnetite in the nematode Caenorhabditis elegans. Proc Biol Sci 271(Suppl 6):S436–S439

    PubMed  PubMed Central  Google Scholar 

  • Crespi CM, Vergara XP, Hooper C, Oksuzyan S, Wu S, Cockburn M, Kheifets L (2016) Childhood leukaemia and distance from power lines in California: a population-based case-control study. Br J Cancer 115:122–128

    Article  PubMed  PubMed Central  Google Scholar 

  • De Nicola M, Cordisco S, Cerella C, Albertini MC, D'Alessio M, Accorsi A, Bergamaschi A, Magrini A, Ghibelli L (2006) Magnetic fields protect from apoptosis via redox alteration. Ann N Y Acad Sci 1090:59–68

    Article  PubMed  Google Scholar 

  • de Oliveira JF, Wajnberg E, de Souza Esquivel DM, Weinkauf S, Winklhofer M, Hanzlik M (2010) Ant antennae: are they sites for magnetoreception? J R Soc Interface 7:143–152

    Article  PubMed  Google Scholar 

  • Dhiman SK, Galland P (2018) Effects of weak static magnetic fields on the gene expression of seedlings of Arabidopsis thaliana. J Plant Physiol 231:9–18

    Article  CAS  PubMed  Google Scholar 

  • Diego-Rasilla FJ, Phillips JB (2021) Evidence for the use of a high-resolution magnetic map by a short-distance migrant, the Alpine newt (Ichthyosaura alpestris). J Exp Med 224(13):jeb238345

    Google Scholar 

  • Dovey KM, Kemfort JR, Towne WF (2013) The depth of the honeybee’s backup sun-compass systems. J Exp Biol 216:2129–2139

    PubMed  Google Scholar 

  • Dreyer D, Frost B, Mouritsen H, Günther A, Green K, Whitehouse M, Johnsen S, Heinze S, Warrant E (2018) The Earth’s magnetic field and visual landmarks steer migratory flight behavior in the nocturnal Australian Bogong moth. Curr Biol 28(13):2160–2166

    Article  CAS  PubMed  Google Scholar 

  • Driessen S, Bodewein L, Dechent D, Graefrath D, Schmiedchen K, Stunder D, Kraus T, Petri A-K (2020) Biological and health-related effects of weak static magnetic fields (≤1 mT) in humans and vertebrates: a systematic review. PLoS One 15(6):e0230038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebrahimdamavandi S, Mobasheri H (2019) Application of a static magnetic field as a complementary aid to healing in an in vitro wound model. J Wound Care 26(1):40

    Article  Google Scholar 

  • El-Jaick LJ, Acosta-Avalos D, De Souza DM, Wajnberg E, Linhares MP (2001) Electron paramagnetic resonance study of honeybee Apis mellifera abdomens. Eur Biophys J 29:579–586

    Article  CAS  PubMed  Google Scholar 

  • Ernst DA, Ritak RR, Schmidt M, Derby CD, Johnsen S, Lohmann KJ (2020) Pulse magnetization elicits differential gene expression in the central nervous system of the Caribbean spiny lobster, Panulirus argus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 206(5):725–742

    Article  CAS  PubMed  Google Scholar 

  • Fan Z, Hu P, Xiang L, Liu Y, He R, Lu T (2020) A static magnetic field inhibits the migration and telomerase function of mouse breast cancer cells. Biomed Res Int 2020:7472618

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan Y, Ji X, Zhang L, Zhang X (2021) The analgesic effects of static magnetic fields. Bioelectromagnetics 42(2):115–127

    Article  CAS  PubMed  Google Scholar 

  • Fleischmann PN, Grob R, Müller VL, Wehner R, Rössler W (2018) The geomagnetic field is a compass cue in Cataglyphis ant navigation. Curr Biol 28(9):1440–1444

    Article  CAS  PubMed  Google Scholar 

  • Fleischmann PN, Grob R, Rössler W (2020) Magnetoreception in hymenoptera: importance for navigation. Anim Cogn 23:1051–1061

    Article  PubMed  PubMed Central  Google Scholar 

  • Foley LE, Gegear RJ, Reppert SM (2011) Human cryptochrome exhibits light-dependent magnetosensitivity. Nat Commun 2:356

    Article  PubMed  Google Scholar 

  • Fommel SA, McCleave JD (1973) Sensitivity of American eels (Anqulla rostrata) and Atlantic salmon (Salmo salar) to weak electric and magnetic fields. J Fish Res Board Can 30:657–663

    Article  Google Scholar 

  • Formicki K, Korzelecka-Orkisz A, Tański A (2019) Magnetoreception in fish. J Fish Biol 95(1):73–91

    PubMed  Google Scholar 

  • Gellrich D, Schmidtmayer U, Eckrich J, Hagemann J, Becker S, Strieth S (2018) Modulation of exposure to static magnetic field affects targeted therapy of solid tumors in vivo. Anticancer Res 38(8):4549–4555

    Article  CAS  PubMed  Google Scholar 

  • Gilder SA, Wack M, Kaub L, Roud SC, Petersen N, Heinsen H, Hellenbrand P, Milz S, Schmitz C (2018) Distribution of magnetic remanence carriers in the human brain. Sci Rep 8:11363

    Article  PubMed  PubMed Central  Google Scholar 

  • Gould JL, Kirschvink JL, Deffeyes KS (1978) Bees have magnetic remanence. Science 201:1026–1028

    Article  CAS  PubMed  Google Scholar 

  • Granger J, Walkowicz L, Fitak R, Johnsen S (2020) Gray whales strand more often on days with increased levels of atmospheric radio-frequency noise. Curr Biol 30(4):R155–R156

    Article  CAS  PubMed  Google Scholar 

  • Grassi-Schultheiss PP, Heller F, Dobson J (1997) Analysis of magnetic material in the human heart, spleen and liver. Biometals 10(4):351–355

    Article  CAS  PubMed  Google Scholar 

  • Günther A, Einwich A, Sjulstok E, Feederle R, Bolte P, Koch K-W, Solov'yov IA, Mouritsen H (2018) Double-cone localization and seasonal expression pattern suggest a role in magnetoreception for European robin cryptochrome 4. Curr Biol 28(2):221–223

    Article  Google Scholar 

  • Hakomori S-I (2002) The glycosynapse. Proc Natl Acad Sci U S A 99(1):225–232

    Article  CAS  PubMed Central  Google Scholar 

  • Hakomori S (2004) Glycosynapses: microdomains controlling carbohydrate-dependent cell adhesion and signaling. An Acad Bras Cienc 76(3):553–572

    Article  CAS  PubMed  Google Scholar 

  • Hand E (2016) What and where are the body’s magnetometers? Science 352(6293):1510–1511

    Article  CAS  PubMed  Google Scholar 

  • Jandacka P, Kasparova B, Jiraskova Y, Dedkova K, Mamulova-Kutlakova K, Kukutschova J (2015) Iron-based granules in body of bumblebees. Biometals 28(1):89–99

    Article  CAS  PubMed  Google Scholar 

  • Johnsen S, Lohmann KJ (2008) Magnetoreception in animals. Phys Today 61:29–35

    Article  CAS  Google Scholar 

  • Josberger EE, Hassanzadeh P, Deng Y, Soh J, Rego MJ, Rolandi M (2016) Proton conductivity in ampullae of Lorenzini jelly. Sci Adv 2(5):1600112

    Article  Google Scholar 

  • Kahani SA, Yagini Z (2014) A comparison between chemical synthesis magnetite nanoparticles and biosynthesis magnetite. Bioinorg Chem Appl 2014:384984

    Article  PubMed  PubMed Central  Google Scholar 

  • Karki N, Vergish S, Zoltowski BD (2021) Cryptochromes: photochemical and structural insight into magnetoreception. Protein Sci 30(8):1521–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasetsirikul S, Buranapong J, Srituravanich W, Kaewthamasorn M, Pimpin A (2016) The development of malaria diagnostic techniques: a review of the approaches with focus on dielectrophoretic and magnetophoretic methods. Malar J 15(1):358

    Article  PubMed  PubMed Central  Google Scholar 

  • Kattnig DR, Evans EW, Déjean V, Dodson CA, Wallace MI, Mackenzie SR, Timmel CR, Hore PJ (2016) Chemical amplification of magnetic field effects relevant to avian magnetoreception. Nat Chem 8:384–391

    Article  CAS  PubMed  Google Scholar 

  • Kavet R, Brain J (2021) Cryptochromes in mammals and birds: clock or magnetic compass? Physiology (Bethesda) 36(3):183–194

    CAS  PubMed  Google Scholar 

  • Khan S, Cohen D (2018) Using the magnetoencephalogram to noninvasively measure magnetite in the living human brain. Hum Brain Mapp 40(5):1654–1665

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirschvink JL, Gould JL (1981) Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems 13(3):181–201

    Article  CAS  PubMed  Google Scholar 

  • Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Magnetite biomineralization in the human brain. Proc Natl Acad Sci U S A 89(16):7683–7687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirschvink JL, Walker MM, Diebel C (2001) Magnetite-based magnetoreception. Curr Opin Neurobiol 11(4):462–467

    Article  CAS  PubMed  Google Scholar 

  • Lambinet V, Hayden ME, Reigl K, Gomis S, Gries G (2017) Linking magnetite in the abdomen of honey bees to a magnetoreceptive function. Proc R Soc B 284(1851):20162873

    Article  PubMed  PubMed Central  Google Scholar 

  • Leão P, Le Nagard L, Yuan H, Cypriano J, Da Silva-Nieto I, Bazylinski DA, Acosta-Avalos D, de Barros HL, Hitchcock AP, Lins U, Abreau F (2020) Magnetosome magnetite biomineralization in a flagellated protist: evidence for an early evolutionary origin for magnetoreception in eukaryotes. Environ Microbiol 22(4):1495–1506

    Article  PubMed  Google Scholar 

  • Lee AA, Lau JCS, Hogben HJ, Biskup T, Kattnig DR, Hore PJ (2014) Alternative radical pairs for cryptochrome-based magnetoreception. J R Soc Interface 11(95):20131063

    Article  PubMed  PubMed Central  Google Scholar 

  • Lefèvre CT, Bazylinski DA (2013) Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol Mol Biol Rev 77(3):497–526

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang C-H, Chuang C-L, Jiang J-A, Yang E-C (2016) Magnetic sensing through the abdomen of the honey bee. Sci Rep 6:23657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin W, Kirschvink JL, Paterson GA, Bazylinski DA, Pan Y (2020) On the origin of microbial magnetoreception. Natl Sci Rev 7(2):472–479

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Jin J, Lv R, Luo Y, Dai W, Li W, Tang Y, Wang Y (2021) Repetitive transcranial magnetic stimulation increases the brain’s drainage efficiency in a mouse model of Alzheimer’s disease. Acta Neuropathol Commun 9:102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindecke O, Holland RA, Pētersons G, Voigt CC (2021) Corneal sensitivity is required for orientation in free-flying migratory bats. Commun Biol 4:522

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zhu D-M, Strayer DM, Israelsson UE (2010) Magnetic levitation of large water droplets and mice. Adv Space Res 45(1):208–213

    Article  Google Scholar 

  • Lohmann KJ, Ernst DA (2014) Chapter 12: The geomagnetic sense of crustaceans and its use in orientation and navigation. In: Derby C, Thiel M (eds) Nervous systems and control of behavior. Oxford University Press, Oxford, pp 321–336

    Google Scholar 

  • Lohmann KJ, Willows AOD (1987) Lunar-modulated geomagnetic orientation by a marine mollusk. Science 235:331–334

    Article  CAS  PubMed  Google Scholar 

  • Lohmann KJ, Willows AO, Pinter RB (1991) An identifiable molluscan neuron responds to changes in earth-strength magnetic fields. J Exp Biol 161:1–24

    Article  CAS  PubMed  Google Scholar 

  • Lohmann KJ, Goforth KM, Mackiewicz AG, Lim DS, Lohmann CMF (2022) Magnetic maps in animal navigation. J Comp Physiol A 208:41–67

    Article  Google Scholar 

  • Lower BH, Bazylinski DA (2013) The bacterial magnetosome: a unique prokaryotic organelle. J Mol Microbiol Biotechnol 23(1–2):63–80

    CAS  PubMed  Google Scholar 

  • Maffei ME (2014) Magnetic field effects on plant growth, development, and evolution. Front Plant Sci 5:445

    Article  PubMed  PubMed Central  Google Scholar 

  • Malkemper EP, Kagerbauer D, Ushakova L, Nimpf S, Pichler P, Treiber CD, de Jonge M, Shaw J, Keays DA (2019) No evidence for a magnetite-based magnetoreceptor in the lagena of pigeons. Curr Biol 29(1):R14–R15

    Article  CAS  PubMed  Google Scholar 

  • Markov MS (2014) Electromagnetic fields and life. J Electr Electron Syst 3:119

    Article  Google Scholar 

  • Melrose J (2019) Mucin-like glycopolymer gels in electrosensory tissues generate cues which direct electrolocation in amphibians and neuronal activation in mammals. Neural Regen Res 14(5):1191–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menegatti RD, de Oliveira LO, da Costa AVL, Braga EJB, Bianchi VJ (2019) Magnetic field and gibberellic acid as pre-germination treatment of passion fruit seeds. Revista Ciência Agrícola 17(1):6522

    Article  Google Scholar 

  • Meyer CG, Holland KN, Papastamatiou YP (2005) Sharks can detect changes in the geomagnetic field. J R Soc Interface 2(2):129–130

    Article  PubMed  Google Scholar 

  • Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M (2022) Paramagnetic chemical probes for studying biological macromolecules. Chem Rev 122(10):9571–9642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirabello G, Lenders JJM, Sommerdijk NAJM (2016) Bioinspired synthesis of magnetite nanoparticles. Chem Soc Rev 45:5085

    Article  CAS  PubMed  Google Scholar 

  • Mo WC, Zhang ZJ, Wang DL, Liu Y, Bartlett PF, He RQ (2016) Shielding of the geomagnetic field alters actin assembly and inhibits cell motility in human neuroblastoma cells. Sci Rep 6:22624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monteil CL, Lefevre CT (2020) Magnetoreception in microorganisms. Trends Microbiol 28(4):266–275

    Article  CAS  PubMed  Google Scholar 

  • Mori I (1999) Genetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. Annu Rev Genet 33:399–422

    Article  CAS  PubMed  Google Scholar 

  • Müller P, Ahmad M (2011) Light-activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception. J Biol Chem 286:21033–21040

    Article  PubMed  PubMed Central  Google Scholar 

  • Murat D, Quinlan A, Vali H, Komeili A (2010) Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc Natl Acad Sci U S A 107(12):5593–5598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray RW (1960) Electrical sensitivity of the ampullae of Lorenzini. Nature 187(4741):957

    Article  CAS  PubMed  Google Scholar 

  • Mustafa BT, Yaba SP, Ismail AH (2020) Influence of the static magnetic field on red blood cells parameters using tests of CBC and microscopy images. Biomed Phys Eng Express 6(2):025004

    Article  PubMed  Google Scholar 

  • Naisbett-Jones LC, Putman NF, Scanlan MM, Noakes DLG, Lohmann KJ (2020) Magnetoreception in fishes: the effect of magnetic pulses on orientation of juvenile Pacific salmon. J Exp Biol 223(10):222091

    Article  Google Scholar 

  • Natan E, Vortman Y (2017) The symbiotic magnetic-sensing hypothesis: do Magnetotactic bacteria underlie the magnetic sensing capability of animals? Mov Ecol 5:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Němec P, Altmann J, Marhold S, Burda H, Oelschläger HHA (2001) Neuroanatomy of magnetoreception: the superior colliculus involved in magnetic orientation in a mammal. Science 294:366–368

    Article  PubMed  Google Scholar 

  • Nießner C, Denzau S, Malkemper EP, Gross JC, Burda H, Winklhofer M, Peichl L (2016) Cryptochrome 1 in retinal cone photoreceptors suggests a novel functional role in mammals. Sci Rep 6:21848

    Article  PubMed  PubMed Central  Google Scholar 

  • Nimpf S, Nordmann GC, Kagerbauer D, Malkemper EP, Landler L, Papadaki-Anastasopoulou A, Ushakova L, Wenninger-Weinzierl A, Novatchkova M, Vincent P, Lendle T, Colombini M, Mason MJ, Keays DA (2019) A putative mechanism for magnetoreception by electromagnetic induction in the pigeon inner ear. Curr Biol 29(23):4052–4059

    Article  CAS  PubMed  Google Scholar 

  • Nuccitelli S, Cerella C, Cordisco S, Albertini MC, Accorsi A, De Nicola M, D'Alessio M, Radogna F, Magrini A, Bergamaschi A, Ghibelli L (2006) Hyperpolarization of plasma membrane of tumor cells sensitive to antiapoptotic effects of magnetic fields. Ann N Y Acad Sci 1090:217–225

    Article  CAS  PubMed  Google Scholar 

  • Ogura M, Kato M, Arai N, Sasada T, Sakaki Y (1992) Magnetic particles in chum salmon (Oncorhynchus keta): extraction and transmission electron microscopy. Can J Zool 70(5):874–877

    Article  Google Scholar 

  • Paulin MG (1995) Electroreception and the compass sense of sharks. J Theor Biol 174(3):325–339

    Article  Google Scholar 

  • Phillips M, Tang WJ, Robinson M, Daza DO, Hassan K, Leppert V, Hirst LS, Ameniya CT (2020) Evidence of chitin in the ampullae of Lorenzini of chondrichthyan fishes. Curr Biol 30(20):R1254–R1255

    Article  CAS  PubMed  Google Scholar 

  • Pinzon-Rodriguez A, Benshch S, Muheim R (2018) Expression patterns of cryptochrome genes in avian retina suggest involvement of Cry4 in light-dependent magnetoreception. J R Soc Interface 15:20180058

    Article  PubMed  PubMed Central  Google Scholar 

  • Pooam M, Arthaut L-D, Burdick D, Justin L, Martino CF, Ahmad M (2019) Magnetic sensitivity mediated by the Arabidopsis blue-light receptor cryptochrome occurs during flavin reoxidation in the dark. Planta 249:319–332

    Article  CAS  PubMed  Google Scholar 

  • Popescu IR, Willows AO (1999) Sources of magnetic sensory input to identified neurons active during crawling in the marine mollusc Tritonia diomedea. J Exp Biol 202(21):3029–3036

    Article  CAS  PubMed  Google Scholar 

  • Prato FS, Robertson JA, Desjardins D, Hensel J, Thomas AW (2005) Daily repeated magnetic field shielding induces analgesia in CD-1 mice. Bioelectromagnetics 26(2):109–117

    Article  PubMed  Google Scholar 

  • Quinn TP (1980) Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon. J Comp Physiol 137:243–248

    Article  Google Scholar 

  • Quinn TP, Brannon EL (1982) The use of celestial and magnetic cues by orienting sockeye salmon smolts. J Comp Physiol 147:547–552

    Article  Google Scholar 

  • Ramesh P, Hwang S-J, Davis HC, Lee-Gosselin A, Bharadwaj V, English MA, Sheng J, Iyer V, Shapiro M (2018) Ultraparamagnetic cells formed through intracellular oxidation and chelation of paramagnetic iron. Angew Chem Int Ed Engl 57(38):12385–12389

    Article  CAS  PubMed  Google Scholar 

  • Ritz T, Adem S, Schulten K (2000) A model for photoreceptor-based magnetoreception in birds. Biophys J 78:707–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodgers CT (2009) Magnetic field effects in chemical systems. Pure Appl Chem 81(1):19–43

    Article  CAS  Google Scholar 

  • Rosen AD (2003a) Effect of 125 mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells. Bioelectromagnetics 24:517–523

    Article  CAS  PubMed  Google Scholar 

  • Rosen AD (2003b) Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem Biophys 39(2):163–173

    Article  CAS  PubMed  Google Scholar 

  • Roth BJ (2012) The role of magnetic forces in biology and medicine. Exp Biol Med 236(2):132–137

    Article  Google Scholar 

  • Rubinstein AE, Gay S, Peterson CB, Kingsley CV, Tailor RC, Pollard-Larkin JM, Melancon AD, Followill DS, Court LE (2018) Radiation-induced lung toxicity in mice irradiated in a strong magnetic field. PLoS One 13:e0205803

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahu ID, Lorigan GA (2020) Electron paramagnetic resonance as a tool for studying membrane proteins. Biomol Ther 10(5):763

    CAS  Google Scholar 

  • Savory J, Exley C, Forbes WF, Huang Y, Joshi JG, Kruck T, McLachlan DR, Wakayama I (1996) Can the controversy of the role of aluminum in Alzheimer’s disease be resolved? What are the suggested approaches to this controversy and methodological issues to be considered? J Toxicol Environ Health 48(6):615–635

    Article  CAS  PubMed  Google Scholar 

  • Schultheiss-Grassi P, Dobson J, Wieser HG, Kuster N (1999) Magnetic properties of the heart, spleen and liver: evidence for biogenic magnetite in human organs. In: Bersani E (ed) Electricity and magnetism in biology and medicine. Springer, New York, pp 529–532

    Chapter  Google Scholar 

  • Schüz J (2011) Exposure to extremely low-frequency magnetic fields and the risk of childhood cancer: update of the epidemiological evidence. Prog Biophys Mol Biol 107(3):339–342

    Article  PubMed  Google Scholar 

  • Selberg J, Jia M, Roland M (2019) Protein conductivity of glycosaminoglycans. PLoS One 14(3):e0202713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang W, Chen G, Li Y, Zhuo Y, Wang Y, Fang Z, Yu Y, Ren H (2019) Static magnetic field accelerates diabetic wound healing by facilitating resolution of inflammation. J Diabetes Res 30:31886281

    Google Scholar 

  • Shaw JA, Boyd A, House M, Cowin G, Baer B (2018) Multi-modal imaging and analysis in the search for iron-based magnetoreceptors in the honeybee Apis mellifera. R Soc Open Sci 5:181163

    Article  PubMed  PubMed Central  Google Scholar 

  • Thoss F, Bartsch B (2007) The geomagnetic field influences the sensitivity of our eyes. Vision Res 47(8):1036–1041

    Article  PubMed  Google Scholar 

  • Thoss F, Bartsch B, Fritzsche B, Tellschaft D, Thoss MJ (2000) The magnetic field sensitivity of the human visual system shows resonance and compass characteristic. J Comp Physiol A 186:1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Thoss F, Bartsch B, Tellschaft D, Thoss D (2002) The light sensitivity of human visual system depends on the direction of view. J Comp Physiol A 188:235–237

    Article  CAS  Google Scholar 

  • Todorović D, Ilijin L, Mrdaković M, Vlahović M, Grčić A, Petković B, Perić-Mataruga V (2020) The impact of chronic exposure to a magnetic field on energy metabolism and locomotion of Blaptica dubia. Int J Radiat Biol 96(8):1076–1083

    Article  PubMed  Google Scholar 

  • Toledo MS, Suzuki E, Handa K, Hakomori S (2004) Cell growth regulation through GM3-enriched microdomain (glycosynapse) in human lung embryonal fibroblast WI38 and its oncogenic transformant VA13. J Biol Chem 279(33):34655–34664

    Article  CAS  PubMed  Google Scholar 

  • Toro-Nahuelpan M, Giacomelli G, Raschdorf O, Borg S, Plitzko JM, Bramkamp M, Schüler D, Müller F-D (2019) MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria. Nat Microbiol 4:1978–1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vácha M, Drštková D, Půžová T (2008) Tenebrio beetles use magnetic inclination compass. Naturwissenschaften 95:761–765

    Article  PubMed  Google Scholar 

  • Vale JO, Acosta-Avalos D (2021) Magnetosensitivity in the stingless bee Tetragonisca angustula: magnetic inclination can alter the choice of the flying departure angle from the nest. Bioelectromagnetics 42(1):51–59

    Article  CAS  PubMed  Google Scholar 

  • Válková T, Vácha M (2012) How do honeybees use their magnetic compass? Can they see the north? Bull Entomol Res 102(4):461–467

    Article  PubMed  Google Scholar 

  • Valles JM Jr, Lin K, Denegre JM, Mowry KL (1997) Stable magnetic field gradient levitation of Xenopus laevis: toward low-gravity simulation. Biophys J 73(2):1130–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanderstraeten J, Gailly P, Malkemper EP (2018) Low-light dependence of the magnetic field effect on cryptochromes: possible relevance to plant ecology. Front Plant Sci 9:121

    Article  PubMed  PubMed Central  Google Scholar 

  • Vidal-Gadea A, Ward K, Beron C, Ghorashian N, Gokce S, Russell J, Truong N, Parikh A, Gadea O, Ben-Yakar A, Pierce-Shimomura J (2015) Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans. Elife 4:e07493

    Article  PubMed  PubMed Central  Google Scholar 

  • Vidal-Gadea AG, Caldart CS, Bainbridge C, Clites BL, Palacios B, Bakhtiari LA, Gordon VD, Golombek DA, Pierce JT (2018) Temporal and spatial factors that influence magnetotaxis in C. elegans. bioRxiv 2018:700

    Google Scholar 

  • Wajnberg E, Rossi AL, Exquivel DMS (2017) Titanium and iron titanium oxide nanoparticles in antennae of the migratory ant Pachycondyla marginata: an alternative magnetic sensor for magnetoreception. Biometals 30:541–548

    Article  CAS  PubMed  Google Scholar 

  • Wan G, Hayden AN, Iiams SE, Merlin C (2021) Cryptochrome 1 mediated light-dependent inclination magnetosensing in monarch butterflies. Nat Commun 12:771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JH, Cain SD, Lohmann KJ (2004) Identifiable neurons inhibited by Earth-strength magnetic stimuli in the mollusc Tritonia diomedea. J Exp Biol 207(6):1043–1049

    Article  PubMed  Google Scholar 

  • Wang Z, Sun Z, Li AV, Yarema KJ (2006) Roles for GNE outside of sialic acid biosynthesis: modulation of sialyltransferase and BiP expression, GM3 and GD3 biosynthesis, proliferation and apoptosis, and ERK1/2 phosphorylation. J Biol Chem 281(37):27016–27028

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Sarje A, Che P-L, Yarema KJ (2009) Moderate strength (0.23–0.28 T) static magnetic fields (SMF) modulate signaling and differentiation in human embryonic cells. BMC Genomics 4(10):356

    Article  Google Scholar 

  • Wang Z, Che P-L, Du J, Ha B, Yarema KJ (2010) Static magnetic field exposure reproduces cellular effects of the Parkinson’s disease drug candidate ZM241385. PLoS One 5(11):e13883

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang CX, Hilburn IA, Wu D-A, Mizuhara Y, Cousté CP, Abrahams JNH, Bernstein SE, Matani A, Shimojo S, Kirschvink JL (2019) Transduction of the geomagnetic field as evidenced from alpha-band activity in the human brain. eNeuro 6:04830418.2019

    Article  Google Scholar 

  • Wiltschko R, Wiltschko W (2012) Chapter 8: Magnetoreception. In: López-Larrea C (ed) Advances in experimental medicine and biology: sensing in nature, vol 739. Springer, New York

    Google Scholar 

  • Wiltschko R, Wiltschko W (2013) The magnetite-based receptors in the beak of birds and their role in avian navigation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 199(2):89–98

    Article  CAS  PubMed  Google Scholar 

  • Wiltschko R, Wiltschko W (2019) Magnetoreception in birds. J R Soc Interface 16:20190295

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiltschko R, Niebner C, Wiltschko W (2021) The magnetic compass of birds: the role of cryptochrome. Front Physiol 12:667000

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong SY, Wei Y, Mouritsen H, Solov'yov IA, Hore PJ (2021) Cryptochrome magnetoreception: four tryptophans could be better than three. J R Soc Interface 18:20210601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyatt DG (1961) Problems in the measurement of blood flow by magnetic induction. Phys Med Biol 5(3):289–320

    Article  Google Scholar 

  • Yang J, Zhang G, Li Q, Tang Q, Feng Y, Shang P, Zeng Y (2021a) Effect of high static magnetic fields on biological activities and iron metabolism in MLO-Y4 osteocyte-like cells. Cell 10(12):3519

    Article  CAS  Google Scholar 

  • Yang J, Zhou S, Lv H, Wei M, Fang Y, Shang P (2021b) Static magnetic field of 0.2–0.4 T promotes the recovery of hindlimb unloading-induced bone loss in mice. Int J Radiat Biol 97(5):746–754

    Article  CAS  PubMed  Google Scholar 

  • Zborowski M, Ostera GR, Moore LR, Milliron S, Chalmers JJ, Schechter AN (2003) Red blood cell magnetophoresis. Biophys J 84(4):2638–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Wang S, Long H, Zhu J, Jian F, Ye N, Lai W (2017) Effect of static magnetic field on pain level and expression of P2X3 receptors in the trigeminal ganglion in mice following experimental tooth movement. Bioelectromagnetics 38(1):22–30

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Yarema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dammen-Brower, K., Sardana, A., Yarema, K.J. (2023). Molecular Mechanisms for Electromagnetic Field Biosensing. In: Zhang, X. (eds) Biological Effects of Static Magnetic Fields. Springer, Singapore. https://doi.org/10.1007/978-981-19-8869-1_4

Download citation

Publish with us

Policies and ethics