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Abstract. The lack of consideration of subjective design intents hinders the appli-
cation of performance-based design optimization to architectural design because
building performance is not the only aspect that designers need to solve. In
response, this study proposes a method integrating subjective design intents into
performance-based design optimization using soft constraints. To demonstrate
the method, a case study is presented, where the design optimization continuously
provides feedback to the designer and helps them reformulate and redefine the
design problem. The case study shows how the application of design optimization
and soft constraints is able to assist designers in identifying implicit and hidden
design problems and stimulate design exploration at the early design stage.

Keywords: Performance-based design · Design intent · Soft constraints ·
Optimization · Co-evolution

1 Introduction

Performance-based design optimization, which integrates parametric models, building
performance simulations, and evolutionary optimization, has been widely considered
an effective design tool for sustainable architectural design. Many studies have demon-
strated its role in addressing complex performance challenges in building design. How-
ever, other factors in architectural design, such as functionality and aesthetics, are often
omitted in research. This tendency is also reinforced by the notion that design intents are
difficult to quantify [5]. The claim greatly affects the application of performance-based
design optimization to real-world architectural design tasks. As a result, the design opti-
mization is often conducted after the design scheme is determined, thereby, separating
it from the conceptual development process.

In architectural design, designers have to integrate various factors into the design
synthesis process, including functionality and aesthetics that are judged subjectively
and building performance factors that are evaluated objectively. In order to incorporate
subjective intents into the optimization, several approaches have been explored, such as
using interactive genitive algorithms (IGA) [2, 3] or aesthetic-related constraints [9].
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The use of these approaches enables architects to intervene in the optimization pro-
cess and allow architects’ personal preferences to be integrated into the process of design
optimization, but they are notwithout problems. First, using thesemethods can still result
in a huge number of unfeasible designs generated if using under-constrained or naive
generative models. Second, interactive approaches, such as IGAs, require architects to
spend considerable time and energy to select or score the generated designs, which can
disrupt architects’ design processes. Last but not least, the feedback loop between archi-
tects’ design development and performance-based design optimization is also absent
from most existing studies.

1.1 Paper Overview

Considering the limitation of the previous studies, this study proposes an approach to
integrating subjective design intents into performance-based design optimization using
soft constraints. With the use of soft constraints, specific design intents, such as view,
building forms, and site constraints, can be formulated into the fitness evaluation by
using penalty or award functions [1]. As a result, designers are enabled to navigate the
optimization search and make the optimization produce more desieable designs that can
both satisfy the performance objective and design intent.

To demonstrate the efficacy of the proposed approach, a case study is presented
in the paper, where the design is started only considering performance factors. Then,
through reflecting on the optimization result, we iteratively insert factors related to
functionality into the fitness evaluation and make the optimization result achieve an
acceptable compromise between the performance improvement and design intent. The
case study shows that the proposed design approach can strengthen the feedback loop
between designers and computers, making the designer more engaged in the design
development process informed and inspired by performance-based design optimization.
This design process can be viewed as a “meta-optimization” process where the objective
is not merely focused on performance improvement but also to achieve a “co-evolution”
between designers and computers to attain a well-rounded design.

2 Method

Early-stage architectural design is widely accepted as an iterative design exploration pro-
cess. Therefore, it is also critical for the computational design tools or design approaches
to support the iterative and human-in-the-loop design process. In light of this, the pro-
posed design optimization is envisioned as continuously providing feedback to the
designer from theoutset of the designprocess rather thanoffering specific anddetermined
solutions (Fig. 1). In other words, it encourages architects to reflect on the optimization
result and iteratively reformulate the design objective with the use of computational
design optimization.

The workflow is built on the Rhino-Grasshopper platform. EvoMass and other build-
ing performance simulation tools, such as Ladybug and ClimateStudio, are used in the
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Fig. 1. Proposed optimization-based design workflow

design optimization workflow. The combination of these tools has already been applied
to performance-oriented design optimization. However, previous applications fell short
of the pursuit of satisfying subjective design intents. Therefore, to make architects’
design intents to be included in the optimization process, we introduce the application
of soft constraints, which can effectively embed design intent into the optimization.

2.1 Design Generation and Optimization

In the proposed design optimization workflow. EvoMass serves as the building design
generator and the optimization solver [8]. When using EvoMass for building design
optimization, the designer first customizes the generative component in EvoMass to
adapt the generated buildingmassing design to the building site. There are two generative
components in EvoMass built on the additive and subtractive form generation principles,
and both components can generate diverse buildingmassing designs, which can facilitate
the optimization process to identify site- and task-specific solutions for various design
projects.

Second, the generated building massing design is assessed by different design eval-
uation functions. For performance-based design optimization, simulation tools, such as
Ladybug and ClimateStudio, are often used to measure the performance of the gener-
ated design. The design evaluation function will guide the optimization search direction.
Therefore, in addition to performance factors, other design factors can be also included
in the design evaluation function and, thereby, steer the search direction.

Third, the performance and the evolution of the design are converted into a fitness
score and sent back to the optimization algorithm. When using EvoMass, the embedded
evolutionary algorithm—SSIEA (Stead-State Island Evolutionary Algorithm), is used
as the optimization solver to evolve the design population and identify the high-fitness
solutions [8].

EvoMass can produce optimization results with diverse solutions that best satisfy the
optimization objective. Furthermore, designers can re-evaluate the optimization result
andmodify the optimization objective. Previous applications of EvoMassmostly focused
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on building performance, while the capability of generating diverse building massing
forms makes EvoMass an ideal form-finding tool for combining performance-based
design and architectural design. Hence, this study further explores the potential of Evo-
Mass in architectural design and investigates how the design optimization workflow can
be intertwined with architects’ design loop for conceptual development.

2.2 Soft Constraint

In evolutionary computing, constraint handling, including direct and indirect constraints,
plays a critical role in solving optimization problems [1]. For direct constraints, the
constraint is embedded into the design generation stage instead of in the design evaluation
stage, using methods such as repair functions. This approach can effectively prevent
invalid and chaotic solutions from being generated, while it often reduces the variability
of the design generation, and it is possible to exclude promising solutions from the design
search space [7].

For indirect constraints, the constraint is embedded into the design evaluation stage,
using methods such as penalty or award functions. Regarding design applications, we
further divide indirect constraints into hard and soft constraints. For hard constraints,
designs that cannot meet the constraint will be directly eliminated and “killed” from
the design population, which can rapidly narrow down the search scope and speed up
the convergence of the optimization process. However, when using hard constraints,
the population diversity will drop rapidly, and promising designs that even slightly
violate the constraint will also be removed from the pool of recombination. It is because,
for evolutionary optimization, the design optimization process heavily relies on the
re-combination, namely crossover, of the genotype from different designs (typically
two designs). Thus, to fully explore the design space, the evolutionary process needs
to maintain an adequate population diversity that allows for the recombination of the
design with heterogeneous genotypes.

In comparison, the application of soft constraints has the advantage of maintaining
the population diversity during the optimization process. When using soft constraints,
the fitness of the design that violates the constraint will be proportionally decreased to
reduce its chance of surviving in the subsequent evolutionary process. Since the design
remains in the design population, it can still be recombined with other designs. More
importantly, if this design contains key parameters (genomes) that are essential parts of
the genotype of high-fitness designs, the recombination with other designs may produce
the offspring design that does not violate the constraint while having an advantageous
fitness.

The application of soft constraints provides a feasibleway for the designer to navigate
the optimization process by converting the design intent into the design optimization
process. Thus, in the following case study, we demonstrate how different design intents
can be integrated into the optimization process using soft constraints and how the design
optimization result shows the response to the design intent.
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3 Case Study

In this study, we present a case-study design consisting of three stages and assume that
the designer begins with the use of design optimization only focusing on performance
factors and then iteratively integrates the design intent into the optimization process,
including responding to the surrounding environment, functionality, and aesthetics. This
case study describes an office building design in Nanjing, China. The building is located
in the city center and is imposed a 50-m height limit (Fig. 2). There are several residential
buildings on its west and north sides, urban green space on its northwest side, a main
road on the southern side, and several high-rise office buildings on its east and west
sides.

Fig. 2. Site overview

Within such a complex urban environment, only considering the building perfor-
mance is insufficient. The irregular site boundary and the high-density urban environ-
ment pose a great challenge to the designer. In addition, as widely accepted as a “wicked”
problem, architectural design often faces many hidden constraints that are not explicit
to be identified at the outset of the design. As Schön [4] stated, conceptual design is a
“moving-seeing-moving” process, where designers often discover implicit problems or
constraints whenmanipulating the design object. As such, architects can leverage design
optimization as an approach to uncovering hidden design problems and reformulate the
design objective by superimposing the information gathered from design optimization.

In terms of building performance, daylight factor, spatial daylight autonomy, and
discomfort glare have been commonly used in design evaluation. In this case study,
the surrounding high-rise buildings cast a large shadow that can affect the daylighting
quality of the target building. Thus, the spatial daylight autonomy (sDA) is first taken as
the evaluation metric, simulated by ClimateStudio in Rhino-Grasshopper. Additionally,
two soft constraints are applied to control the gross floor area (GFA) and density of the
design.

According to the above-mentioned objectives, the initial fitness function of the first
stage is shown in Fig. 3, where p_area and p_den represent the penalty function for
GFA and density. For GFA, it calculates the difference between the actual GFA of
each generated design and the target GFA (40,000 m2) and proportionally decreases the
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fitness value according to the GFA difference. For the density, it punishes the design with
a density outside the range of 0.6 to 0.8 and also proportionally decreases the fitness
value based on the difference between the actual density and the target density.

Fig. 3. The fitness evaluation function (top) and the optimization result in the first stage (bottom)

The above fitness function shows that when using soft constraints, there can be
multiple objectives that need to be optimized. To handle multiple optimization objec-
tives, the conventional approach based on Pareto optimization becomes inefficient as
the goal of seeking as many trade-off (non-dominated) designs as possible can hinder
the optimization progress. In addition, using Pareto optimization often results in too
many design options, making it difficult to analyze and extract design information. In
this regard, when using soft constraints, a more advisable approach is to use weight-
sum and -product approaches. In this case study, we adopt a weight-product approach
to integrate different optimization objectives. In comparison to weight-sum approaches,
weight-product approaches do not require normalization as the change in each value can
equally affect the overall fitness.

Figure 3 (bottom) shows the optimal design options found by the optimization pro-
cess. It is not difficult to notice that these design options tend to keep away from the
high-rise buildings in the south to escape from the shadow cast by these buildings.
However, as the building massing typically gathers to the north to enhance its day-
lighting accessibility, this tendency significantly undermines the sunlight and daylight
accessibility for other buildings and the surrounding public space

In the second stage, to decrease the adverse effects on the surrounding environ-
ment, the sunlight hour of surrounding residential buildings and the urban green space
are included in the optimization. Sunlight hours are simulated using Ladybug in Rhino-
Grasshopper, and the simulation only calculates the sunlight hour during winters. There-
fore, by integrating the factors considered in the first stage, the fitness function of the
second stage is shown in Fig. 4, where sunlight_rsd and sunligh_green respectively
indicate the sunlight hour of the residential buildings and the green space. As a result,
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with the inclusion of the two new soft constraints, the fitness of the design is decreased
according to the amount of sunlight blocked by the generated building massing form.

Fig. 4. The fitness evaluation function (top) and the optimization result in the second stage
(bottom)

As shown in Fig. 4 (bottom), to reduce sunlight obstruction, the optimal design
options typically have the massing volume retreating from the north, which can reduce
the shadow cast on the residential building and the green space. However, to meet the
GFA requirement, most of the massing volume is stacked and accumulated in the south,
resulting in the building being too close to the surrounding office buildings. From an
urban design perspective, this tends to make the outdoor space in the south of the target
building over-crowded, which may also reduce urban ventilation.

In the third stage, four additional design intents are included. First, we place the
entrance on the southern side of the target building to reduce the crowdedness in this
area. Hence, we define a volume for the entrance space and punish the design based on
howmuch the entrance space is “invaded” by the building’s massing volume. Second, to
enhance people’s well-being, the percentage of the unobstructed view is also included
in the optimization. Third, to allow for more outdoor and semi-outdoor spaces for the
people working in this building, we award the design with more roof surfaces. The roof
surface can be used for resting and viewing. Finally, we calculate the standard deviation
of the roof surface area as a measure of the difference between all roof surfaces. To
prevent the design from creating oversized roofs, we award the design with a smaller
standard deviation value.

As a result, by integrating the factors included in the first two stages, the fitness
function of the third stage is shown in Fig. 5, where p_entrance is the penalty function for
the entrance space, num_roof is the number of roof surfaces, and the view is the average
value of the unobstructed view on the surface of the building massing, p_roof_area_diff
indicates the penalty function that punishes the design with a large difference of roof
surface areas.
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Fig. 5. The fitness evaluation function (top) and the optimization result in the third stage (bottom)

As shown in Fig. 5 (bottom), the optimal design options tend to place the major
building massing volume in the middle of the site, which is the result of the compromise
under multiple constraints. First, the building massing volume needs to make room for
the entrance space in the south, and some design options feature an overhanging block
above the entrance. Second, the building massing volume still maintains a distance from
the residential building and green space in the north to mitigate the sunlight obstruction.
Third, the building massing volume also stays away from the high-rise buildings in the
south to enhance the unobstructed view. Fourth, the building massing volume tends to
have more roof surfaces at different heights to increase the rooftop area. Finally, the area
distribution of the roof surface becomes more evenly distributed, making the building
more balanced visually. However, with the inclusion of the new soft constraint, the
optimization has to make more compromises on other design aspects, which is evident
by the drop in other optimization metrics.

4 Discussion and Conclusion

The presented case study shows that the use of the computational design help designers
identify implicit design constraints and problems, and thereafter, further stimulates an
iterative design exploration process. Regarding the proposed workflow, the use of soft
constraints facilitates the designer to embed their design intents into the optimization,
while the weight-product approach allows the new design intents can be integrated with
the existing ones. Hence, the pre-existing design implication can be preserved but also
dialed down with new constraints included.

Figure 6 summarizes the numerical change of the optimization result regarding dif-
ferent optimization metrics during the three stages. We select the best 15 designs from
each design stage and calculate the average value for each metric. Left of the dotted
line is the optimization objective included in the corresponding stage. At the same time,
we also evaluate the optimal design options found in the earlier stage against the opti-
mization metric included in the later stage to provide a holistic view of the change in



Embedding Design Intent into Performance-Based Architectural 173

optimization metrics. To compare the change in the value, we use the metric of the last
stage as a benchmark (0.50) and recalculate the average value of the metric at earlier
stages.

Fig. 6. The change in the value of each metric in the three stages

It is noticeable that the inclusion of each new metric in the optimization typically
lowers themetric already in the optimization. This highlights that the design options pro-
duced in the final stage are the trade-off that achieves an acceptable compromise among
various design aspects. Nevertheless, it should also be stressed that the design options
produced in the final stage are more architecturally appealing and rational compared
with those produced in earlier stages.

To conclude, this study is aimed to further extend the application of performance-
based design optimization in architectural design and demonstrates how subjective
design intents can be incorporated into the optimization process by using soft constraints.
As demonstrated in the presented case study, the proposed design optimization work-
flow incorporating the application of soft constraints enables a more integrated human–
computer design process. The optimization can effectively stimulate design exploration
and assist designers in defining the design problem. Thus, by strengthening the feed-
back loop between designers and computers, a co-evolutionary design process emerges,
where the application of performance-based design optimization provides designerswith
a "medium of reflection" in the early-stage design ideation and conceptual development.
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