Skip to main content

Human Diseases Induced by Oxidative Damage in DNA

  • Chapter
  • First Online:
Nucleic Acid Biology and its Application in Human Diseases

Abstract

Reactive oxygen and nitrogen species (RONS) can be produced in our system by several endogenous and exogenous processes, leading toward the accumulation of oxidative lesions throughout the genome. Oxidative DNA damage is a major threat to genomic integrity, thus resulting in the manifestation of various chronic diseases including cancer, cardiovascular disorders, and neurodegeneration. 7,8-dihydro-8oxo-deoxyguanine (8-oxo-G) is one of the best characterized oxidative DNA lesions. If not repaired, A:8-oxo-G mispairs can give rise to C: G → A: T transversion mutations. These lesions are mainly repaired by BER and NER pathways, which are regulated by an arsenal of different proteins at different levels. In this chapter, we briefly detail the generation of oxidative DNA damage and the effects of this damage in cellular level. We also highlighted the possible repair pathways to erase these lesions and discussed all the human diseases induced by this oxidative DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Tassan N et al (2002) Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors. Nat Genet 30:227–232

    Article  CAS  PubMed  Google Scholar 

  • (2013) Gene polymorphism of XRCC1 Arg399Gln and cervical carcinoma susceptibility in Asians: a meta-analysis based on 1,759 cases and 2,497 controls. Asian Pac J Cancer Prev 14:189–193

    Google Scholar 

  • Bakhoum SF, Cantley LC (2018) The multifaceted role of chromosomal instability in cancer and its microenvironment. Cell 174:1347–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berdis AJ (2017) Inhibiting DNA polymerases as a therapeutic intervention against cancer. Front Mol Biosci 4:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Boldogh I et al (2012) Activation of Ras signaling pathway by 8-oxoguanine DNA glycosylase bound to its excision product, 8-oxoguanine. J Biol Chem 287:20769–20773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brégeon D, Peignon P-A, Sarasin A (2009) Transcriptional mutagenesis induced by 8-oxoguanine in mammalian cells. PLoS Genet 5:e1000577

    Article  PubMed  PubMed Central  Google Scholar 

  • Bryant HE et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP- ribose) polymerase. Nature 434:913–917

    Article  CAS  PubMed  Google Scholar 

  • Burtenshaw D, Kitching M, Redmond EM, Megson IL, Cahill PA (2019) Reactive oxygen species (ROS), intimal thickening, and subclinical atherosclerotic disease. Front Cardiovasc Med 6:89–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cacciapuoti F (2016) Oxidative stress as ‘mother’ of many human diseases at strong clinical impact. J Cardiovasc Med Cardiol 3(1):001–006. https://doi.org/10.17352/2455-2976.000020

    Article  Google Scholar 

  • Cadet J, Davies KJA (2017) Oxidative DNA damage & repair: an introduction. Free Radic Biol Med 107:2–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai L, Fu Y, Zhang Y (2014) APE1 Asp148Glu polymorphism and lung cancer susceptibility. Tumor Biol 35:5237–5244

    Article  CAS  Google Scholar 

  • Chen Y, Li J, Mo Z (2016) Association between the APEX1 Asp148Glu polymorphism and prostate cancer, especially among Asians: a new evidence-based analysis. Oncotarget 7:52530–52540

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng B et al (2022) Recent advances in DDR (DNA damage response) inhibitors for cancer therapy. Eur J Med Chem 230:114109

    Article  CAS  PubMed  Google Scholar 

  • Clark DW, Phang T, Edwards MG, Geraci MW, Gillespie MN (2012) Promoter G-quadruplex sequences are targets for base oxidation and strand cleavage during hypoxia-induced transcription. Free Radic Biol Med 53:51–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214

    Article  CAS  PubMed  Google Scholar 

  • Coppede F, Migliore L (2010) DNA repair in premature aging disorders and neurodegeneration. Curr Aging Sci 3:3–19

    Article  CAS  PubMed  Google Scholar 

  • Cuollo L, Antonangeli F, Santoni A, Soriani A (2020) The senescence-associated secretory phenotype (SASP) in the challenging future of cancer therapy and age-related diseases. Biology 9:485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David SS, O’Shea VL, Kundu S (2007) Base-excision repair of oxidative DNA damage. Nature 447:941–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Nagro CJ et al (2014) Chk1 inhibition in p53-deficient cell lines drives rapid chromosome fragmentation followed by caspase-independent cell death. Cell Cycle 13:303–314

    Article  PubMed  Google Scholar 

  • Di Minno A et al (2016) 8-hydroxy-2-deoxyguanosine levels and cardiovascular disease: a systematic review and meta-analysis of the literature. Antioxid Redox Signal 24:548–555

    Article  PubMed  PubMed Central  Google Scholar 

  • Doskey CM et al (2016) Tumor cells have decreased ability to metabolize H(2)O(2): implications for pharmacological ascorbate in cancer therapy. Redox Biol 10:274–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faheem MM et al (2020) Convergence of therapy-induced senescence (TIS) and EMT in multistep carcinogenesis: current opinions and emerging perspectives. Cell Death Discov 6:51–51

    Article  PubMed  PubMed Central  Google Scholar 

  • Fleming AM, Ding Y, Burrows CJ (2017a) Oxidative DNA damage is epigenetic by regulating gene transcription via base excision repair. Proc Natl Acad Sci 114:2604–2609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming AM, Zhu J, Ding Y, Burrows CJ (2017b) 8-Oxo-7,8-dihydroguanine in the context of a gene promoter G-quadruplex is an on–off switch for transcription. ACS Chem Biol 12:2417–2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortini P (2003) 8-Oxoguanine DNA damage: at the crossroad of alternative repair pathways. Mutat Res 531:127–139

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Esparcia P et al (2017) Dementia with Lewy bodies: molecular pathology in the frontal cortex in typical and rapidly progressive forms. Front Neurol 8:89

    Article  PubMed  PubMed Central  Google Scholar 

  • Grootaert MOJ et al (2018) Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc Res 114:622–634

    Article  CAS  PubMed  Google Scholar 

  • Grundy GJ, Parsons JL (2020) Base excision repair and its implications to cancer therapy. Essays Biochem 64:831–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grünewald A, Kumar KR, Sue CM (2019) New insights into the complex role of mitochondria in Parkinson’s disease. Prog Neurobiol 177:73–93

    Article  PubMed  Google Scholar 

  • Guevara NV, Kim H-S, Antonova EI, Chan L (1999) The absence of p53 accelerates atherosclerosis by increasing cell proliferation in vivo. Nat Med 5:335–339

    Article  CAS  PubMed  Google Scholar 

  • Haider L et al (2011) Oxidative damage in multiple sclerosis lesions. Brain 134:1914–1924

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Hawk MA, McCallister C, Schafer ZT (2016) Antioxidant activity during tumor progression: a necessity for the survival of cancer cells? Cancers 8:92

    Article  PubMed  PubMed Central  Google Scholar 

  • Heitzer E, Tomlinson I (2014) Replicative DNA polymerase mutations in cancer. Curr Opin Genet Dev 24:107–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA (2008) DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 8:193–204

    Article  CAS  PubMed  Google Scholar 

  • Henning RJ, Bourgeois M, Harbison RD (2018) Poly(ADP-ribose) polymerase (PARP) and PARP inhibitors: mechanisms of action and role in cardiovascular disorders. Cardiovasc Toxicol 18:493–506

    Article  CAS  PubMed  Google Scholar 

  • Hiraku Y (2010) Formation of 8-nitroguanine, a nitrative DNA lesion, in inflammation-related carcinogenesis and its significance. Environ Health Prev Med 15:63–72

    Article  CAS  PubMed  Google Scholar 

  • Hu C-W, Chang Y-J, Chen J-L, Hsu Y-W, Chao M-R (2018) Sensitive detection of 8-nitroguanine in DNA by chemical derivatization coupled with online solid-phase extraction LC-MS/MS. Molecules 23:605

    Article  PubMed  PubMed Central  Google Scholar 

  • Hung RJ, Hall J, Brennan P, Boffetta P (2005) Genetic polymorphisms in the base excision repair pathway and cancer risk: a HuGE review. Am J Epidemiol 162:925–942

    Article  PubMed  Google Scholar 

  • Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knijnenburg TA et al (2018) Genomic and molecular landscape of DNA damage repair deficiency across the cancer genome atlas. Cell Rep 23:239–254.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobaisi F et al (2019) Signaling pathways, chemical and biological modulators of nucleotide excision repair: the faithful shield against UV genotoxicity. Oxidative Med Cell Longev 2019:1–18

    Article  Google Scholar 

  • Kong Q, Lin CG (2010) Oxidative damage to RNA: mechanisms, consequences, and diseases. Cell Mol Life Sci 67:1817–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korkmaz KS, Butuner BD, Roggenbuck D (2018) Detection of 8-OHdG as a diagnostic biomarker. J Lab Precis Med 3:95

    Article  Google Scholar 

  • Kroese LJ, Scheffer PG (2014) 8-Hydroxy-2′-Deoxyguanosine and cardiovascular disease: a systematic review. Curr Atheroscler Rep 16:452

    Article  PubMed  Google Scholar 

  • Kumari R, Jat P (2021) Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol 9:645593

    Article  PubMed  PubMed Central  Google Scholar 

  • Leandro GS, Sykora P, Bohr VA (2015) The impact of base excision DNA repair in age-related neurodegenerative diseases. Mutat Res 776:31–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee T-H, Kang T-H (2019) DNA oxidation and excision repair pathways. Int J Mol Sci 20:6092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li K, Luo H, Huang L, Luo H, Zhu X (2020) Microsatellite instability: a review of what the oncologist should know. Cancer Cell Int 20:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Lisanti MP et al (2011) Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: the seed and soil also needs ‘fertilizer’. Cell Cycle 10:2440–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J et al (2019) Study on the prognostic value of aberrant antigen in patients with acute B lymphocytic leukemia. Clin Lymphoma Myeloma Leuk 19:e349–e358

    Article  PubMed  Google Scholar 

  • Mak TW, Ludger H, Daniela G, Filio B (2017) p53 regulates the cardiac transcriptome. Proc Natl Acad Sci 114:2331–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall B, Warren JR (1984) Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 323:1311–1315

    Article  Google Scholar 

  • Marshall B, Warren JR (2005) Press release. NobelPrize.org. Nobel Prize Outreach AB 2022. https://www.nobelprize.org/prizes/medicine/2005/press-release/. Accessed 28 Dec 2022

  • Martínez de Toda I, Ceprián N, Díaz-Del Cerro E, De la Fuente M (2021) The role of immune cells in Oxi-Inflamm-aging. Cell 10:2974

    Article  Google Scholar 

  • Maynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA (2008) Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 30:2–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Maynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA (2009) Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 30:2–10

    Article  CAS  PubMed  Google Scholar 

  • McKinnon PJ (2009) DNA repair deficiency and neurological disease. Nat Rev Neurosci 10:100–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melis JPM, van Steeg H, Luijten M (2013) Oxidative DNA damage and nucleotide excision repair. Antioxid Redox Signal 18:2409–2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Men H et al (2021) The regulatory roles of p53 in cardiovascular health and disease. Cell Mol Life Sci 78:2001–2018

    Article  CAS  PubMed  Google Scholar 

  • Milanowska K et al (2011) REPAIRtoire—a database of DNA repair pathways. Nucleic Acids Res 39:D788–D792

    Article  CAS  PubMed  Google Scholar 

  • Moehle EA et al (2007) Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci U S A 104:3055–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moroni F (2008) Poly(ADP-ribose)polymerase 1 (PARP-1) and postischemic brain damage. Neurosciences 8:96–103

    CAS  Google Scholar 

  • Nelson G, Kucheryavenko O, Wordsworth J, von Zglinicki T (2018) The senescent bystander effect is caused by ROS-activated NF-κB signalling. Mech Ageing Dev 170:30–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolaishvilli-Feinberg N et al (2014) Development of DNA damage response signaling biomarkers using automated, quantitative image analysis. J Histochem Cytochem 62:185–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohshima H, Sawa T, Akaike T (2006) 8-nitroguanine, a product of nitrative DNA damage caused by reactive nitrogen species: formation, occurrence, and implications in inflammation and carcinogenesis. Antioxid Redox Signal 8:1033–1045

    Article  CAS  PubMed  Google Scholar 

  • Pacher P, Szabó C (2007) Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev 25:235–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poetsch AR (2020) The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput Struct Biotechnol J 18:207–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pole A, Dimri M, Dimri GP (2016) Oxidative stress, cellular senescence and ageing. AIMS Mol Sci 3:300–324

    Article  CAS  Google Scholar 

  • Richardson C, Horikoshi N, Pandita TK (2004) The role of the DNA double-strand break response network in meiosis. DNA Repair (Amst) 3:1149–1164

    Article  CAS  PubMed  Google Scholar 

  • Ryan NAJ et al (2017) Association of mismatch repair mutation with age at cancer onset in lynch syndrome: implications for stratified surveillance strategies. JAMA Oncol 3:1702–1706

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahan AZ, Hazra TK, Das S (2018) The pivotal role of DNA repair in infection mediated- inflammation and cancer. Front Microbiol 9:663

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider JG et al (2006) ATM-dependent suppression of stress signaling reduces vascular disease in metabolic syndrome. Cell Metab 4:377–389

    Article  CAS  PubMed  Google Scholar 

  • Senoner T, Dichtl W (2019) Oxidative stress in cardiovascular diseases: still a therapeutic target? Nutrients 11:2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah PD et al (2021) Combination ATR and PARP inhibitor (CAPRI): a phase 2 study of ceralasertib plus olaparib in patients with recurrent, platinum-resistant epithelial ovarian cancer. Gynecol Oncol 163:246–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharifi-Rad M et al (2020) Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Front Physiol 11:694

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen L et al (2016) MSeqDR: a centralized knowledge repository and bioinformatics web resource to facilitate genomic investigations in mitochondrial disease. Hum Mutat 37:540–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sliwinska A et al (2016) The levels of 7,8-dihydrodeoxyguanosine (8-oxoG) and 8-oxoguanine DNA glycosylase 1 (OGG1) – a potential diagnostic biomarkers of Alzheimer’s disease. J Neurol Sci 368:155–159

    Article  CAS  PubMed  Google Scholar 

  • Slupphaug G (2003) The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res 531:231–251

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Kamiya H (2017) Mutations induced by 8-hydroxyguanine (8-oxo-7,8-dihydroguanine), a representative oxidized base, in mammalian cells. Genes Environ 39:2

    Article  PubMed  Google Scholar 

  • Thrasher P, Singh M, Singh K (2017) Ataxia-telangiectasia mutated kinase: role in myocardial remodeling. J Rare Dis Res Treat 2:32–37

    Article  PubMed  Google Scholar 

  • Tiwari V, Wilson DM 3rd. (2019) DNA damage and associated DNA repair defects in disease and premature aging. Am J Hum Genet 105:237–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turgeon M-O, Perry NJS, Poulogiannis G (2018) DNA damage, repair, and cancer metabolism. Front Oncol 8:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Houten B, Santa-Gonzalez GA, Camargo M (2018) DNA repair after oxidative stress: current challenges. Curr Opin Toxicol 7:9–16

    Article  PubMed  Google Scholar 

  • Venesio T, Balsamo A, D’Agostino VG, Ranzani GN (2012) MUTYH-associated polyposis (MAP), the syndrome implicating base excision repair in inherited predisposition to colorectal tumors. Front Oncol 2:83–83

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Kawamoto S, Ohtani N, Hara E (2017) Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases. Cancer Sci 108:563–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weissman L et al (2007) Defective DNA base excision repair in brain from individuals with Alzheimer’s disease and amnestic mild cognitive impairment. Nucleic Acids Res 35:5545–5555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia S, Wu S, Wang M (2021) The association between the XRCC1 Arg399Gln polymorphism and the risk of head and neck cancer: an updated meta-analysis including 14586 subjects. Technol Cancer Res Treat 20:15330338211033060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y et al (2004) Deficiencies in mouse Myh and Ogg1 result in tumor predisposition and G to T mutations in codon 12 of the K-Ras oncogene in lung tumors. Cancer Res 64:3096–3102

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panda, S., Chatterjee, O., Mukherjee, G., Chatterjee, S. (2023). Human Diseases Induced by Oxidative Damage in DNA. In: Chatterjee, S., Chattopadhyay, S. (eds) Nucleic Acid Biology and its Application in Human Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-19-8520-1_5

Download citation

Publish with us

Policies and ethics