Skip to main content

Rheology and Cure Kinetics of Modified and Non-modified Resin Systems

  • Chapter
  • First Online:
Applied Complex Flow

Part of the book series: Emerging Trends in Mechatronics ((emerg. Trends in Mechatronics))

  • 471 Accesses

Abstract

Resins, in particular thermosets, are defined as a polymer material used with synthetic/natural fibres by reinforcement during liquid composite moulding (LCM) processes to produce composite products. The rheological behaviour and cure kinetics of resins are crucial and can be influenced by modification factors that include non-isothermal conditions and the addition of nanofillers. The thermoset flow will behave as a non-Newtonian fluid in which viscosity is not constant. This complex flow problem has been an area of interest over decades to meet industry demands for more developed composites, and to quantify relevant issues by applying innovative optimisation methods. In the present chapter, a thorough investigation of the current approaches and future potential of rheological behaviour and curing kinetics of thermosets is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michaud V (2016) A review of non-saturated resin flow in liquid composite moulding processes. Transp Porous Media 115(3):581–601. https://doi.org/10.1007/s11242-016-0629-7

    Article  Google Scholar 

  2. Meola C, Boccardi S, maria Carlomagno G (2017) Composite materials in the aeronautical industry. In: Meola C, Boccardi S, maria Carlomagno G (eds) Infrared thermography in the evaluation of aerospace composite materials. Woodhead Publishing, pp 1–24. https://doi.org/10.1016/B978-1-78242-171-9.00001-2

  3. Massingill JL, Bauer RS (2000) Epoxy resins. In: Craver CD, Carraher CE (eds) Applied polymer science: 21st century. Pergamon, pp 393–424. https://doi.org/10.1016/B978-008043417-9/50023-4

  4. Brydson JA (1999) Phenolic resins. In: Brydson JA (ed) Plastics materials, 7th edn. Butterworth-Heinemann, pp 635–667. https://doi.org/10.1016/B978-075064132-6/50064-4

  5. Linganiso LZ, Anandjiwala RD (2016) Fibre-reinforced laminates in aerospace engineering. In: Rana S, Fangueiro R (eds) Advanced composite materials for aerospace engineering. Woodhead Publishing, pp 101–127. https://doi.org/10.1016/B978-0-08-100037-3.00004-3

  6. Varma IK, Gupta VB, Sini NK (2018) 2.19 thermosetting resin–properties☆. In: Beaumont PWR, Zweben CH (eds) Comprehensive composite materials II. Elsevier, pp 401–468. https://doi.org/10.1016/B978-0-12-803581-8.03829-7

  7. Naqvi SZ, Ramkumar J, Kar KK (2022) Fly ash/glass fiber/carbon fiber-reinforced thermoset composites. In: Kar KK (ed) Handbook of fly ash. Butterworth-Heinemann, pp 373–400. https://doi.org/10.1016/B978-0-12-817686-3.00023-2

  8. Advani SG, Sozer EM (2000) 2.23—Liquid molding of thermoset composites. In: Kelly A, Zweben C (eds) Comprehensive composite materials. Pergamon, pp 807–844. https://doi.org/10.1016/B0-08-042993-9/00171-6

  9. Kelly A, Zweben C (1999) Comprehensive composite materials. Mater Today 2(1):20–21. https://doi.org/10.1016/S1369-7021(99)80033-9

    Article  Google Scholar 

  10. Ermanni P, Di Fratta C, Trochu F (2012) Molding: liquid composite molding (LCM). In: Nicolais L (ed) Wiley encyclopedia of composites. Wiley, p weoc153. https://doi.org/10.1002/9781118097298.weoc153

  11. Shepelev O, Kenig S, Dodiuk H (2022) Nanotechnology-based thermosets. In: Dodiuk H (ed) Handbook of thermoset plastics, 4th edn. William Andrew Publishing, pp 833–890. https://doi.org/10.1016/B978-0-12-821632-3.00005-1

  12. Tee ZY, Yeap SP, Hassan CS, Kiew PL (2022) Nano and non-nano fillers in enhancing mechanical properties of epoxy resins: a brief review. Polym Plast Technol Mater 61(7):709–725. https://doi.org/10.1080/25740881.2021.2015778

    Article  Google Scholar 

  13. Poornima Vijayan P, George JS, Thomas S (2021) The effect of polymeric inclusions and nanofillers on cure kinetics of epoxy resin: a review. Polym Sci, Ser A 63(6):637–651. https://doi.org/10.1134/S0965545X21350145

    Article  Google Scholar 

  14. Mohan VB, Lau K, Hui D, Bhattacharyya D (2018) Graphene-based materials and their composites: a review on production, applications and product limitations. Compos B Eng 142:200–220. https://doi.org/10.1016/j.compositesb.2018.01.013

    Article  Google Scholar 

  15. Katsnelson MI (2007) Graphene: carbon in two dimensions. Mater Today 10(1):20–27. https://doi.org/10.1016/S1369-7021(06)71788-6

    Article  Google Scholar 

  16. Zhou O, Shimoda H, Gao B, Oh S, Fleming L, Yue G (2002) Materials science of carbon nanotubes: fabrication, integration, and properties of macroscopic structures of carbon nanotubes. Acc Chem Res 35(12):1045–1053. https://doi.org/10.1021/ar010162f

    Article  Google Scholar 

  17. Ojijo V, Sinha Ray S (2018) Processing thermoset-based nanocomposites. In: Sinha Ray S (ed) Processing of polymer-based nanocomposites: processing-structure-property-performance relationships. Springer International Publishing, pp 107–137. https://doi.org/10.1007/978-3-319-97792-8_4

  18. Prolongo MG, Salom C, Arribas C, Sánchez-Cabezudo M, Masegosa RM, Prolongo SG (2016) Influence of graphene nanoplatelets on curing and mechanical properties of graphene/epoxy nanocomposites. J Therm Anal Calorim 125(2):629–636. https://doi.org/10.1007/s10973-015-5162-3

    Article  Google Scholar 

  19. Monteserín C, Blanco M, Aranzabe E, Aranzabe A, Vilas JL (2017) Effects of graphene oxide and chemically reduced graphene oxide on the curing kinetics of epoxy amine composites: ARTICLE. J Appl Polym Sci 134(19). https://doi.org/10.1002/app.44803

  20. Esmizadeh E, Naderi G, Yousefi AA, Milone C (2016) Investigation of curing kinetics of epoxy resin/novel nanoclay–carbon nanotube hybrids by non-isothermal differential scanning calorimetry. J Therm Anal Calorim 126(2):771–784. https://doi.org/10.1007/s10973-016-5594-4

    Article  Google Scholar 

  21. Ghaemy M, Bazzar M, Mighani H (2011) Effect of nanosilica on the kinetics of cure reaction and thermal degradation of epoxy resin. Chin J Polym Sci 29(2):141–148. https://doi.org/10.1007/s10118-010-1003-9

    Article  Google Scholar 

  22. Wang P, Molimard J, Drapier S, Vautrin A, Minni JC (2012) Monitoring the resin infusion manufacturing process under industrial environment using distributed sensors. J Compos Mater 46(6):691–706. https://doi.org/10.1177/0021998311410479

    Article  Google Scholar 

  23. Schmachtenberg E, Schulte zur Heide J, Töpker J (2005) Application of ultrasonics for the process control of resin transfer moulding (RTM). Polym Testing 24(3):330–338. https://doi.org/10.1016/j.polymertesting.2004.11.002

  24. Carlone P, Rubino F, Paradiso V, Tucci F (2018) Multi-scale modeling and online monitoring of resin flow through dual-scale textiles in liquid composite molding processes. Int J Adv Manuf Technol 96(5):2215–2230. https://doi.org/10.1007/s00170-018-1703-9

    Article  Google Scholar 

  25. Carman CP (1937) Fluid flow through granular beds. Trans Inst Chem Eng 15:150–166. https://cir.nii.ac.jp/crid/1570009749208809856

  26. Gebart BR (1992) Permeability of unidirectional reinforcements for RTM. J Compos Mater 26(8):1100–1133. https://doi.org/10.1177/002199839202600802

    Article  Google Scholar 

  27. Cai Z, Berdichevsky AL (1993) An improved self-consistent method for estimating the permeability of a fiber assembly. Polym Compos 14(4):314–323. https://doi.org/10.1002/pc.750140407

    Article  Google Scholar 

  28. Phelan FR, Wise G (1996) Analysis of transverse flow in aligned fibrous porous media. Compos A Appl Sci Manuf 27(1):25–34. https://doi.org/10.1016/1359-835X(95)00016-U

    Article  Google Scholar 

  29. Bruschke MV, Advani SG (1993) Flow of generalized Newtonian fluids across a periodic array of cylinders. J Rheol 37(3):479–498. https://doi.org/10.1122/1.550455

    Article  Google Scholar 

  30. Alotaibi H, Jabbari M, Soutis C (2021) A numerical analysis of resin flow in woven fabrics: effect of local tow curvature on dual-scale permeability. Materials 14(2):405. https://doi.org/10.3390/ma14020405

    Article  Google Scholar 

  31. Sadiq TAK, Advani SG, Parnas RS (1995) Experimental investigation of transverse flow through aligned cylinders. Int J Multiph Flow 21(5):755–774. https://doi.org/10.1016/0301-9322(95)00026-T

    Article  MATH  Google Scholar 

  32. Ranganathan S, Phelan FR, Advani SG (1996) A generalized model for the transverse fluid permeability in unidirectional fibrous media. Polym Compos 17(2):222–230. https://doi.org/10.1002/pc.10607

    Article  Google Scholar 

  33. Nedanov PB, Advani SG (2002) Numerical computation of the fiber preform permeability tensor by the homogenization method. Polym Compos 23(5):758–770. https://doi.org/10.1002/pc.10474

    Article  Google Scholar 

  34. Belov EB, Lomov SV, Verpoest I, Peters T, Roose D, Parnas RS, Hoes K, Sol H (2004) Modelling of permeability of textile reinforcements: Lattice Boltzmann method. Compos Sci Technol 64(7):1069–1080. https://doi.org/10.1016/j.compscitech.2003.09.015

    Article  Google Scholar 

  35. Tahir MW, Hallström S, Åkermo M (2014) Effect of dual scale porosity on the overall permeability of fibrous structures. Compos Sci Technol 103:56–62. https://doi.org/10.1016/j.compscitech.2014.08.008

    Article  Google Scholar 

  36. Syerko E, Binetruy C, Comas-Cardona S, Leygue A (2017) A numerical approach to design dual-scale porosity composite reinforcements with enhanced permeability. Mater Des 131:307–322. https://doi.org/10.1016/j.matdes.2017.06.035

    Article  Google Scholar 

  37. Tan H, Pillai KM (2012) Multiscale modeling of unsaturated flow in dual-scale fiber preforms of liquid composite molding I: Isothermal flows. Compos A Appl Sci Manuf 43(1):1–13. https://doi.org/10.1016/j.compositesa.2010.12.013

    Article  Google Scholar 

  38. Simacek P, Advani SG (2003) A numerical model to predict fiber tow saturation during liquid composite molding. Compos Sci Technol 63(12):1725–1736. https://doi.org/10.1016/S0266-3538(03)00155-6

    Article  Google Scholar 

  39. Rodrigues I, Amico SC, Souza JA, de Lima AGB (2015) Numerical analysis of the resin transfer molding process via pam-rtm software. Defect Diffusion Forum 365:88–93. https://doi.org/10.4028/www.scientific.net/DDF.365.88

    Article  Google Scholar 

  40. Grössing H, Stadlmajer N, Fauster E, Fleischmann M, Schledjewski R (2016) Flow front advancement during composite processing: predictions from numerical filling simulation tools in comparison with real-world experiments. Polym Compos 37(9):2782–2793. https://doi.org/10.1002/pc.23474

    Article  Google Scholar 

  41. ÅžaÅŸ HS (2010) Modeling of particle filled resin impregnation in compression resin transfer molding. https://open.metu.edu.tr/handle/11511/19747

  42. Wei B-J, Chuang Y-C, Wang K-H, Yao Y (2016) Model-assisted control of flow front in resin transfer molding based on real-time estimation of permeability/porosity ratio. Polymers 8(9):337. https://doi.org/10.3390/polym8090337

    Article  Google Scholar 

  43. Boogh L, Mezzenga R (2000) 2.19—Processing principles for thermoset composites. In: Kelly A, Zweben C (eds) Comprehensive composite materials. Pergamon, pp 671–699. https://doi.org/10.1016/B0-08-042993-9/00221-7

  44. Ratna D (2012) Thermal properties of thermosets. In: Guo Q (ed) Thermosets. Woodhead Publishing, pp 62–91. https://doi.org/10.1533/9780857097637.1.62

  45. Halley PJ, Mackay ME (1996) Chemorheology of thermosets? An overview. Polym Eng Sci 36(5):593–609. https://doi.org/10.1002/pen.10447

    Article  Google Scholar 

  46. Halley PJ (2012) Rheology of thermosets: the use of chemorheology to characterise and model thermoset flow behaviour. In: Guo Q (ed) Thermosets. Woodhead Publishing, pp 92–117. https://doi.org/10.1533/9780857097637.1.92

  47. Umer R, Li Y, Dong Y, Haroosh HJ, Liao K (2015) The effect of graphene oxide (GO) nanoparticles on the processing of epoxy/glass fiber composites using resin infusion. Int J Adv Manuf Technol 81(9):2183–2192. https://doi.org/10.1007/s00170-015-7427-1

    Article  Google Scholar 

  48. Yavari N, Poorabdollah M, Rajabi L (2022) Graphene oxide and silane-modified graphene oxide/unsaturated polyester resin nanocomposites: a comparative cure kinetic and diffusion study. Thermochim Acta 707:179081. https://doi.org/10.1016/j.tca.2021.179081

    Article  Google Scholar 

  49. Henne M, Breyer C, Niedermeier M, Ermanni P (2004) A new kinetic and viscosity model for liquid composite molding simulations in an industrial environment. Polym Compos 25(3):255–269. https://doi.org/10.1002/pc.20020

    Article  Google Scholar 

  50. Du S, Guo Z-S, Zhang B, Wu Z (2004) Cure kinetics of epoxy resin used for advanced composites. Polym Int 53(9):1343–1347. https://doi.org/10.1002/pi.1533

    Article  Google Scholar 

  51. Sun G, Sun H, Liu Y, Zhao B, Zhu N, Hu K (2007) Comparative study on the curing kinetics and mechanism of a lignin-based-epoxy/anhydride resin system. Polymer 48(1):330–337. https://doi.org/10.1016/j.polymer.2006.10.047

    Article  Google Scholar 

  52. Sourour S, Kamal MR (1976) Differential scanning calorimetry of epoxy cure: isothermal cure kinetics. Thermochim Acta 14(1):41–59. https://doi.org/10.1016/0040-6031(76)80056-1

    Article  Google Scholar 

  53. Zetterlund PB, Johnson AF (2002) Free volume-based modelling of free radical crosslinking polymerisation of unsaturated polyesters. Polymer 43(7):2039–2048. https://doi.org/10.1016/S0032-3861(01)00789-3

    Article  Google Scholar 

  54. Han CD, Lee D-S (1987) Analysis of the curing behavior of unsaturated polyester resins using the approach of free radical polymerization. J Appl Polym Sci 33(8):2859–2876. https://doi.org/10.1002/app.1987.070330820

    Article  Google Scholar 

  55. Ng H, Manas-zloczower I (1989) A nonisothermal differential scanning calorimetry study of the curing kinetics of an unsaturated polyester system. Polym Eng Sci 29(16):1097–1102. https://doi.org/10.1002/pen.760291604

    Article  Google Scholar 

  56. Raja Pandiyan KR, Chakraborty S, Kundu G, Neogi S (2009) Curing kinetics of medium reactive unsaturated polyester resin used for liquid composite molding process. J Appl Polym Sci 114(4):2415–2420. https://doi.org/10.1002/app.30720

  57. Stevenson JK (1986) Free radical polymerization models for simulating reactive processing. Polym Eng Sci 26(11):746–759. https://doi.org/10.1002/pen.760261106

    Article  Google Scholar 

  58. Van Assche G, Swier S, Van Mele B (2002) Modeling and experimental verification of the kinetics of reacting polymer systems. Thermochim Acta 388(1):327–341. https://doi.org/10.1016/S0040-6031(02)00038-2

    Article  Google Scholar 

  59. Kamal MR, Sourour S (1973) Kinetics and thermal characterization of thermoset cure. Polym Eng Sci 13(1):59–64. https://doi.org/10.1002/pen.760130110

    Article  Google Scholar 

  60. Kamal MR (1974) Thermoset characterization for moldability analysis. Polym Eng Sci 14(3):231–239. https://doi.org/10.1002/pen.760140312

    Article  Google Scholar 

  61. Atarsia A, Boukhili R (2000) Relationship between isothermal and dynamic cure of thermosets via the isoconversion representation. Polym Eng Sci 40(3):607–620. https://doi.org/10.1002/pen.11191

    Article  Google Scholar 

  62. Keenan MR (1987) Autocatalytic cure kinetics from DSC measurements: zero initial cure rate. J Appl Polym Sci 33(5):1725–1734. https://doi.org/10.1002/app.1987.070330525

    Article  Google Scholar 

  63. Rohatgi V, Lee LJ (1997) Moldability of tackified fiber preforms in liquid composite molding. J Compos Mater 31(7):720–744. https://doi.org/10.1177/002199839703100705

    Article  Google Scholar 

  64. González-Romero VM, Casillas N (1989) Isothermal and temperature programmed kinetic studies of thermosets: isothermal and temperature programmed kinetic studies of thermosets. Polym Eng Sci 29(5):295–301. https://doi.org/10.1002/pen.760290506

    Article  Google Scholar 

  65. Fournier J, Williams G, Duch C, Aldridge GA (1996) Changes in molecular dynamics during bulk polymerization of an epoxide−amine system as studied by dielectric relaxation spectroscopy. Macromolecules 29(22):7097–7107. https://doi.org/10.1021/ma9517862

    Article  Google Scholar 

  66. Castro JM, Macosko CW (1982) Studies of mold filling and curing in the reaction injection molding process. AIChE J 28(2):250–260. https://doi.org/10.1002/aic.690280213

    Article  Google Scholar 

  67. Roller MB (1986) Rheology of curing thermosets: a review. Polym Eng Sci 26(6):432–440. https://doi.org/10.1002/pen.760260610

    Article  Google Scholar 

  68. Tan H, Pillai KM (2010) Numerical simulation of reactive flow in liquid composite molding using flux-corrected transport (FCT) based finite element/control volume (FE/CV) method. Int J Heat Mass Transf 53(9):2256–2271. https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.003

    Article  MATH  Google Scholar 

  69. Lee LJ, Young WB, Lin RJ (1994) Mold filling and cure modeling of RTM and SRIM processes. Compos Struct 27(1):109–120. https://doi.org/10.1016/0263-8223(94)90072-8

    Article  Google Scholar 

  70. Abbassi A, Shahnazari MR (2004) Numerical modeling of mold filling and curing in non-isothermal RTM process. Appl Therm Eng 24(16):2453–2465. https://doi.org/10.1016/j.applthermaleng.2004.03.005

    Article  MATH  Google Scholar 

  71. Shi F, Dong X (2011) 3D numerical simulation of filling and curing processes in non-isothermal RTM process cycle. Finite Elem Anal Des 47(7):764–770. https://doi.org/10.1016/j.finel.2011.02.007

    Article  Google Scholar 

  72. Cheung A, Yu Y, Pochiraju K (2004) Three-dimensional finite element simulation of curing of polymer composites. Finite Elem Anal Des 40(8):895–912. https://doi.org/10.1016/S0168-874X(03)00119-7

    Article  Google Scholar 

  73. Leistner C, Hartmann S, Abliz D, Ziegmann G (2020) Modeling and simulation of the curing process of epoxy resins using finite elements. Continuum Mech Thermodyn 32(2):327–350. https://doi.org/10.1007/s00161-018-0708-9

    Article  Google Scholar 

  74. Poodts E, Minak G, Mazzocchetti L, Giorgini L (2014) Fabrication, process simulation and testing of a thick CFRP component using the RTM process. Compos B Eng 56:673–680. https://doi.org/10.1016/j.compositesb.2013.08.088

    Article  Google Scholar 

  75. Deléglise M, Le Grognec P, Binetruy C, Krawczak P, Claude B (2011) Modeling of high speed RTM injection with highly reactive resin with on-line mixing. Compos A Appl Sci Manuf 42(10):1390–1397. https://doi.org/10.1016/j.compositesa.2011.06.002

    Article  Google Scholar 

  76. Sandberg M, Yuksel O, Baran I, Hattel JH, Spangenberg J (2021) Numerical and experimental analysis of resin-flow, heat-transfer, and cure in a resin-injection pultrusion process. Compos A Appl Sci Manuf 143:106231. https://doi.org/10.1016/j.compositesa.2020.106231

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Jabbari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alotaibi, H., Soutis, C., Jabbari, M. (2023). Rheology and Cure Kinetics of Modified and Non-modified Resin Systems. In: Azizi, A. (eds) Applied Complex Flow. Emerging Trends in Mechatronics. Springer, Singapore. https://doi.org/10.1007/978-981-19-7746-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7746-6_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7745-9

  • Online ISBN: 978-981-19-7746-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics