Skip to main content

Anti-Inflammatory Effect of Traditional Chinese Medicine on the Concept of Mind-Body Interface

  • Chapter
  • First Online:
Neuroinflammation, Gut-Brain Axis and Immunity in Neuropsychiatric Disorders

Abstract

In this chapter, we conducted a systemic literature review for the anti-inflammatory effects of Traditional Chinese Medicine (TCM) applying molecular mechanisms focusing on the neuroinflammation and gut-brain axis in three neuropsychiatric disorders: major depressive disorder, Alzheimer’s disease, and Parkinson’s disease. We demonstrated the anti-inflammation or immunomodulation effects of TCM, including acupuncture, from basic and clinical research, including cellular and molecular approaches. In conclusion, inflammation plays a critical role in the neuropsychopathological process. At the same time, anti-inflammation seems to be the common biological pathway for the effects of TCM and acupuncture in depression, Alzheimer’s disease, and Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Su KP. Are we all the same? The critical role of translational brain, behavior, and immunity research in East Asia. Brain Behav Immun. 2019;82:1–2.

    Article  PubMed  Google Scholar 

  2. Su K-P, Chou L-W, Sun M-F, Lin J-G. Acupuncture treatment in depression. In: Lin J-G, editor. Experimental Acupuncturology. Singapore: Springer Singapore; 2018. p. 43–66.

    Chapter  Google Scholar 

  3. NIH Consensus Conference. Acupuncture. JAMA. 1998;280(17):1518–24.

    Google Scholar 

  4. Song C, Halbreich U, Han C, Leonard BE, Luo H. Imbalance between pro- and anti-inflammatory cytokines, and between Th1 and Th2 cytokines in depressed patients: the effect of electroacupuncture or fluoxetine treatment. Pharmacopsychiatry. 2009;42(5):182–8.

    Article  CAS  PubMed  Google Scholar 

  5. Vázquez RD, González-Macías L, Berlanga C, Aedo FJ. Effect of acupuncture treatment on depression: correlation between psychological outcomes and salivary cortisol levels. Salud mental. 2011;34:21–6.

    Google Scholar 

  6. Liu Y, Feng H, Mo Y, Gao J, Mao H, Song M, et al. Effect of soothing-liver and nourishing-heart acupuncture on early selective serotonin reuptake inhibitor treatment onset for depressive disorder and related indicators of neuroimmunology: a randomized controlled clinical trial. J Tradit Chin Med. 2015;35(5):507–13.

    Article  PubMed  Google Scholar 

  7. Chen H-L, Guan F. Effect of Huanglian jiedu decoction on pitavastatin treatment of Alzheimer’s disease. Journal of Hainan Medical University. 2016;22:6.

    Google Scholar 

  8. Wang F, Sun L, Zhang XZ, Jia J, Liu Z, Huang XY, et al. Effect and potential mechanism of Electroacupuncture add-on treatment in patients with Parkinson’s disease. Evid Based Complement Alternat Med. 2015;2015:692795.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chou PH, Lin YF, Lu MK, Chang HA, Chu CS, Chang WH, et al. Personalization of repetitive transcranial magnetic stimulation for the treatment of major depressive disorder according to the existing psychiatric comorbidity. Clin Psychopharmacol Neurosci. 2021;19(2):190–205.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Delgado PL. Depression: the case for a monoamine deficiency. J Clin Psychiatry. 2000;61(Suppl 6):7–11.

    CAS  PubMed  Google Scholar 

  11. Clevenger SS, Malhotra D, Dang J, Vanle B, IsHak WW. The role of selective serotonin reuptake inhibitors in preventing relapse of major depressive disorder. Ther Adv Psychopharmacol. 2018;8(1):49–58.

    Article  CAS  PubMed  Google Scholar 

  12. Jeon SW, Kim YK. The role of neuroinflammation and neurovascular dysfunction in major depressive disorder. J Inflamm Res. 2018;11:179–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alesci S, Martinez PE, Kelkar S, Ilias I, Ronsaville DS, Listwak SJ, et al. Major depression is associated with significant diurnal elevations in plasma Interleukin-6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: clinical implications. J Clin Endocrinol Metabol. 2005;90(5):2522–30.

    Article  CAS  Google Scholar 

  14. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–57.

    Article  CAS  PubMed  Google Scholar 

  15. Howren MB, Lamkin DM, Suls J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med. 2009;71(2):171–86.

    Article  CAS  PubMed  Google Scholar 

  16. Lanquillon S, Krieg JC, Bening-Abu-Shach U, Vedder H. Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacology. 2000;22(4):370–9.

    Article  CAS  PubMed  Google Scholar 

  17. Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65(9):732–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27(1):24–31.

    Article  CAS  PubMed  Google Scholar 

  19. Su S, Miller AH, Snieder H, Bremner JD, Ritchie J, Maisano C, et al. Common genetic contributions to depressive symptoms and inflammatory markers in middle-aged men: the twins heart study. Psychosom Med. 2009;71(2):152–8.

    Article  CAS  PubMed  Google Scholar 

  20. Yang K, Xie G, Zhang Z, Wang C, Li W, Zhou W, et al. Levels of serum interleukin (IL)-6, IL-1beta, tumour necrosis factor-alpha and leptin and their correlation in depression. Aust N Z J Psychiatry. 2007;41(3):266–73.

    Article  PubMed  Google Scholar 

  21. Tuglu C, Kara SH, Caliyurt O, Vardar E, Abay E. Increased serum tumor necrosis factor-alpha levels and treatment response in major depressive disorder. Psychopharmacology (Berl). 2003;170(4):429–33.

    Article  CAS  PubMed  Google Scholar 

  22. Clerici M, Arosio B, Mundo E, Cattaneo E, Pozzoli S, Dell'osso B, et al. Cytokine polymorphisms in the pathophysiology of mood disorders. CNS Spectr. 2009;14(8):419–25.

    Article  PubMed  Google Scholar 

  23. Wong ML, Dong C, Maestre-Mesa J, Licinio J. Polymorphisms in inflammation-related genes are associated with susceptibility to major depression and antidepressant response. Mol Psychiatry. 2008;13(8):800–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Al-Huthail Y. Neuropsychiatric side-effects of interferon alfa therapy for hepatitis C and their management: a review. Saudi J Gastroenterol. 2006;12(2):59–67.

    Article  PubMed  Google Scholar 

  25. Capuron L, Ravaud A, Dantzer R. Timing and specificity of the cognitive changes induced by interleukin-2 and interferon-alpha treatments in cancer patients. Psychosom Med. 2001;63(3):376–86.

    Article  CAS  PubMed  Google Scholar 

  26. Eisch AJ, Petrik D. Depression and hippocampal neurogenesis: a road to remission? Science. 2012;338(6103):72–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pace TW, Hu F, Miller AH. Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain Behav Immun. 2007;21(1):9–19.

    Article  CAS  PubMed  Google Scholar 

  28. De Souza EB. Corticotropin-releasing factor receptors: physiology, pharmacology, biochemistry and role in central nervous system and immune disorders. Psychoneuroendocrinology. 1995;20(8):789–819.

    Article  PubMed  Google Scholar 

  29. Mahar I, Bambico FR, Mechawar N, Nobrega JN. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci Biobehav Rev. 2014;38:173–92.

    Article  CAS  PubMed  Google Scholar 

  30. Kim YK, Na KS, Myint AM, Leonard BE. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2016;64:277–84.

    Article  CAS  PubMed  Google Scholar 

  31. Rossi S, Studer V, Motta C, Polidoro S, Perugini J, Macchiarulo G, et al. Neuroinflammation drives anxiety and depression in relapsing-remitting multiple sclerosis. Neurology. 2017;89(13):1338–47.

    Article  CAS  PubMed  Google Scholar 

  32. Margaretten M, Julian L, Katz P, Yelin E. Depression in patients with rheumatoid arthritis: description, causes and mechanisms. Int J Clin Rheumtol. 2011;6(6):617–23.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Figueiredo-Braga M, Cornaby C, Cortez A, Bernardes M, Terroso G, Figueiredo M, et al. Depression and anxiety in systemic lupus erythematosus: the crosstalk between immunological, clinical, and psychosocial factors. Medicine (Baltimore). 2018;97(28):e11376.

    Article  PubMed  Google Scholar 

  34. Pollak Y, Yirmiya R. Cytokine-induced changes in mood and behaviour: implications for 'depression due to a general medical condition', immunotherapy and antidepressive treatment. Int J Neuropsychopharmacol. 2002;5(4):389–99.

    Article  CAS  PubMed  Google Scholar 

  35. Eyre HA, Air T, Proctor S, Rositano S, Baune BT. A critical review of the efficacy of non-steroidal anti-inflammatory drugs in depression. Prog Neuropsychopharmacol Biol Psychiatry. 2015;57:11–6.

    Article  CAS  PubMed  Google Scholar 

  36. García-Bueno B, Pérez-Nievas BG, Leza JC. Is there a role for the nuclear receptor PPARγ in neuropsychiatric diseases? Int J Neuropsychopharmacol. 2010;13(10):1411–29.

    Article  PubMed  Google Scholar 

  37. Johansson D, Falk A, Marcus MM, Svensson TH. Celecoxib enhances the effect of reboxetine and fluoxetine on cortical noradrenaline and serotonin output in the rat. Prog Neuropsychopharmacol Biol Psychiatry. 2012;39(1):143–8.

    Article  CAS  PubMed  Google Scholar 

  38. Köhler O, Benros ME, Nordentoft M, Farkouh ME, Iyengar RL, Mors O, et al. Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiat. 2014;71(12):1381–91.

    Article  Google Scholar 

  39. Krebs M, Leopold K, Hinzpeter A, Schaefer M. Neuroprotective agents in schizophrenia and affective disorders. Expert Opin Pharmacother. 2006;7(7):837–48.

    Article  CAS  PubMed  Google Scholar 

  40. Müller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein-Müller B, et al. The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry. 2006;11(7):680–4.

    Article  PubMed  Google Scholar 

  41. Najjar S, Pearlman DM, Alper K, Najjar A, Devinsky O. Neuroinflammation and psychiatric illness. J Neuroinflammation. 2013;10:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nery FG, Monkul ES, Hatch JP, Fonseca M, Zunta-Soares GB, Frey BN, et al. Celecoxib as an adjunct in the treatment of depressive or mixed episodes of bipolar disorder: a double-blind, randomized, placebo-controlled study. Hum Psychopharmacol. 2008;23(2):87–94.

    Article  CAS  PubMed  Google Scholar 

  43. Schmidt FM, Kirkby KC, Himmerich H. The TNF-alpha inhibitor etanercept as monotherapy in treatment-resistant depression—report of two cases. Psychiatr Danub. 2014;26(3):288–90.

    PubMed  Google Scholar 

  44. Rush AJ. STAR*D: what have we learned? Am J Psychiatry. 2007;164(2):201–4.

    Article  PubMed  Google Scholar 

  45. Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry. 2006;163(1):28–40.

    Article  PubMed  Google Scholar 

  46. Gaynes BN, Rush AJ, Trivedi MH, Wisniewski SR, Spencer D, Fava M. The STAR*D study: treating depression in the real world. Cleve Clin J Med. 2008;75(1):57–66.

    Article  PubMed  Google Scholar 

  47. Sinyor M, Schaffer A, Levitt A. The sequenced treatment alternatives to relieve depression (STAR*D) trial: a review. Can J Psychiatry. 2010;55(3):126–35.

    Article  PubMed  Google Scholar 

  48. Solomon D, Adams J. The use of complementary and alternative medicine in adults with depressive disorders. A critical integrative review. J Affect Disord. 2015;179:101–13.

    Article  PubMed  Google Scholar 

  49. Kessler RC, Soukup J, Davis RB, Foster DF, Wilkey SA, Van Rompay MI, et al. The use of complementary and alternative therapies to treat anxiety and depression in the United States. Am J Psychiatry. 2001;158(2):289–94.

    Article  CAS  PubMed  Google Scholar 

  50. Hsu M-C, Creedy D, Moyle W, Venturato L, Tsay S-L, Ouyang W-C. Use of complementary and alternative medicine among adult patients for depression in Taiwan. J Affect Disord. 2008;111(2):360–5.

    Article  PubMed  Google Scholar 

  51. Qureshi NA, Al-Bedah AM. Mood disorders and complementary and alternative medicine: a literature review. Neuropsychiatr Dis Treat. 2013;9:639–58.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yeung WF, Chung KF, Ng KY, Yu YM, Zhang SP, Ng BF, et al. Prescription of Chinese herbal medicine in pattern-based traditional Chinese medicine treatment for depression: a systematic review. Evid Based Complement Alternat Med. 2015;2015:160189.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mao QQ, Ip SP, Xian YF, Hu Z, Che CT. Anti-depressant-like effect of peony: a mini-review. Pharm Biol. 2012;50(1):72–7.

    Article  CAS  PubMed  Google Scholar 

  54. Sun HX. Haemolytic activities and adjuvant effect of Bupleurum chinense saponins on the immune responses to ovalbumin in mice. Vaccine. 2006;24(9):1324–31.

    Article  CAS  PubMed  Google Scholar 

  55. Yeung WF, Chung KF, Poon MM, Ho FY, Zhang SP, Zhang ZJ, et al. Prescription of chinese herbal medicine and selection of acupoints in pattern-based traditional chinese medicine treatment for insomnia: a systematic review. Evid Based Complement Alternat Med. 2012;2012:902578.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Satyanarayanan SK, Shih Y-H, Wen Y-R, Palani M, Lin Y-W, Su H, et al. miR-200a-3p modulates gene expression in comorbid pain and depression: molecular implication for central sensitization. Brain Behav Immun. 2019;82:230–8.

    Article  CAS  PubMed  Google Scholar 

  57. Lin Y-W, Chou AIW, Su H, Su K-P. Transient receptor potential V1 (TRPV1) modulates the therapeutic effects for comorbidity of pain and depression: the common molecular implication for electroacupuncture and omega-3 polyunsaturated fatty acids. Brain Behav Immun. 2020;89:604–14.

    Article  CAS  PubMed  Google Scholar 

  58. Luo H, Meng F, Jia Y, Zhao X. Clinical research on the therapeutic effect of the electro-acupuncture treatment in patients with depression. Psychiatry Clin Neurosci. 1998;52(Suppl):S338–40.

    Article  PubMed  Google Scholar 

  59. Sun H, Zhao H, Ma C, Bao F, Zhang J, Wang DH, et al. Effects of electroacupuncture on depression and the production of glial cell line-derived neurotrophic factor compared with fluoxetine: a randomized controlled pilot study. J Altern Complement Med. 2013;19(9):733–9.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Quah-Smith I, Smith C, Crawford JD, Russell J. Laser acupuncture for depression: a randomised double blind controlled trial using low intensity laser intervention. J Affect Disord. 2013;148(2–3):179–87.

    Article  PubMed  Google Scholar 

  61. Quah-Smith JI, Tang WM, Russell J. Laser acupuncture for mild to moderate depression in a primary care setting—a randomised controlled trial. Acupunct Med. 2005;23(3):103–11.

    Article  PubMed  Google Scholar 

  62. Man SC, Hung BH, Ng RM, Yu XC, Cheung H, Fung MP, et al. A pilot controlled trial of a combination of dense cranial electroacupuncture stimulation and body acupuncture for post-stroke depression. BMC Complement Altern Med. 2014;14:255.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhang GC, Fu WB, Xu NG, Liu JH, Zhu XP, Liang ZH, et al. Meta analysis of the curative effect of acupuncture on post-stroke depression. J Tradit Chin Med. 2012;32(1):6–11.

    Article  PubMed  Google Scholar 

  64. Chen PJ, Hsieh CL, Su KP, Hou YC, Chiang HM, Lin IH, et al. The antidepressant effect of Gastrodia elata Bl. On the forced-swimming test in rats. Am J Chin Med. 2008;36(1):95–106.

    Article  CAS  PubMed  Google Scholar 

  65. Chen PJ, Hsieh CL, Su KP, Hou YC, Chiang HM, Sheen LY. Rhizomes of Gastrodia elata B(L) possess antidepressant-like effect via monoamine modulation in subchronic animal model. Am J Chin Med. 2009;37(6):1113–24.

    Article  PubMed  Google Scholar 

  66. Chen PJ, Liang KC, Lin HC, Hsieh CL, Su KP, Hung MC, et al. Gastrodia elata Bl. Attenuated learning deficits induced by forced-swimming stress in the inhibitory avoidance task and Morris water maze. J Med Food. 2011;14(6):610–7.

    Article  PubMed  Google Scholar 

  67. Lin SH, Chang HC, Chen PJ, Hsieh CL, Su KP, Sheen LY. The antidepressant-like effect of ethanol extract of daylily flowers (Jīn Zhēn Huā) in rats. J Tradit Complement Med. 2013;3(1):53–61.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Liao HY, Lin YW. Electroacupuncture attenuates chronic inflammatory pain and depression comorbidity through transient receptor potential V1 in the brain. Am J Chin Med. 2021;49(6):1417–35.

    Article  CAS  PubMed  Google Scholar 

  69. Santiago JA, Potashkin JA. The impact of disease comorbidities in Alzheimer’s disease. Front Aging Neurosci. 2021;13(38):631770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 2020 Alzheimer’s disease facts and figures. Alzheimers Dement. 2020;16(3):391–460.

    Google Scholar 

  71. Levey AI. Progress with treatments for Alzheimer’s disease. N Engl J Med. 2021;384(18):1762–3.

    Article  PubMed  Google Scholar 

  72. Lin SK, Yan SH, Lai JN, Tsai TH. Patterns of Chinese medicine use in prescriptions for treating Alzheimer's disease in Taiwan. Chinas Med. 2016;11:12.

    Article  Google Scholar 

  73. Liu P, Kong M, Yuan S, Liu J, Wang P. History and experience: a survey of traditional chinese medicine treatment for Alzheimer's disease. Evid Based Complement Alternat Med. 2014;2014:642128.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cavalieri S, Rotoli M. Huangdi Neijing: a classic book of traditional Chinese medicine. Recenti Prog Med. 1997;88(11):541–6.

    CAS  PubMed  Google Scholar 

  75. Chen YG. Research Progress in the pathogenesis of Alzheimer's disease. Chin Med J (Engl). 2018;131(13):1618–24.

    Article  CAS  PubMed  Google Scholar 

  76. Yu B, Zhou C, Zhang J, Ling Y, Hu Q, Wang Y, et al. Latest study on the relationship between pathological process of inflammatory injury and the syndrome of spleen deficiency and fluid retention in Alzheimer's disease. Evid Based Complement Alternat Med. 2014;2014:743541.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jeon SG, Song EJ, Lee D, Park J, Nam Y, Kim JI, et al. Traditional oriental medicines and Alzheimer's disease. Aging Dis. 2019;10(2):307–28.

    Article  PubMed  PubMed Central  Google Scholar 

  78. May BH, Lu C, Lu Y, Zhang AL, Xue CC. Chinese herbs for memory disorders: a review and systematic analysis of classical herbal literature. J Acupunct Meridian Stud. 2013;6(1):2–11.

    Article  PubMed  Google Scholar 

  79. Lin SK, Tsai YT, Lai JN, Wu CT. Demographic and medication characteristics of traditional Chinese medicine users among dementia patients in Taiwan: a nationwide database study. J Ethnopharmacol. 2015;161:108–15.

    Article  PubMed  Google Scholar 

  80. Lin SK, Tzeng JN, Lai JN. The core pattern of Chinese herbal formulae and drug-herb concurrent usage in patients with dementia. Medicine (Baltimore). 2019;98(4):e13931.

    Article  PubMed  Google Scholar 

  81. Park DM, Kim SH, Park YC, Kang WC, Lee SR, Jung IC. The comparative clinical study of efficacy of Gamisoyo-San (Jiaweixiaoyaosan) on generalized anxiety disorder according to differently manufactured preparations: multicenter, randomized, double blind, placebo controlled trial. J Ethnopharmacol. 2014;158(Pt A):11–7.

    Article  PubMed  Google Scholar 

  82. Chang H-H, Yi P-L, Cheng C-H, Lu C-Y, Hsiao Y-T, Tsai Y-F, et al. Biphasic effects of baicalin, an active constituent of Scutellaria baicalensis Georgi, in the spontaneous sleep–wake regulation. J Ethnopharmacol. 2011;135(2):359–68.

    Article  CAS  PubMed  Google Scholar 

  83. Zhang Z, Zhang S, Lui CN, Zhu P, Zhang Z, Lin K, Dai Y, Yung KK. Traditional Chinese medicine-based neurorestorative therapy for Alzheimer’s and Parkinson’s disease. J Neurorestoratology. 2019;7(4):207–22.

    Article  CAS  Google Scholar 

  84. Gargouri B, Carstensen J, Bhatia HS, Huell M, Dietz GPH, Fiebich BL. Anti-neuroinflammatory effects of Ginkgo biloba extract EGb761 in LPS-activated primary microglial cells. Phytomedicine. 2018;44:45–55.

    Article  CAS  PubMed  Google Scholar 

  85. Tsai S-T, Huang W-S, Jiang S-K, Liao H-Y. Cervical spinal epidural abscess following needle-knife acupotomy, with an initial presentation that mimicked an acute stroke: a case report. Hong Kong Journal of Emergency Medicine. 2018;27(2):99–102.

    Article  Google Scholar 

  86. Tsai ST, Tseng CH, Lin MC, Liao HY, Teoh BK, San S, et al. Acupuncture reduced the medical expenditure in migraine patients: real-world data of a 10-year national cohort study. Medicine (Baltimore). 2020;99(32):e21345.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Huang Q, Luo D, Chen L, Liang FX, Chen R. Effectiveness of acupuncture for Alzheimer's disease: an updated systematic review and meta-analysis. Curr Med Sci. 2019;39(3):500–11.

    Article  CAS  PubMed  Google Scholar 

  88. Zhou S, Dong L, He Y, Xiao H. Acupuncture plus herbal medicine for Alzheimer's disease: a systematic review and meta-analysis. Am J Chin Med. 2017;45(7):1327–44.

    Article  PubMed  Google Scholar 

  89. Wang YY, Yu SF, Xue HY, Li Y, Zhao C, Jin YH. Effectiveness and safety of acupuncture for the treatment of Alzheimer's disease: a systematic review and meta-analysis. Front Aging Neurosci. 2020;12:98.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yu CC, Du YJ, Wang SQ, Liu LB, Shen F, Wang L, et al. Experimental evidence of the benefits of acupuncture for Alzheimer's disease: an updated review. Front Neurosci. 2020;14:549772.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Li G, Zeng L, Cheng H, Han J, Zhang X, Xie H. Acupuncture administration improves cognitive functions and alleviates inflammation and nuclear damage by regulating phosphatidylinositol 3 kinase (PI3K)/Phosphoinositol-dependent kinase 1 (PDK1)/novel protein kinase C (nPKC)/Rac 1 signaling pathway in senescence-accelerated prone 8 (SAM-P8) mice. Med Sci Monit. 2019;25:4082–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ding N, Jiang J, Xu A, Tang Y, Li Z. Manual acupuncture regulates behavior and cerebral blood flow in the SAMP8 mouse model of Alzheimer's disease. Front Neurosci. 2019;13:37.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Jiang J, Ding N, Wang K, Li Z. Electroacupuncture could influence the expression of IL-1<i>β</i> and NLRP3 Inflammasome in hippocampus of Alzheimer’s disease animal model. Evid Based Complement Alternat Med. 2018;2018:8296824.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Tang S-H, Du Y-J, Xiao J-H, Wang Y, Shen F, Sun G-J. Acupuncture and Moxibustion improves learning-memory ability of Alzheimer's disease rats possibly by up-regulating serum Aβ internalization enzyme contents. Zhen Ci Yan Jiu. 2018;43:692–7.

    PubMed  Google Scholar 

  95. Cai M, Lee J-H, Yang EJ. Electroacupuncture attenuates cognition impairment via anti-neuroinflammation in an Alzheimer’s disease animal model. J Neuroinflammation. 2019;16(1):264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Guan F, Lam W, Hu R, Kim YK, Han H, Cheng Y-C. Majority of Chinese medicine herb category “Qing re Yao” have multiple mechanisms of anti-inflammatory activity. Sci Rep. 2018;8(1):7416.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Niemantsverdriet E, Valckx S, Bjerke M, Engelborghs S. Alzheimer's disease CSF biomarkers: clinical indications and rational use. Acta Neurol Belg. 2017;117(3):591–602.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Tuppo EE, Arias HR. The role of inflammation in Alzheimer's disease. Int J Biochem Cell Biol. 2005;37(2):289–305.

    Article  CAS  PubMed  Google Scholar 

  99. Belkhelfa M, Rafa H, Medjeber O, Arroul-Lammali A, Behairi N, Abada-Bendib M, et al. IFN-γ and TNF-α are involved during Alzheimer disease progression and correlate with nitric oxide production: a study in Algerian patients. J Interferon Cytokine Res. 2014;34(11):839–47.

    Article  CAS  PubMed  Google Scholar 

  100. Brosseron F, Krauthausen M, Kummer M, Heneka MT. Body fluid cytokine levels in mild cognitive impairment and Alzheimer's disease: a comparative overview. Mol Neurobiol. 2014;50(2):534–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu C, Cui G, Zhu M, Kang X, Guo H. Neuroinflammation in Alzheimer's disease: chemokines produced by astrocytes and chemokine receptors. Int J Clin Exp Pathol. 2014;7(12):8342–55.

    PubMed  PubMed Central  Google Scholar 

  102. Rubio-Perez JM, Morillas-Ruiz JM. A review: inflammatory process in Alzheimer's disease, role of cytokines. ScientificWorldJournal. 2012;2012:756357.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Swardfager W, Lanctôt K, Rothenburg L, Wong A, Cappell J, Herrmann N. A meta-analysis of cytokines in Alzheimer's disease. Biol Psychiatry. 2010;68(10):930–41.

    Article  CAS  PubMed  Google Scholar 

  104. Chiou SM, Lin YC, Lu MK, Tsai CH. Bilateral subthalamic stimulation for advanced Parkinson disease: early experience at an eastern center. Neurol Sci. 2015;36(4):515–20.

    Article  PubMed  Google Scholar 

  105. Tan EK, Chao YX, West A, Chan LL, Poewe W, Jankovic J. Parkinson disease and the immune system—associations, mechanisms and therapeutics. Nat Rev Neurol. 2020;16(6):303–18.

    Article  PubMed  Google Scholar 

  106. Amanat M, Salehi M, Rezaei N. Neurological and psychiatric disorders in psoriasis. Rev Neurosci. 2018;29(7):805–13.

    Article  PubMed  Google Scholar 

  107. Chang CC, Lin TM, Chang YS, Chen WS, Sheu JJ, Chen YH, et al. Autoimmune rheumatic diseases and the risk of Parkinson disease: a nationwide population-based cohort study in Taiwan. Ann Med. 2018;50(1):83–90.

    Article  CAS  PubMed  Google Scholar 

  108. Ju UH, Liu FC, Lin CS, Huang WY, Lin TY, Shen CH, et al. Risk of Parkinson disease in Sjögren syndrome administered ineffective immunosuppressant therapies: a nationwide population-based study. Medicine (Baltimore). 2019;98(14):e14984.

    Article  CAS  PubMed  Google Scholar 

  109. Lee JH, Han K, Gee HY. The incidence rates and risk factors of Parkinson disease in patients with psoriasis: a nationwide population-based cohort study. J Am Acad Dermatol. 2020;83(6):1688–95.

    Article  CAS  PubMed  Google Scholar 

  110. Li X, Sundquist J, Sundquist K. Subsequent risks of Parkinson disease in patients with autoimmune and related disorders: a nationwide epidemiological study from Sweden. Neurodegener Dis. 2012;10(1–4):277–84.

    Article  CAS  PubMed  Google Scholar 

  111. Rugbjerg K, Friis S, Ritz B, Schernhammer ES, Korbo L, Olsen JH. Autoimmune disease and risk for Parkinson disease: a population-based case-control study. Neurology. 2009;73(18):1462–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sheu JJ, Wang KH, Lin HC, Huang CC. Psoriasis is associated with an increased risk of parkinsonism: a population-based 5-year follow-up study. J Am Acad Dermatol. 2013;68(6):992–9.

    Article  PubMed  Google Scholar 

  113. Wu MC, Xu X, Chen SM, Tyan YS, Chiou JY, Wang YH, et al. Impact of Sjogren's syndrome on Parkinson’s disease: a nationwide case-control study. PLoS One. 2017;12(7):e0175836.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Racette BA, Gross A, Vouri SM, Camacho-Soto A, Willis AW, Searles NS. Immunosuppressants and risk of Parkinson disease. Ann Clin Transl Neurol. 2018;5(7):870–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ren L, Yi J, Yang J, Li P, Cheng X, Mao P. Nonsteroidal anti-inflammatory drugs use and risk of Parkinson disease: a dose-response meta-analysis. Medicine (Baltimore). 2018;97(37):e12172.

    Article  CAS  PubMed  Google Scholar 

  116. McGeer PL, Itagaki S, McGeer EG. Expression of the histocompatibility glycoprotein HLA-DR in neurological disease. Acta Neuropathol. 1988;76(6):550–7.

    Article  CAS  PubMed  Google Scholar 

  117. Karpenko MN, Vasilishina AA, Gromova EA, Muruzheva ZM, Miliukhina IV, Bernadotte A. Interleukin-1β, interleukin-1 receptor antagonist, interleukin-6, interleukin-10, and tumor necrosis factor-α levels in CSF and serum in relation to the clinical diversity of Parkinson’s disease. Cell Immunol. 2018;327:77–82.

    Article  CAS  PubMed  Google Scholar 

  118. Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T. Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett. 1996;211(1):13–6.

    Article  CAS  PubMed  Google Scholar 

  119. Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T. Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from Parkinsonian patients. Neurosci Lett. 1994;165(1–2):208–10.

    Article  CAS  PubMed  Google Scholar 

  120. Nagatsu T, Mogi M, Ichinose H, Togari A. Cytokines in Parkinson’s disease. J Neural Transm Suppl. 2000;58:143–51.

    Google Scholar 

  121. Chen H, O'Reilly EJ, Schwarzschild MA, Ascherio A. Peripheral inflammatory biomarkers and risk of Parkinson’s disease. Am J Epidemiol. 2008;167(1):90–5.

    Article  PubMed  Google Scholar 

  122. Lian TH, Guo P, Zuo LJ, Hu Y, Yu SY, Yu QJ, et al. Tremor-dominant in Parkinson disease: the relevance to iron metabolism and inflammation. Front Neurosci. 2019;13:255.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Schröder JB, Pawlowski M, Meyer Zu Hörste G, Gross CC, Wiendl H, Meuth SG, et al. Immune cell activation in the cerebrospinal fluid of patients with Parkinson’s disease. Front Neurol. 2018;9:1081.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Wijeyekoon RS, Kronenberg-Versteeg D, Scott KM, Hayat S, Jones JL, Clatworthy MR, et al. Monocyte function in Parkinson’s disease and the impact of autologous serum on phagocytosis. Front Neurol. 2018;9:870.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Harms AS, Thome AD, Yan Z, Schonhoff AM, Williams GP, Li X, et al. Peripheral monocyte entry is required for Alpha-synuclein induced inflammation and neurodegeneration in a model of Parkinson disease. Exp Neurol. 2018;300:179–87.

    Article  CAS  PubMed  Google Scholar 

  126. Stefanis L. α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(2):a009399.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Cook DA, Kannarkat GT, Cintron AF, Butkovich LM, Fraser KB, Chang J, et al. LRRK2 levels in immune cells are increased in Parkinson’s disease. Npj Parkinson’s Disease. 2017;3(1):11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Atashrazm F, Hammond D, Perera G, Dobson-Stone C, Mueller N, Pickford R, et al. Reduced glucocerebrosidase activity in monocytes from patients with Parkinson’s disease. Sci Rep. 2018;8(1):15446.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Perez-Pardo P, Dodiya HB, Engen PA, Forsyth CB, Huschens AM, Shaikh M, et al. Role of TLR4 in the gut-brain axis in Parkinson’s disease: a translational study from men to mice. Gut. 2019;68(5):829–43.

    Article  CAS  PubMed  Google Scholar 

  130. Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis. 2006;21(2):404–12.

    Article  CAS  PubMed  Google Scholar 

  131. Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 2009;8(4):382–97.

    Article  CAS  PubMed  Google Scholar 

  132. Roussakis AA, Piccini P. Molecular imaging of Neuroinflammation in idiopathic Parkinson’s disease. Int Rev Neurobiol. 2018;141:347–63.

    Article  CAS  PubMed  Google Scholar 

  133. Hui KY, Fernandez-Hernandez H, Hu J, Schaffner A, Pankratz N, Hsu N-Y, et al. Functional variants in the <em>LRRK2</em> gene confer shared effects on risk for Crohn’s disease and Parkinson’s disease. Sci Transl Med. 2018;10(423):eaai7795.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Prigent A, Lionnet A, Durieu E, Chapelet G, Bourreille A, Neunlist M, et al. Enteric alpha-synuclein expression is increased in Crohn's disease. Acta Neuropathol. 2019;137(2):359–61.

    Article  PubMed  Google Scholar 

  135. Rivas MA, Avila BE, Koskela J, Huang H, Stevens C, Pirinen M, et al. Insights into the genetic epidemiology of Crohn's and rare diseases in the Ashkenazi Jewish population. PLoS Genet. 2018;14(5):e1007329.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Aliseychik MP, Andreeva TV, Rogaev EI. Immunogenetic factors of neurodegenerative diseases: the role of HLA class II. Biochemistry (Mosc). 2018;83(9):1104–16.

    Article  CAS  PubMed  Google Scholar 

  137. Hollenbach JA, Norman PJ, Creary LE, Damotte V, Montero-Martin G, Caillier S, et al. A specific amino acid motif of HLA-DRB1 mediates risk and interacts with smoking history in Parkinson’s disease. Proc Natl Acad Sci U S A. 2019;116(15):7419–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review. JAMA. 2020;323(6):548–60.

    Article  PubMed  Google Scholar 

  139. Agarwal S, Fleisher JE. Reaching those most in need—a call to action for advanced Parkinson’s disease. Eur Neurol Rev. 2016;11(1):20–1.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Rajendran PR, Thompson RE, Reich SG. The use of alternative therapies by patients with Parkinson’s disease. Neurology. 2001;57(5):790–4.

    Article  CAS  PubMed  Google Scholar 

  141. Shim J-M, Kim J. Cross-national differences in the holistic use of traditional east Asian medicine in East Asia. Health Promot Int. 2016;33(3):536–44.

    Google Scholar 

  142. Obeso JA, Stamelou M, Goetz CG, Poewe W, Lang AE, Weintraub D, et al. Past, present, and future of Parkinson’s disease: a special essay on the 200th anniversary of the shaking palsy. Mov Disord. 2017;32(9):1264–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Curran J. The yellow Emperor’s classic of internal medicine. BMJ. 2008;336(7647):777.

    Article  PubMed Central  Google Scholar 

  144. Li X, Zhang Y, Wang Y, Xu J, Xin P, Meng Y, et al. The mechanisms of traditional Chinese medicine underlying the prevention and treatment of Parkinson’s disease. Front Pharmacol. 2017;8:634.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Chen H, Zhang Z, He J, Teng L, Yuan C. Traditional Chinese medicine symptom pattern analysis for Parkinson’s disease. J Tradit Chin Med. 2017;37(5):688–94.

    Article  PubMed  Google Scholar 

  146. Sheng-d C. The protection of curcumin in nigral dopaminergic neuronal injury of mice model of Parkinson disease. Chin J Contemp Neurol Neurosurg. 2007;7(5):447–52.

    Google Scholar 

  147. Faust K, Gehrke S, Yang Y, Yang L, Beal MF, Lu B. Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a drosophila model of Parkinson’s disease. BMC Neurosci. 2009;10(1):109.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Cristian A, Katz M, Cutrone E, Walker RH. Evaluation of acupuncture in the treatment of Parkinson’s disease: a double-blind pilot study. Mov Disord. 2005;20(9):1185–8.

    Article  PubMed  Google Scholar 

  149. Huang J, Qin X, Cai X, Huang Y. Effectiveness of acupuncture in the treatment of Parkinson’s disease: an overview of systematic reviews. Front Neurol. 2020;11:917.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Wang H, Pan Y, Xue B, Wang X, Zhao F, Jia J, et al. The antioxidative effect of electro-acupuncture in a mouse model of Parkinson’s disease. PLoS One. 2011;6(5):e19790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kang JM, Park HJ, Choi YG, Choe IH, Park JH, Kim YS, et al. Acupuncture inhibits microglial activation and inflammatory events in the MPTP-induced mouse model. Brain Res. 2007;1131(1):211–9.

    Article  CAS  PubMed  Google Scholar 

  152. Huo LR, Liang XB, Li B, Liang JT, He Y, Jia YJ, et al. The cortical and striatal gene expression profile of 100 hz electroacupuncture treatment in 6-hydroxydopamine-induced Parkinson’s disease model. Evid Based Complement Alternat Med. 2012;2012:908439.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Chapelet G, Leclair-Visonneau L, Clairembault T, Neunlist M, Derkinderen P. Can the gut be the missing piece in uncovering PD pathogenesis? Parkinsonism Relat Disord. 2019;59:26–31.

    Article  PubMed  Google Scholar 

  154. Klingelhoefer L, Reichmann H. Pathogenesis of Parkinson disease—the gut-brain axis and environmental factors. Nat Rev Neurol. 2015;11(11):625–36.

    Article  CAS  PubMed  Google Scholar 

  155. Braak H, Rüb U, Gai WP, Del Tredici K. Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm (Vienna). 2003;110(5):517–36.

    Article  CAS  PubMed  Google Scholar 

  156. Hawkes CH, Del Tredici K, Braak H. Parkinson’s disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol. 2007;33(6):599–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kim S, Kwon SH, Kam TI, Panicker N, Karuppagounder SS, Lee S, et al. Transneuronal propagation of pathologic α-Synuclein from the gut to the brain models Parkinson’s disease. Neuron. 2019;103(4):627–41.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Svensson E, Horváth-Puhó E, Thomsen RW, Djurhuus JC, Pedersen L, Borghammer P, et al. Vagotomy and subsequent risk of Parkinson’s disease. Ann Neurol. 2015;78(4):522–9.

    Article  PubMed  Google Scholar 

  159. Parashar A, Udayabanu M. Gut microbiota: implications in Parkinson’s disease. Parkinsonism Relat Disord. 2017;38:1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Rietdijk CD, Perez-Pardo P, Garssen J, van Wezel RJ, Kraneveld AD. Exploring Braak’s hypothesis of Parkinson’s disease. Front Neurol. 2017;8:37.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Su A, Gandhy R, Barlow C, Triadafilopoulos G. A practical review of gastrointestinal manifestations in Parkinson’s disease. Parkinsonism Relat Disord. 2017;39:17–26.

    Article  PubMed  Google Scholar 

  162. Devos D, Lebouvier T, Lardeux B, Biraud M, Rouaud T, Pouclet H, et al. Colonic inflammation in Parkinson’s disease. Neurobiol Dis. 2013;50:42–8.

    Article  CAS  PubMed  Google Scholar 

  163. Lin C-H, Chen C-C, Chiang H-L, Liou J-M, Chang C-M, Lu T-P, et al. Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson’s disease. J Neuroinflammation. 2019;16(1):129.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Jeon S, Kim YJ, Kim ST, Moon W, Chae Y, Kang M, et al. Proteomic analysis of the neuroprotective mechanisms of acupuncture treatment in a Parkinson’s disease mouse model. Proteomics. 2008;8(22):4822–32.

    Article  CAS  PubMed  Google Scholar 

  165. Kim SN, Doo AR, Park JY, Bae H, Chae Y, Shim I, et al. Acupuncture enhances the synaptic dopamine availability to improve motor function in a mouse model of Parkinson’s disease. PLoS One. 2011;6(11):e27566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kim SN, Kim ST, Doo AR, Park JY, Moon W, Chae Y, et al. Phosphatidylinositol 3-kinase/Akt signaling pathway mediates acupuncture-induced dopaminergic neuron protection and motor function improvement in a mouse model of Parkinson’s disease. Int J Neurosci. 2011;121(10):562–9.

    Article  CAS  PubMed  Google Scholar 

  167. Park HJ, Lim S, Joo WS, Yin CS, Lee HS, Lee HJ, et al. Acupuncture prevents 6-hydroxydopamine-induced neuronal death in the nigrostriatal dopaminergic system in the rat Parkinson’s disease model. Exp Neurol. 2003;180(1):93–8.

    Article  PubMed  Google Scholar 

  168. Park J-Y, Kim S-N, Yoo J, Jang J, Lee A, Oh J-Y, et al. Novel neuroprotective effects of melanin-concentrating hormone in Parkinson’s disease. Mol Neurobiol. 2017;54(10):7706–21.

    Article  CAS  PubMed  Google Scholar 

  169. Park JY, Choi H, Baek S, Jang J, Lee A, Jeon S, et al. p53 signalling mediates acupuncture-induced neuroprotection in Parkinson’s disease. Biochem Biophys Res Commun. 2015;460(3):772–9.

    Article  CAS  PubMed  Google Scholar 

  170. Tsai S-T, Wei T-H, Yang Y-W, Lu M-K, San S, Tsai C-H, et al. Transient receptor potential V1 modulates neuroinflammation in Parkinson’s disease dementia: molecular implications for electroacupuncture and rivastigmine. Iran J Basic Med Sci. 2021;24(10):1336–45.

    PubMed  PubMed Central  Google Scholar 

  171. Torres-Rosas R, Yehia G, Peña G, Mishra P, del Rocio T-BM, Moreno-Eutimio MA, et al. Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nat Med. 2014;20(3):291–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Jang J-H, Yeom M-J, Ahn S, Oh J-Y, Ji S, Kim T-H, et al. Acupuncture inhibits neuroinflammation and gut microbial dysbiosis in a mouse model of Parkinson’s disease. Brain Behav Immun. 2020;89:641–55.

    Article  CAS  PubMed  Google Scholar 

  173. Kouti L, Noroozian M, Akhondzadeh S, Abdollahi M, Javadi MR, Faramarzi MA, et al. Nitric oxide and peroxynitrite serum levels in Parkinson’s disease: correlation of oxidative stress and the severity of the disease. Eur Rev Med Pharmacol Sci. 2013;17(7):964–70.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan-Pin Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsai, ST., Nithiyanantham, S., Satyanarayanan, S.K., Su, KP. (2023). Anti-Inflammatory Effect of Traditional Chinese Medicine on the Concept of Mind-Body Interface. In: Kim, YK. (eds) Neuroinflammation, Gut-Brain Axis and Immunity in Neuropsychiatric Disorders. Advances in Experimental Medicine and Biology, vol 1411. Springer, Singapore. https://doi.org/10.1007/978-981-19-7376-5_19

Download citation

Publish with us

Policies and ethics