Skip to main content

Porous Carbon Materials and Their Applications in Biosensing, Medical Diagnostics, and Drug Delivery

  • Chapter
  • First Online:
Handbook of Porous Carbon Materials

Abstract

Porous carbon materials have recently received interesting attention for their applications in various biomedical and bioscience fields. These porous materials possess unique properties such as high surface area, ordered porosity, good biocompatibility, easy functionalization, and high thermostability making them promising candidates. This chapter presented the latest advances in the use of porous carbon materials in terms of biosensors, medical diagnostics, and drug delivery applications. The authors admit that the choice of the synthesis and the surface functionalization protocols is directly related to the requirements of the application. Based on this, the design of porous carbon-based platforms is discussed to give to the readers more visibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PCMs:

Porous carbon materials

UIPAC:

International union of pure and applied chemistry

DNA:

Deoxyribonucleic acid

MCF:

Mesoporous carbon framework

Gox:

Glucose oxidase

SPCE:

Screen printed carbon electrode

PC:

Porous carbon

Pb:

Prussian blue

LIG:

Laser-induced porous grapheme

TG:

Triglyceride

CNFs:

Porous carbon nanofibers

AgNPs:

Silver nanoparticles

AuNPs:

Gold nanoparticles

Lip:

Lipase

PGE:

Pencil graphite electrode

OMS:

Ordered mesoporous carbon

rGO:

Reduced graphene oxide

TPS:

1.3.6.8 Pyrene tetrasulfonate

OTA:

Ochratoxin A

Rct:

Charge transfer resistance

MB:

Methylene blue

CPE:

Carbon paste electrode

Fe2O3 NPs:

Iron oxide nanoparticles

RNA:

Ribonucleic acid

NPC:

Nitrogen doped porous carbon

MOF:

Metal–organic framework

MCNs:

Mesoporous carbon nanoparticles

MRI:

Magnetic resonance imaging

MR:

Magnetic resonance

PEG:

Polyethylene glycol

MSN:

Mesoporous silica nanoparticles

LE%:

Loading efficiency %

HMC:

Highly ordered mesoporous carbon

FOMC:

Fibrous ordered mesoporous carbon

CEL:

Celecoxib

CAR:

Carvedilol

IDDSs:

Immediate drug delivery systems

SDDSs:

Sustained drug delivery systems

CDDSs:

Controlled drug delivery systems

TDDSs:

Targeted drug delivery systems

LOV:

Lovastatin

HMCN:

Highly mesoporous carbon nanoparticles

DOX:

Doxorubicin

VER:

Verapamil

References

  1. Chaikittisilp W, Ariga K, Yamauchi Y (2013) A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. J Mater Chem A 1:14–19

    Article  CAS  Google Scholar 

  2. Sattayasamitsathit S, Mahony AMO, Xiao XY, Brozik SM, Washburn CM, Wheeler DR, Cha J, Burckel DB, Polsky R, Wang J, Wheeler DR, Cha J, Burckel DB, Polsky R, Wang J (2011) Highly dispersed Pt nanoparticle-modified 3D porous carbon: a metallized carbon electrode material. Electrochem Commun 13:856–860

    Article  CAS  Google Scholar 

  3. Tripathi NK (2018) Porous carbon spheres: recent developments and applications. AIMS Mater Sci 5:1016–1052

    Article  Google Scholar 

  4. Xu M, Yu Q, Liu Z, Lv J, Lian S, Hu B, Mai L, Zhou L (2018) Tailoring porous carbon spheres for supercapacitors. Nanoscale 10:21604–21616

    Article  CAS  PubMed  Google Scholar 

  5. Torad NL, Hu M, Ishihara S, Sukegawa H, Belik AA, Imura M, Ariga K, Sakka Y, Yamauchi Y (2014) Direct synthesis of MOF-Derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment. Small 10:2096–2107

    Google Scholar 

  6. Yang SJ, Kim T, Im JH, Kim YS, Lee K, Jung H, Park CR (2012) MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem Mater 24:464–470

    Article  CAS  Google Scholar 

  7. Xiao LL, Xu HB, Zhou SH, Song T, Wang HH, Li SZ, Gan W, Yuan QH (2014) Simultaneous detection of Cd(II) and Pb(II) by differential pulse anodic stripping voltammetry at a nitrogen-doped microporous carbon/Nafion/bismuth-film electrode. Electrochim Acta 143:143–151

    Article  CAS  Google Scholar 

  8. Dutta S, Bhaumik A, Wu KCW (2014) Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ Sci 7:3574–3592

    Article  CAS  Google Scholar 

  9. Fang B, Kim JH, Kim MS, Yu JS (2013) Hierarchical nanostructured carbons with meso–macroporosity: design, characterization, and applications. Acc Chem Res 46(7):1397–1406

    Article  CAS  PubMed  Google Scholar 

  10. De S, Mariana Balu A, Waal JCVD, Luque R (2015) Biomass-derived porous carbon materials: synthesis and catalytic applications. Chem Cat Chem 1–23

    Google Scholar 

  11. Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18:2073–2094

    Article  CAS  Google Scholar 

  12. Qie L, Chen W, Xu H, Xiong X, Jiang Y, Zou F, Hu X, Xin Y, Zhang Z, Huang Y (2013) Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ Sci 6:2497–2504

    Article  Google Scholar 

  13. Thevenot DR, Tóth K, Durst RA, Wilson GS (1999) Electrochemical biosensors: recommended definitions and classification. Pure Appl Chem 71(12):2333–2348

    Article  CAS  Google Scholar 

  14. Ronkainen NJ, Brian Halsall H, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39:1747–1763

    Article  CAS  PubMed  Google Scholar 

  15. Maduraiveerana G, Jin W (2017) Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends Environ Anal Chem 13:10–23

    Article  Google Scholar 

  16. Wu HL, Tang QL, Fan HN, Liu Z, Hu AP, Zhang SY, Deng WN, Chen XH (2017) Dual-confined and hierarchical-porous graphene/C/SiO2 hollow microspheres through spray drying approach for lithium-sulfur batteries. Electrochim Acta 255:79–186

    Article  Google Scholar 

  17. Yang T, Zhong Y, Liang J, Rahman MM, Lei W, Chen Y, Monteiro MJ, Shao Z, Liu J (2017) Hierarchical porous yolk-shell carbon nanosphere for highperformance lithium-sulfur batteries. Part Part Syst Char 34:1600281

    Article  Google Scholar 

  18. Bu YK, Wu J, Zhao XT, Ding K, Liu Q, Huang YY, Lv JQ, Wang YB (2016) Sandwich-type porous carbon/sulfur/polyaniline composite as cathode material for high performance lithium-sulfur batteries. RSC Adv 6:104591–104596

    Article  CAS  Google Scholar 

  19. Rernglit W, Teanphonkrang S, Suginta W, Schulte A (2019) Amperometric enzymatic sensing of glucose using porous carbon nanotube films soaked with glucose oxidase. Microchim Acta 186:616

    Article  Google Scholar 

  20. Quintero-Jaime AF, Quilez-Bermejo J, Cazorla-Amoros D, Morallon E (2021) Metal free electrochemical glucose biosensor based on N-doped porous carbon material. Electrochim Acta 367:137434

    Article  CAS  Google Scholar 

  21. Madhu R, Veeramani V, Chen SM, Manikandan A, Lo AY, Chueh YL (2015) Honeycomb-like porous carbon-cobalt oxide nanocomposite for high-performance enzymeless glucose sensor and supercapacitor applications. ACS Appl Mater Interfaces 7(29):15812–15820

    Article  CAS  PubMed  Google Scholar 

  22. Dhanjai BP, Sinha A, Wu L, Lu X, Tan D, Chen J (2019) Co3O4 nanoparticles supported mesoporous carbon framework interface for glucose biosensing. Talanta 203:112–121

    Article  CAS  PubMed  Google Scholar 

  23. Barathi P, Thirumalraj B, Chen SM, Angaiah S (2019) A simple and flexible enzymatic glucose biosensor using chitosan entrapped mesoporous carbon nanocomposite. Microchem J 147:848–856

    Google Scholar 

  24. Thakur B, Guo X, Chang J, Kron M, Chen J (2017) Porous carbon and Prussian blue composite: a highly sensitive electrochemical platform for glucose biosensing. Sens Bio-Sens Res 14:47–53

    Article  Google Scholar 

  25. Yoon H, Nah J, Kim H, Ko S, Sharifuzzaman M, Chandra Barman S, Xuan X, Kim J, Park JY (2020) A chemically modified laser-induced porous graphene based flexible and ultrasensitive electrochemical biosensor for sweat glucose detection. Sensor Actuat B Chem 311:127866

    Article  CAS  Google Scholar 

  26. Alves-Bezerra M, Cohen DE (2017) Triglyceride metabolism in the liver. Compr Physiol 8(1):1–8

    PubMed  PubMed Central  Google Scholar 

  27. Wang J, Huang X, Tang SY, Ming Shi G, Ma X, Guo J (2019) Blood triglyceride monitoring with smartphone as electrochemical analyzer for cardiovascular disease prevention. IEEE J Biomed Health 23(1):66–71

    Article  CAS  Google Scholar 

  28. Mondal K, Ali MA, Singh C, Sumana G, Malhotra BD, Sharmaa A (2017) Highly sensitive porous carbon and metal/carbon conducting nanofiber based enzymatic biosensors for triglyceride detection. Sensor Actuator B-Chem 246:202–214

    Article  CAS  Google Scholar 

  29. Shoja Y, Kermanpur A, Karimzadeh F (2018) Diagnosis of EGFR exon21 L858R point mutation as lung cancer biomarker by electrochemical DNA biosensor based on reduced graphene oxide/functionalized ordered mesoporous carbon/Ni-oxytetracycline metallopolymer nanoparticles modified pencil graphite electrode. Biosens Bioelectron 113:108–115

    Article  CAS  PubMed  Google Scholar 

  30. Tabrizi MA, Shamsipur M, Saber R, Sarkar S, Besharati M (2018) An electrochemical aptamer-based assay for femtomolar determination of insulin using a screen printed electrode modified with mesoporous carbon and 1,3,6,8-pyrenetetrasulfonate. Microchim Acta 185:59

    Article  Google Scholar 

  31. Wei M, Zhang W (2017) A novel impedimetric aptasensor based on AuNPs—carboxylic porous carbon for the ultrasensitive detection of ochratoxin A. RSC Adv 7:28655–28660

    Article  CAS  Google Scholar 

  32. Li S, Wang L, Zhang X, Chai H, Huang Y (2018) A Co, N co-doped hierarchically porous carbon hybrid as a highly efficient oxidase mimetic for glutathione detection. Sensor Actuator B-Chem 264:312–319

    Article  CAS  Google Scholar 

  33. Ren Q, Xu X, Cao G, Xia J, Wang Z, Liu Q (2019) Electrochemical thrombin aptasensor based on using magnetic nanoparticles and porous carbon prepared by carbonization of a zinc(II)-2-methylimidazole metal-organic framework. Microchim Acta 186:659

    Article  Google Scholar 

  34. Wei W, Dong S, Huang G, Xie Q, Huang T (2018) MOF-derived Fe2O3 nanoparticle embedded in porous carbon as electrode materials for two enzyme-based biosensors. Sensor Actuator B-Chem 260:189–197

    Article  CAS  Google Scholar 

  35. Tan H, Tang G, Wang Z, Li Q, Gao J, Wu S (2016) Magnetic porous carbon nanocomposites derived from metal-organic frameworks as a sensing platform for DNA fluorescent detection. Anal Chim Acta 940:136–142

    Article  CAS  PubMed  Google Scholar 

  36. Yang R, Yan X, Li Y, Zhang X, Chen J (2017) Nitrogen-doped porous carbon-ZnO nanopolyhedra derived from ZIF-8: new materials for photoelectrochemical biosensors. ACS Appl Mater Interfaces 9:42482–42491

    Article  CAS  PubMed  Google Scholar 

  37. Li J, Yang K, Wu Z, Li X, Duan Q (2019) Nitrogen-doped porous carbon-based fluorescence sensor for the detection of ZIKV RNA sequences: fluorescence image analysis. Talanta 205:120091

    Article  CAS  PubMed  Google Scholar 

  38. Ren H, Liu X, Yan L, Cai Y, Liu C, Zeng L, Liu A (2020) Ocean green tide derived hierarchical porous carbon with bi-enzyme mimic activities and their application for sensitive colorimetric and fluorescent biosensing. Sensor Actuator B Chem 312:127979

    Article  CAS  Google Scholar 

  39. Wang L, Zhang Y, Yu J, He J, Yang H, Ye Y, Song Y (2017) A green and simple strategy to prepare graphene foam-like three-dimensional porous carbon/Ni nanoparticles for glucose sensing. Sensor Actuat B Chem 239:172–179

    Article  CAS  Google Scholar 

  40. Veeramani V, Madhu R, Chen SM, Veerakumar P, Hung CT, Liu SB (2015) Heteroatom-enriched porous carbon/nickel oxide nanocomposites as enzyme-free highly sensitive sensors for detection of glucose. Sensor Actuat B Chem 221:1384–1390

    Article  CAS  Google Scholar 

  41. Shan B, Ji Y, Zhong Y, Chen L, Li S, Zhang J, Chen L, Liu X, Chen Y, Yan N, Song Y (2019) Nitrogen-containing three-dimensional biomass porous carbon materials as an efficient enzymatic biosensing platform for glucose sensing. RSC Adv 9:25647–25654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zahmouli N, Marini S, Guediri M, Ben Mansour N, Hjiri M, El Mir L, Espro C, Neri G, LeonardiS G (2018) Nanostructured nickel on porous carbon-silica matrix as an efficient electrocatalytic material for a non-enzymatic glucose sensor. Chemosensors 6:54

    Article  CAS  Google Scholar 

  43. Li M, Yang J, Lu M, Zhang Y, Bo X (2019) Facile design of ultrafine Co7Fe3 nanoparticles coupled with nitrogen-doped porous carbon nanosheets for non-enzymatic glucose detection. J Colloid Interface Sci 555:449–459

    Article  CAS  PubMed  Google Scholar 

  44. Qu P, Gong Z, Cheng H, Xiong W, Wu X, Pei P, Zhao R, Zeng Y, Zhu Z (2015) Nanoflower-like CoS-decorated 3D porous carbon skeleton derived from rose for high performance nonenzymatic glucose sensor. RSC Adv 5:106661–106667

    Article  CAS  Google Scholar 

  45. Xie Y, Song Y, Zhang Y, Xu L, Miao L, Peng C, Wang L (2018) Cu metal-organic framework-derived Cu Nanospheres@Porous carbon/macroporous carbon for electrochemical sensing glucose. J Alloy Compd 757:105–111

    Article  CAS  Google Scholar 

  46. Meng T, Jia H, Ye H, Zeng T, Yang X, Wang H, Zhang Y (2020) Facile preparation of CoMoO4 nanorods at macroporous carbon hybrid electrocatalyst for non-enzymatic glucose detection. J Colloid Interface Sci 560:1–10

    Article  CAS  PubMed  Google Scholar 

  47. Sivasakthi S, Imran H, Karuppasamy G, Sagadevan S, Mohammad F, Dharuman V (2020) Green synthesis of porous carbon nanocubes accumulated microspheres for the simultaneous non-enzymatic sensing of uric acid and dopamine in the presence of ascorbic acid. Synth Met 270:116598

    Article  CAS  Google Scholar 

  48. Gai P, Zhang H, Zhang Y, Liu W, Zhu G, Zhang X, Chen J (2013) Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on nitrogen doped porous carbon nanopolyhedra. J Mater Chem B1:2742–2749

    Google Scholar 

  49. Wang S, Guo P, Ma G, Wei J, Wang Z, Cui L, Sun L, Wang A (2020) Three-dimensional hierarchical mesoporous carbon for regenerative electrochemical dopamine sensor. Electrochim Acta 360:137016

    Article  CAS  Google Scholar 

  50. Zhao L, Cai Z, Yao Q, Zhao T, Chen X, Lin H, Xiao Y. Electropolymerization fabrication of three-dimensional N, P-co-doped carbon network as a flexible electrochemical dopamine sensor. Sensor Actuat B Chem 253:1113–1119

    Google Scholar 

  51. Zhang Y, Gao W, Zuo L, Zhang L, Huang Y, Lu H, Fan W, Liu T (2016) In situ growth of Fe2O3 nanoparticles on highly porous graphene/polyimide-based carbon aerogel nanocomposites for effectively selective detection of dopamine. Adv Mater Interfaces 1600137

    Google Scholar 

  52. Guo H, Wang M, Zhao L, Youliwasi N, Liu C (2018) The effect of Co and N of porous carbon-based materials fabricated via sacrificial templates MOFs on improving DA and UA electrochemical detection. Micropor Mesopor Mat 263:21–27

    Article  CAS  Google Scholar 

  53. Kalate Bojdi M, Behbahani M, Mashhadizadeh MH, Bagheri A, Hosseiny Davarani SS, Farahani A (2015) Mercapto-ordered carbohydrate-derived porous carbon electrode as a novel electrochemical sensor for simple and sensitive ultra-trace detection of omeprazole in biological samples. Mater Sci Eng C 48:213–219

    Article  CAS  Google Scholar 

  54. Zhou M, Guo LP, Hou Y, Peng XJ (2008) Immobilization of nafion-ordered mesoporous carbon on a glassy carbon electrode: application to the detection of epinephrine. Electrochim Acta 53:4176–4184

    Article  CAS  Google Scholar 

  55. Ndamanisha JC, Bai J, Qi B, Guo L (2009) Application of electrochemical properties of ordered mesoporous carbon to the determination of glutathione and cysteine. Anal Biochem 386:79–84

    Article  CAS  PubMed  Google Scholar 

  56. Kozitsina AN, Svalova TS, Malysheva NN, Okhokhonin AV, Vidrevich MB, Brainina KZ (2018) Sensors based on bio and biomimetic receptors in medical diagnostic, environment, and food analysis. Biosensors 8:34–35

    Article  Google Scholar 

  57. Yang G, Gong H, Liu T, Sun X, Cheng L, Liu Z (2015) Twodimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer. Biomaterials 60:62–71

    Article  CAS  PubMed  Google Scholar 

  58. Xu G, Liu S, Niu H, Lv W, Wu R (2014) Functionalized mesoporous carbon nanoparticles for targeted chemo-photothermal therapy of cancer cells under near-infrared irradiation. RSC Adv 4:33986–33997

    Article  CAS  Google Scholar 

  59. Li C, Meng Y, Wang S, Qian M, Wang J, Lu W (2015) Rongqin huang, mesoporous carbon nanospheres featured fluorescent aptasensor for multiple diagnosis of cancer in vitro and in vivo. ACS Nano 9(12):12096–12103

    Article  CAS  PubMed  Google Scholar 

  60. Kong Q, Zhang L, Liu J, Wu M, Chen Y, Fenga J, Shi J (2014) Facile synthesis of hydrophilic multi-colour and upconversion photoluminescent mesoporouscarbonnanoparticles for bioapplications. Chem Commun 50:15772–15775

    Article  CAS  Google Scholar 

  61. Ren X, Zheng R, Fang X, Wang X, Zhang X, Yang W, Sha X (2016) Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy. Biomaterials 92:13–24

    Article  CAS  PubMed  Google Scholar 

  62. Zhang Q, Wang P, Ling Y, Li X, Xia L, Yang Y, Liu X, Zhang F, Zhou Y (2017) Single molecular wells–dawson-like heterometallic cluster for the in situ functionalization of ordered mesoporous carbon: A T1- and T2-weighted dual-mode magnetic resonance imaging agent and drug delivery system. Adv Funct Mater 27:1605313

    Article  Google Scholar 

  63. Zhang S, Qian X, Zhang L, Peng W, Chen Y (2015) Composition-property relationships in multifunctional hollow mesoporous carbon nanosystems for PH-responsive magnetic resonance imaging and on-demand drug releasing. Nanoscale 7:7632–7643

    Article  CAS  PubMed  Google Scholar 

  64. Wu F, Sun B, Chu X, Zhang Q, She Z, Song S, Zhou N, Zhang J, Yi X, Wu D, Wang J (2019) Hyaluronic acid-modified porous carbon-coated Fe3O4 nanoparticles for magnetic resonance imaging-guided photothermal/chemotherapy of tumors. Langmuir 35:13135–13144

    Article  CAS  PubMed  Google Scholar 

  65. Shi J, Votruba AR, Farokhzad OC, Langer R (2010) Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 10:3223–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jafari S, Derakhshankhaha H, Alaei L, Fattahi A, Varnamkhasti BS, Saboury AA (2019) Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed Pharmacother 109:1100–1111

    Article  CAS  PubMed  Google Scholar 

  67. Kapri S, Maiti S, Bhattacharyya S (2016) Lemon grass derived porous carbon nanospheres functionalized for controlled and targeted drug delivery. Carbon 100:223–235

    Article  CAS  Google Scholar 

  68. Zhao Q, Lin Y, Han N, Li X, Geng H, Wang X, Cui Y, Wang S (2017) Mesoporous carbon nanomaterials in drug delivery and biomedical application. Drug Delivery 24(1):94–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liang C, Li Z, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed 47:3696–3717

    Article  CAS  Google Scholar 

  70. Bazuła PA, Lu AH, Nitz JJ, Schuth F (2008) Surface and pore structure modification of ordered mesoporous carbons via a chemical oxidation approach. Micropor Mesopor Mat 108:266–275

    Article  Google Scholar 

  71. Rahman MM, Gulshan Ara M, Alim MA, Uddin MS, Najda A, Albadrani GM, Sayed AA, Mousa SA, Abdel-Daim MM (2021) Mesoporous carbon: a versatile material for scientific applications. Int J Mol Sci 22(9):4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Magno Luis M, Hinds David T, Duffy P, Yadav Rahul B, Ward Andrew D, Botchway Stan W, Colavita Paula E, Quinn Susan J (2020) Porous carbon microparticles as vehicles for the intracellular delivery of molecules. Front Chem 8:925

    Google Scholar 

  73. Homayun B, Lin X, Cho H (2019) Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 11:129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gisbert-Garzaran M, Berkmann JC, Giasafaki D, Lozano D, Spyrou K, Manzano M, Steriotis T, Duda GN, Schmidt-Bleek K, Charalambopoulou G, Vallet-Reg M (2020) Engineered pH-responsive mesoporous carbon nanoparticles for drug delivery. ACS Appl Mater Interfaces 12:14946–14957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gu J, Su S, Li Y, Heb Q, Shi J (2011) Hydrophilic mesoporous carbon nanoparticles as carriers for sustained release of hydrophobic anti-cancer drugs. Chem Commun 47:2101–2103

    Article  CAS  Google Scholar 

  76. Zhang Y, Wang H, Gao C, Li X, Li L (2013) Highly ordered mesoporous carbon nanomatrix as a new approach to improve the oral absorption of the water-insoluble drug, simvastatin. Eur J Pharm Sci 49:864–872

    Article  CAS  PubMed  Google Scholar 

  77. Zhao P, Jiang H, Jiang T, Zhi Z, Wu C, Sun C, Zhang J, Wang S (2012) Inclusion of celecoxib into fibrous ordered mesoporous carbon for enhanced oral bioavailability and reduced gastric irritancy. Eur J Pharm Sci 45:639–647

    Article  CAS  PubMed  Google Scholar 

  78. Zhang Y, Zhi Z, Li X, Gao J, Yaling S (2013) Carboxylated mesoporous carbon microparticles as new approach to improve the oral bioavailability of poorly water-soluble carvedilol. Int J Pharm 454:403–411

    Article  CAS  PubMed  Google Scholar 

  79. Liu J, Zhao Y, Cui Y, Yue Y, Gao Y, Zhao Q, Liu J, Wang S (2016) A Eu3+/Gd3+-EDTA-doped structurally controllable hollow mesoporous carbon for improving the oral bioavailability of insoluble drugs and in vivo tracing. Nanotechnology 27:315101

    Google Scholar 

  80. Zhao P, Wang L, Sun C, Jiang T, Zhang J, Zhang Q, Sun J, Deng Y, Wang S (2012) Uniform mesoporous carbon as a carrier for poorly water-soluble drug and its cytotoxicity study. Eur J Pharm Biopharm 80:535–543

    Article  CAS  PubMed  Google Scholar 

  81. Bai L, Zhao Q, Wang J et al (2015) Mechanism study on pH-responsive cyclodextrin capped mesoporous silica: effect of different stalk densities and the type of cyclodextrin. Nanotechnology 26:165704

    Article  PubMed  Google Scholar 

  82. Zhang C, Zhao Q, Wan L, Wang T, Sun J, Gao Y, Jiang T, Wang S (2014) Poly dimethyl diallyl ammonium coated CMK-5 for sustained oral drug release. Int J Pharm 461:171–180

    Article  CAS  PubMed  Google Scholar 

  83. Zhang Y, Zhao Q, Zhu W, Zhang L, Han J, Lin Q, Ai F (2015) Synthesis and evaluation of mesoporous carbon/lipid bilayer nanocomposites for improved oral delivery of the poorly water-soluble drug, nimodipine. Pharm Res 32(7):2372–2383

    Article  CAS  PubMed  Google Scholar 

  84. Dong LC, Hoffman AS (1991) A novel approach for preparation of pH-sensitive hydrogels for enteric drug delivery. J Control Release 15:141–152

    Article  CAS  Google Scholar 

  85. Jeong B, Bae YH, Lee DS, Kim SW (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388:860

    Google Scholar 

  86. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339

    Article  CAS  PubMed  Google Scholar 

  87. Sawant RM, Hurley J, Salmaso S, Kale A, Tolcheva E, Levchenko TS, Torchilin VP (2006) “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers Bioconjug. Chem 17:943–949

    CAS  Google Scholar 

  88. Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146

    Article  CAS  PubMed  Google Scholar 

  89. Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH, Ibrahim-Hashim A, Bailey K, Balagurunathan Y, Rothberg JM, Sloane BF, Johnson J, Gatenby RA, Gillies RJ (2013) Acidity generated by the tumor microenvironment drives local invasion. Cancer Res 73:1524–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Justus CR, Dong L, Yang LV (2013) Acidic tumor microenvironment and pH-sensing G protein-coupled receptors. Front Physiol 4:354

    Article  PubMed  PubMed Central  Google Scholar 

  91. Huang X, Wu S, Du X (2016) Gated mesoporous carbon nanoparticles as drug delivery system for stimuli-responsive controlled release. Carbon 101:135–142

    Article  CAS  Google Scholar 

  92. Zhu S, Chen C, Chen Z et al (2011) Thermo-responsive polymer-functionalized mesoporous carbon for controlled drug release. Mater Chem Phys 126:357–363

    Article  CAS  Google Scholar 

  93. Kartner N, Riordan JR, Ling V (1983) Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines. Science 221:1285–1288

    Article  CAS  PubMed  Google Scholar 

  94. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP dependent transporters. Nat Rev Cancer 2:48

    Article  CAS  PubMed  Google Scholar 

  95. Boesch D, Gavériaux C, Jachez B, Pourtier-Manzanedo A, Bollinger P, Loor F (1991) In vivo circumvention of P-glycoproteinmediated multidrug resistance of tumor cells with SDZ PSC 833. Cancer Res 51:4226–4233

    CAS  PubMed  Google Scholar 

  96. Ganta S, Amiji M (2009) Co-administration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm 6:928–939

    Article  CAS  PubMed  Google Scholar 

  97. Zhao Q, Lin Y, Han N, Li X, Geng H, Wang X, Cui Y, Wang S (2017) Mesoporous carbon nanomaterials in drug delivery and biomedical application. Drug Deliv 24(1):94–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wan L, Zhao Q, Zhao P, He B, Jiang T, Zhan Q, Wang S (2014) Versatile hybrid polyethyleneimine–mesoporous carbon nanoparticles for targeted delivery. Carbon 79:123–134

    Article  CAS  Google Scholar 

  99. Wan L, Wang X, Zhu W, Zhang C, Song A, Sun C, Jiang T, Wang S (2015) Folate-polyethyleneimine functionalized mesoporous carbon nanoparticles for enhancing oral bioavailability of paclitaxel. Int J Pharm 484:207–217

    Article  CAS  PubMed  Google Scholar 

  100. Wan L, Jiao J, Cui Y, Guo J, Han N, Di D, Chang D, Wang P, Jiang T, Wang S (2016) Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanotechnology 27:135102

    Article  PubMed  Google Scholar 

  101. Zhou L, Dong K, Chen Z, Chen Z, Ren J, Qu X (2015) Near-infrared absorbing mesoporous carbon nanoparticle as an intelligent drug carrier for dual-triggered synergistic cancer therapy. Carbon 82:479–488

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelmoneim Mars .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mars, A., Mejri, A., Elfil, H. (2023). Porous Carbon Materials and Their Applications in Biosensing, Medical Diagnostics, and Drug Delivery. In: Grace, A.N., Sonar, P., Bhardwaj, P., Chakravorty, A. (eds) Handbook of Porous Carbon Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-7188-4_31

Download citation

Publish with us

Policies and ethics