Skip to main content

Design of Porous Carbon-Based Electro-Catalyst for Hydrogen Generation

  • Chapter
  • First Online:
Handbook of Porous Carbon Materials

Abstract

The world produces approximately 50 million tons a year of hydrogen (H2). H2 gas is mainly used as a raw material for making ammonia and other industrial processes like the making of margarine. Along with this, H2 has the potential to completely replace the use of fossil fuels. It is a carbon-free energy carrier and is one of the potential candidate that can fulfill our need for a clean energy future, provided it can be produced from readily available, renewable energy sources. H2 by electrolysis create substitutes for petrol and aviation fuel is next phase of the world decarbonisation. The proposed chapter gives an insight into the fundamentals of electrolysis and different types of electrolysis based on the energy inputs given for the completion of the reaction to produce hydrogen. Issues associated with the higher cost of hydrogen generated through water electrolysis and the significance of electrocatalyst to making this process energy favorable are discussed. Further, the state of the art electrocatalyst depending on the cheap and abundant first-row transition series metal ions and its composite with carbon-based material with enhanced surface area is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Current World Population (2021) Available from: https://www.worldometers.info/world-population/

  2. Dinçer İ, Zamfirescu C (2016) Sustainable hydrogen production. Elsevier

    Google Scholar 

  3. IEA, Net Zero by 2050 (2021)

    Google Scholar 

  4. IEA (2020) CO2 emissions from fuel combustion: overview

    Google Scholar 

  5. Johuri B (2019) The chemical element hydrogen in hydrogen energy: challenges and solutions for a cleaner future. Springer, pp 1–35

    Google Scholar 

  6. De Miranda PEV (2019) Hydrogen energy: sustainable and perennial, in science and engineering of hydrogen-based energy technologies. Elsevier, pp 1–38

    Google Scholar 

  7. Ursua A, Gandia LM, Sanchis P (2012) Hydrogen production from water electrolysis: current status and future trends. Proc IEEE 100(2):410–426

    Article  CAS  Google Scholar 

  8. Shiva Kumar S, Himabindu V (2019) Hydrogen production by PEM water electrolysis—a review. Mater Sci Energy Technol 2(3):442–454

    Google Scholar 

  9. Borgschulte A (2016) The hydrogen grand challenge. Frontiers Energy Res 4(11)

    Google Scholar 

  10. Holladay JD et al (2009) An overview of hydrogen production technologies. Catal Today 139(4):244–260

    Article  CAS  Google Scholar 

  11. Scott K (2020) Chapter 1 introduction to electrolysis, electrolysers and hydrogen production. In: Electrochemical methods for hydrogen production. The Royal Society of Chemistry, pp 1–27

    Google Scholar 

  12. Inzelt G (2014) Crossing the bridge between thermodynamics and electrochemistry. From the potential of the cell reaction to the electrode potential. ChemTexts 1(1):2

    Google Scholar 

  13. Suen N-T et al (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46(2):337–365

    Article  CAS  PubMed  Google Scholar 

  14. Ali A, Shen PK (2020) Recent progress in graphene-based nanostructured electrocatalysts for overall water splitting. Electrochem Energy Rev 3(2):370–394

    Article  CAS  Google Scholar 

  15. Lee Y et al (2012) Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 3(3):399–404

    Article  CAS  PubMed  Google Scholar 

  16. Li C, Baek J-B (2020) Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction. ACS Omega 5(1):31–40

    Article  CAS  PubMed  Google Scholar 

  17. Xu Y, Zhang B (2019) Recent advances in electrochemical hydrogen production from water assisted by alternative oxidation reactions. ChemElectroChem 6(13):3214–3226

    Article  CAS  Google Scholar 

  18. Khan MA et al (2018) Recent progresses in electrocatalysts for water electrolysis. Electrochem Energy Rev 1(4):483–530

    Article  Google Scholar 

  19. Jiang L et al (2020) Controllable Co@N-doped graphene anchored onto the NRGO toward electrocatalytic hydrogen evolution at all pH values. Chem Commun 56(4):567–570

    Article  CAS  Google Scholar 

  20. El-Sawy AM et al (2016) Controlling the active sites of sulfur-doped carbon nanotube-graphene nanolobes for highly efficient oxygen evolution and reduction catalysis. Adv Energy Mater 6(5):1501966

    Article  Google Scholar 

  21. Alduhaish O et al (2019) Facile synthesis of mesoporous α-Fe2O3@g-C3N4-NCs for efficient bifunctional electro-catalytic activity (OER/ORR). Sci Rep 9(1):14139

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zulqarnain M et al (2020) FeCoSe2 nanoparticles embedded in g-C3N4: a highly active and stable bifunctional electrocatalyst for overall water splitting. Sci Rep 10(1):6328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Y et al (2017) Ultrafine metal nanoparticles/N-doped porous carbon hybrids coated on carbon fibers as flexible and binder-free water splitting catalysts. Adv Energy Mater 7(15):1700220

    Article  Google Scholar 

  24. Zhang Y et al (2017) Ultrathin CNTs@FeOOH nanoflake core/shell networks as efficient electrocatalysts for the oxygen evolution reaction. Mater Chem Frontiers 1(4):709–715

    Article  CAS  Google Scholar 

  25. Zhang H et al (2020) Ni-doped hierarchical porous carbon with a p/n-junction promotes electrochemical water splitting. Int J Hydrogen Energy 45(35):17493–17503

    Article  CAS  Google Scholar 

  26. Li J et al (2017) Graphene and their hybrid electrocatalysts for water splitting. ChemCatChem 9(9):1554–1568

    Article  CAS  Google Scholar 

  27. Ding N et al (2014) Influence of carbon pore size on the discharge capacity of Li–O2 batteries. J Mater Chem A 2(31):12433–12441

    Article  CAS  Google Scholar 

  28. Shen W, Li Z, Liu Y (2010) Surface chemical functional groups modification of porous carbon. Recent Patents Chem Eng 1:27–40

    Article  Google Scholar 

  29. Feron PHM, Jansen AE (1997) The production of carbon dioxide from flue gas by membrane gas absorption. Energy Convers Manage 38:S93–S98

    Article  CAS  Google Scholar 

  30. Li YH, Lee CW, Gullett BK (2002) The effect of activated carbon surface moisture on low temperature mercury adsorption. Carbon 40(1):65–72

    Article  CAS  Google Scholar 

  31. Wang H, Gao Q, Hu J (2009) High hydrogen storage capacity of porous carbons prepared by using activated carbon. J Am Chem Soc 131(20):7016–7022

    Article  CAS  PubMed  Google Scholar 

  32. Seehra MS (2016) Mesoporous carbons for energy-efficient water splitting to produce pure hydrogen at room temperature. IntechOpen

    Google Scholar 

  33. Ito Y et al (2015) High catalytic activity of nitrogen and sulfur Co-doped nanoporous graphene in the hydrogen evolution reaction. Angew Chem Int Ed 54(7):2131–2136

    Article  CAS  Google Scholar 

  34. Biswas C, Lee YH (2011) Graphene versus carbon nanotubes in electronic devices. Adv Func Mater 21(20):3806–3826

    Article  CAS  Google Scholar 

  35. Chen S et al (2014) Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. Adv Mater 26(18):2925–2930

    Article  CAS  PubMed  Google Scholar 

  36. Chen S, Qiao S-Z (2013) Hierarchically porous nitrogen-doped graphene–NiCo2O4 hybrid paper as an advanced electrocatalytic water-splitting material. ACS Nano 7(11):10190–10196

    Article  CAS  PubMed  Google Scholar 

  37. Li T et al (2020) Metal-free photo- and electro-catalysts for hydrogen evolution reaction. J Mater Chem A 8(45):23674–23698

    Article  CAS  Google Scholar 

  38. Zheng Y et al (2014) Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 8(5):5290–5296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li J et al (2016) Mechanistic insights on ternary Ni2−xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting. Adv Func Mater 26(37):6785–6796

    Article  CAS  Google Scholar 

  40. Li Y et al (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133(19):7296–7299

    Article  CAS  PubMed  Google Scholar 

  41. Deng ZH et al (2015) Synthesized ultrathin MoS2 nanosheets perpendicular to graphene for catalysis of hydrogen evolution reaction. Chem Commun 51(10):1893–1896

    Article  CAS  Google Scholar 

  42. Roy SB et al (2019) Iridium on vertical graphene as an all-round catalyst for robust water splitting reactions. J Mater Chem A 7(36):20590–20596

    Article  CAS  Google Scholar 

  43. Ge M et al (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J Mater Chem A 4(18):6772–6801

    Article  CAS  Google Scholar 

  44. Zhang A, Yang L, Zhang L (2020) Z-Scheme 2D/3D hierarchical MoS2@CoMoS4 flower-shaped arrays with enhanced full spectrum light photoelectrocatalytic activity for H2O2/p-aminophenol production and contaminant degradation. J Mater Chem A 8(48):25890–25903

    Article  CAS  Google Scholar 

  45. Ledendecker M et al (2015) Highly porous materials as tunable electrocatalysts for the hydrogen and oxygen evolution reaction. Adv Func Mater 25(3):393–399

    Article  CAS  Google Scholar 

  46. Thomas A et al (2008) Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J Mater Chem 18(41):4893–4908

    Article  CAS  Google Scholar 

  47. Tian J et al (2014) Ultrathin graphitic C3N4 nanosheets/graphene composites: efficient organic electrocatalyst for oxygen evolution reaction. Chemsuschem 7(8):2125–2130

    Article  CAS  PubMed  Google Scholar 

  48. Zhao Y et al (2014) Graphitic carbon nitride nanoribbons: graphene-assisted formation and synergic function for highly efficient hydrogen evolution. Angew Chem Int Ed 53(50):13934–13939

    Article  CAS  Google Scholar 

  49. Zheng Y et al (2014) Hydrogen evolution by a metal-free electrocatalyst. Nat Commun 5(1):3783

    Article  PubMed  Google Scholar 

  50. Pei Z et al (2016) Toward enhanced activity of a graphitic carbon nitride-based electrocatalyst in oxygen reduction and hydrogen evolution reactions via atomic sulfur doping. J Mater Chem A 4(31):12205–12211

    Article  CAS  Google Scholar 

  51. Shinde SS, Sami A, Lee J-H (2015) Electrocatalytic hydrogen evolution using graphitic carbon nitride coupled with nanoporous graphene co-doped by S and Se. J Mater Chem A 3(24):12810–12819

    Article  CAS  Google Scholar 

  52. Peng Y et al (2017) Hydrogen evolution reaction catalyzed by ruthenium ion-complexed graphitic carbon nitride nanosheets. J Mater Chem A 5(34):18261–18269

    Article  CAS  Google Scholar 

  53. Chen J et al (2019) Low-coordinate iridium oxide confined on graphitic carbon nitride for highly efficient oxygen evolution. Angew Chem Int Ed 58(36):12540–12544

    Article  CAS  Google Scholar 

  54. Kumar MP et al (2017) NiWO3 nanoparticles grown on graphitic carbon nitride (g-C3N4) supported toray carbon as an efficient bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Part Part Syst Charact 34(10):1700043

    Article  Google Scholar 

  55. Israr M et al (2020) Rapid conjunction of 1D carbon nanotubes and 2D graphitic carbon nitride with ZnO for improved optoelectronic properties. Appl Nanosci 10(10):3805–3817

    Article  CAS  Google Scholar 

  56. Zheng Zx et al (2019) Palladium nanoparticles/graphitic carbon nitride nanosheets-carbon nanotubes as a catalytic amplification platform for the selective determination of 17α-ethinylestradiol in feedstuffs. Sci Rep 9(1):14162

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cui W et al (2014) Activated carbon nanotubes: a highly-active metal-free electrocatalyst for hydrogen evolution reaction. Chem Commun 50(66):9340–9342

    Article  CAS  Google Scholar 

  58. Kweon DH et al (2020) Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced faradaic efficiency. Nat Commun 11(1):1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li W et al (2019) 3D hollow Co–Fe–P nanoframes immobilized on N, P-doped CNT as an efficient electrocatalyst for overall water splitting. Nanoscale 11(36):17031–17040

    Article  CAS  PubMed  Google Scholar 

  60. Wang J et al (2014) Cobalt nanoparticles encapsulated in nitrogen-doped carbon as a bifunctional catalyst for water electrolysis. J Mater Chem A 2(47):20067–20074

    Article  CAS  Google Scholar 

  61. Liu Y et al (2019) Cobalt nanoparticles encapsulated in nitrogen-doped carbon nanotube as bifunctional-catalyst for rechargeable Zn-air batteries. Front Mater 6(85)

    Google Scholar 

  62. Zou X et al (2014) Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angewandte Chemie 126

    Google Scholar 

  63. Yan X et al (2020) In-situ growth of Ni nanoparticle-encapsulated N-doped carbon nanotubes on carbon nanorods for efficient hydrogen evolution electrocatalysis. Nano Res 13(4):975–982

    Article  CAS  Google Scholar 

  64. Chemelewski WD et al (2014) Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. J Am Chem Soc 136(7):2843–2850

    Article  CAS  PubMed  Google Scholar 

  65. Suzuki TM et al (2017) Highly crystalline β-FeOOH(Cl) nanorod catalysts doped with transition metals for efficient water oxidation. Sustain Energy Fuels 1(3):636–643

    Article  CAS  Google Scholar 

  66. Luo W et al (2017) Highly crystallized α-FeOOH for a stable and efficient oxygen evolution reaction. J Mater Chem A 5(5):2021–2028

    Article  CAS  Google Scholar 

  67. Niu S et al (2019) Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation. J Am Chem Soc 141(17):7005–7013

    Article  CAS  PubMed  Google Scholar 

  68. Davodi F et al (2017) Straightforward synthesis of nitrogen-doped carbon nanotubes as highly active bifunctional electrocatalysts for full water splitting. J Catal 353:19–27

    Article  CAS  Google Scholar 

  69. Lu X et al (2015) Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. J Am Chem Soc 137(8):2901–2907

    Article  CAS  PubMed  Google Scholar 

  70. Qu K et al (2017) Polydopamine-inspired, dual heteroatom-doped carbon nanotubes for highly efficient overall water splitting. Adv Energy Mater 7(9):1602068

    Article  Google Scholar 

  71. Mette K et al (2012) Nanostructured manganese oxide supported on carbon nanotubes for electrocatalytic water splitting. ChemCatChem 4(6):851–862

    Article  CAS  Google Scholar 

  72. Antoni H et al (2018) Oxidative deposition of manganese oxide nanosheets on nitrogen-functionalized carbon nanotubes applied in the alkaline oxygen evolution reaction. ACS Omega 3(9):11216–11226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Melder J et al (2020) Water-oxidation electrocatalysis by manganese oxides: syntheses, electrode preparations, electrolytes and two fundamental questions. Z Phys Chem 234(5):925–978

    Article  CAS  Google Scholar 

  74. Begum H et al (2019) Carbon nanotubes-based PdM bimetallic catalysts through N4-system for efficient ethanol oxidation and hydrogen evolution reaction. Sci Rep 9(1):11051

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ouyang T et al (2019) Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angew Chem Int Ed 58(15):4923–4928

    Article  CAS  Google Scholar 

  76. Yang J, Fujigaya T, Nakashima N (2017) Decorating unoxidized-carbon nanotubes with homogeneous Ni–Co spinel nanocrystals show superior performance for oxygen evolution/reduction reactions. Sci Rep 7(1):45384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu J et al (2012) Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst. Nano Res 5(8):521–530

    Article  CAS  Google Scholar 

  78. Gong M et al (2013) An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc 135(23):8452–8455

    Article  CAS  PubMed  Google Scholar 

  79. Zhao Y et al (2013) Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat Commun 4(1):2390

    Article  PubMed  Google Scholar 

  80. Lei Y et al (2019) Nitrogen-Doped porous carbon nanosheets strongly coupled with Mo2C nanoparticles for efficient electrocatalytic hydrogen evolution. Nanoscale Res Lett 14(1):329

    Article  PubMed  PubMed Central  Google Scholar 

  81. Liang H-W et al (2015) Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution. Nat Commun 6(1):7992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhao Y et al (2016) Electrospun cobalt embedded porous nitrogen doped carbon nanofibers as an efficient catalyst for water splitting. J Mater Chem A 4(33):12818–12824

    Article  CAS  Google Scholar 

  83. Lin X et al (2016) Precious-metal-free Co–Fe–Ox coupled nitrogen-enriched porous carbon nanosheets derived from Schiff-base porous polymers as superior electrocatalysts for the oxygen evolution reaction. J Mater Chem A 4(17):6505–6512

    Article  CAS  Google Scholar 

  84. Li W et al (2019) C-CoP hollow microporous nanocages based on phosphating regulation: a high-performance bifunctional electrocatalyst for overall water splitting. Nanoscale 11(36):17084–17092

    Article  CAS  PubMed  Google Scholar 

  85. Lv C et al (2016) The hierarchical nanowires array of iron phosphide integrated on a carbon fiber paper as an effective electrocatalyst for hydrogen generation. J Mater Chem A 4(4):1454–1460

    Article  CAS  Google Scholar 

  86. Lai J et al (2016) Unprecedented metal-free 3D porous carbonaceous electrodes for full water splitting. Energy Environ Sci 9(4):1210–1214

    Article  CAS  Google Scholar 

  87. Yu Z-Y et al (2017) A one-dimensional porous carbon-supported Ni/Mo2C dual catalyst for efficient water splitting. Chem Sci 8(2):968–973

    Article  CAS  PubMed  Google Scholar 

  88. Zhang M et al (2018) Novel MOF-derived Co@ N-C bifunctional catalysts for highly efficient Zn–air batteries and water splitting. Adv Mater 30(10):1705431

    Article  Google Scholar 

  89. Xu D et al (2017) Synthesis and application of a MOF-derived Ni@ C catalyst by the guidance from an in situ hot stage in TEM. RSC Adv 7(42):26377–26383

    Article  CAS  Google Scholar 

  90. Wang H et al (2017) Metal-organic frameworks for energy applications. Chem 2(1):52–80

    Article  CAS  Google Scholar 

  91. Li H et al (2018) Titanium phosphonate based metal–organic frameworks with hierarchical porosity for enhanced photocatalytic hydrogen evolution. Angew Chem 130(12):3276–3281

    Article  Google Scholar 

  92. Miner EM et al (2016) Electrochemical oxygen reduction catalysed by Ni 3 (hexaiminotriphenylene) 2. Nat Commun 7(1):1–7

    Article  Google Scholar 

  93. Bhattacharyya S, Das C, Maji TK (2018) MOF derived carbon based nanocomposite materials as efficient electrocatalysts for oxygen reduction and oxygen and hydrogen evolution reactions. RSC Adv 8(47):26728–26754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu B et al (2008) Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc 130(16):5390–5391

    Article  CAS  PubMed  Google Scholar 

  95. Jahan M, Liu Z, Loh KP (2013) A Graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv Func Mater 23(43):5363–5372

    Article  CAS  Google Scholar 

  96. Abdelkader-Fernandez VK et al (2019) Noble-metal-free MOF-74-derived nanocarbons: insights on metal composition and doping effects on the electrocatalytic activity toward oxygen reactions. ACS Appl Energy Mater 2(3):1854–1867

    Article  CAS  Google Scholar 

  97. Wang M et al (2017) Metal–organic framework derived carbon-confined Ni 2 P nanocrystals supported on graphene for an efficient oxygen evolution reaction. Chem Commun 53(59):8372–8375

    Article  CAS  Google Scholar 

  98. Wei J et al (2015) A graphene-directed assembly route to hierarchically porous Co–Nx/C catalysts for high-performance oxygen reduction. J Mater Chem A 3(32):16867–16873

    Article  CAS  Google Scholar 

  99. Yu X, Feng Y, Guan B, David Lou XW, Paik U (2016) Energy Environ Sci 1246–1250

    Google Scholar 

  100. Li J-S et al (2017) Highly efficient hydrogen evolution electrocatalysts based on coupled molybdenum phosphide and reduced graphene oxide derived from MOFs. Chem Commun 53(93):12576–12579

    Article  CAS  Google Scholar 

  101. Kuang M et al (2017) Electrocatalysts: Cu, Co-embedded N-enriched mesoporous carbon for efficient oxygen reduction and hydrogen evolution reactions. Adv Energy Mater 7(17)

    Google Scholar 

  102. Qamar M et al (2016) Metal–organic framework-guided growth of Mo2C embedded in mesoporous carbon as a high-performance and stable electrocatalyst for the hydrogen evolution reaction. J Mater Chem A 4(41):16225–16232

    Article  CAS  Google Scholar 

  103. Zhang G et al (2018) Temperature effect on Co-based catalysts in oxygen evolution reaction. Inorg Chem 57(5):2766–2772

    Article  CAS  PubMed  Google Scholar 

  104. Wu R et al (2016) Porous cobalt phosphide/graphitic carbon polyhedral hybrid composites for efficient oxygen evolution reactions. J Mater Chem A 4(36):13742–13745

    Article  CAS  Google Scholar 

  105. Chen Z et al (2018) Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction. Adv Mater 30(30):1802011

    Article  Google Scholar 

  106. Dong Q et al (2016) MOF-derived Zn-doped CoSe2 as an efficient and stable free-standing catalyst for oxygen evolution reaction. ACS Appl Mater Interfaces 8(40):26902–26907

    Article  CAS  PubMed  Google Scholar 

  107. Xu H et al (2018) MOF-derived hollow CoS decorated with CeOx nanoparticles for boosting oxygen evolution reaction electrocatalysis. Angew Chem 130(28):8790–8794

    Article  Google Scholar 

  108. Zhang T et al (2017) Hybrids of cobalt/iron phosphides derived from bimetal–organic frameworks as highly efficient electrocatalysts for oxygen evolution reaction. ACS Appl Mater Interfaces 9(1):362–370

    Article  CAS  PubMed  Google Scholar 

  109. Wang X et al (2019) MOF derived N-doped carbon coated CoP particle/carbon nanotube composite for efficient oxygen evolution reaction. Carbon 141:643–651

    Article  CAS  Google Scholar 

  110. Luo X et al (2018) One-dimensional porous hybrid structure of Mo2C-CoP encapsulated in N-doped carbon derived from MOF: an efficient electrocatalyst for hydrogen evolution reaction over the entire pH range. ACS Appl Mater Interfaces 10(49):42335–42347

    Article  CAS  PubMed  Google Scholar 

  111. Li Y et al (2018) Metal organic framework-derived CoPS/N-doped carbon for efficient electrocatalytic hydrogen evolution. Nanoscale 10(15):7291–7297

    Article  CAS  PubMed  Google Scholar 

  112. Singh T et al (2020) MOF derived Co3O4@ Co/NCNT nanocomposite for electrochemical hydrogen evolution, flexible zinc-air batteries, and overall water splitting. Inorg Chem 59(5):3160–3170

    Article  CAS  PubMed  Google Scholar 

  113. Feng X et al (2019) Bimetal-Organic framework-derived porous rodlike cobalt/nickel nitride for All-pH value electrochemical hydrogen evolution. ACS Appl Mater Interfaces 11(8):8018–8024

    Article  CAS  PubMed  Google Scholar 

  114. Zhang J et al (2015) A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol 10(5):444–452

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Kamlesh and Satya Prakash thanks to University Grant Commission and Council of Science and Research of India for the JRF fellowship. Dr. Archana Singh thanks to Department of Science and Technology for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamlesh et al. (2023). Design of Porous Carbon-Based Electro-Catalyst for Hydrogen Generation. In: Grace, A.N., Sonar, P., Bhardwaj, P., Chakravorty, A. (eds) Handbook of Porous Carbon Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-7188-4_11

Download citation

Publish with us

Policies and ethics