Skip to main content

Regulation of Myosin Light Chain Phosphorylation

  • Chapter
  • First Online:
Biology of Vascular Smooth Muscle
  • 259 Accesses

Abstract

The interaction of myosin and actin constitutes the basic mechanism of muscle contractile activity. In smooth muscle cells (SMCs) including vascular smooth muscle cells this interaction is predominantly regulated by the phosphorylation of the regulatory light chain (RLC) of myosin. The RLC is phosphorylated by myosin light chain kinase (MLCK) and dephosphorylated by myosin light chain phosphatase (MLCP). Therefore, the contractility of SMCs is determined by the relative ratio of the activity of MLCK vs. that of MLCP. During a contractile response, MLCK is activated by calmodulin-bound Ca2+. Meanwhile, the activity of MLCP is suppressed by protein kinase C (PKC) through the 17-kDa PKC-potentiated inhibitor protein (CPI-17) and by Rho kinase (ROCK). The varied activities of these major signaling pathways endow SMCs with different contractile profiles such as phasic and tonic contractions to meet the diversified physiological requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcala DB, Haldeman BD, Brizendine RK, Krenc AK, Baker JE, Rock RS, Cremo CR (2016) Myosin light chain kinase steady-state kinetics: comparison of smooth muscle myosin II and nonmuscle myosin IIB as substrates. Cell Biochem Funct 34:469–474

    Article  CAS  Google Scholar 

  • Baeyens N, Horman S, Vertommen D, Rider M, Morel N (2010) Identification and functional implication of a rho kinase-dependent moesin-EBP50 interaction in noradrenaline-stimulated artery. Am J Physiol Cell Physiol 299:C1530–C1540

    Article  CAS  Google Scholar 

  • Bernard O (2007) Lim kinases, regulators of actin dynamics. Int J Biochem Cell Biol 39:1071–1076

    Article  CAS  Google Scholar 

  • Bhattacharyya M, Karandur D, Kuriyan J (2020) Structural insights into the regulation of Ca2+/calmodulin-dependent protein kinase II (CaMKII). Cold Spring Harb Perspect Biol 12:a035147

    Article  CAS  Google Scholar 

  • Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG (2016) Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders. Pharmacol Rev 68:476–532

    Article  CAS  Google Scholar 

  • Brueggemann LI, Mackie AR, Cribbs LL, Freda J, Tripathi A, Majetschak M, Byron KL (2014) Differential protein kinase C-dependent modulation of Kv7.4 and Kv7.5 subunits of vascular Kv7 channels. J Biol Chem 289:2099–2111

    Article  CAS  Google Scholar 

  • Casamayor A, Ariño J (2020) Controlling Ser/Thr protein phosphatase PP1 activity and function through interaction with regulatory subunits. Adv Protein Chem Struct Biol 122:231–288

    Article  CAS  Google Scholar 

  • Chang AN, Gao N, Liu Z, Huang J, Nairn AC, Kamm KE, Stull JT (2018) The dominant protein phosphatase PP1c isoform in smooth muscle cells, PP1cβ, is essential for smooth muscle contraction. J Biol Chem 293:16677–16686

    Article  CAS  Google Scholar 

  • Chen Z, Zhang X, Ying L, Dou D, Li Y, Bai Y, Liu J, Liu L, Feng H, Yu X, Leung SWS, Vanhoutte PM, Gao Y (2014) Cyclic IMP-synthesized by sGC as a mediator of hypoxic contraction of coronary arteries. Am J Physiol Heart Circ Physiol 307:H328–H336

    Article  CAS  Google Scholar 

  • Deng JT, Bhaidani S, Sutherland C, MacDonald JA, Walsh MP (2019) Rho-associated kinase and zipper-interacting protein kinase, but not myosin light chain kinase, are involved in the regulation of myosin phosphorylation in serum-stimulated human arterial smooth muscle cells. PLoS One 14:e0226406

    Article  CAS  Google Scholar 

  • Dimopoulos GJ, Semba S, Kitazawa K, Eto M, Kitazawa T (2007) Ca2+-dependent rapid Ca2+ sensitization of contraction in arterial smooth muscle. Circ Res 100:121–129

    Article  CAS  Google Scholar 

  • El-Yazbi AF, Johnson RP, Walsh EJ, Takeya K, Walsh MP, Cole WC (2010) Pressure-dependent contribution of rho kinase-mediated calcium sensitization in serotonin-evoked vasoconstriction of rat cerebral arteries. J Physiol 588:1747–1762

    Article  CAS  Google Scholar 

  • Eto M, Kitazawa T (2017) Diversity and plasticity in signaling pathways that regulate smooth muscle responsiveness: paradigms and paradoxes for the myosin phosphatase, the master regulator of smooth muscle contraction. J Smooth Muscle Res 53:1–19

    Article  CAS  Google Scholar 

  • Fisher SA, Ikebe M (1995) Developmental and tissue distribution of expression of nonmuscle and smooth muscle isoforms of myosin light chain kinase. Biochem Biophys Res Commun 217:696–703

    Article  CAS  Google Scholar 

  • Freeley M, Kelleher D, Long A (2011) Regulation of protein kinase C function by phosphorylation on conserved and non-conserved sites. Cell Signal 23:753–762

    Article  CAS  Google Scholar 

  • Gabet AS, Coulon S, Fricot A, Vandekerckhove J, Chang Y, Ribeil JA, Lordier L, Zermati Y, Asnafi V, Belaid Z, Debili N, Vainchenker W, Varet B, Hermine O, Courtois G (2011) Caspase-activated ROCK-1 allows erythroblast terminal maturation independently of cytokine-induced rho signaling. Cell Death Differ 18:678–689

    Article  CAS  Google Scholar 

  • Gallagher PJ, Herring BP, Stull JT (1997) Myosin light chain kinases. J Muscle Res Cell Motil 18:1–16

    Article  CAS  Google Scholar 

  • Gao N, Huang J, He W, Zhu M, Kamm KE, Stull JT (2013) Signaling through myosin light chain kinase in smooth muscles. J Biol Chem 288:7596–7605

    Article  CAS  Google Scholar 

  • Gao Y, Portugal AD, Negash S, Zhou W, Longo LD, Raj JU (2007) Role of rho kinases in PKG-mediated relaxation of pulmonary arteries of fetal lambs exposed to chronic high altitude hypoxia. Am J Physiol Lung Cell Mol Physiol 292:L678–L684

    Article  CAS  Google Scholar 

  • Grassie ME, Moffat LD, Walsh MP, MacDonald JA (2011) The myosin phosphatase targeting protein (MYPT) family: a regulated mechanism for achieving substrate specificity of the catalytic subunit of protein phosphatase type 1δ. Arch Biochem Biophys 510:147–159

    Article  CAS  Google Scholar 

  • Guhathakurta P, Prochniewicz E, Thomas DD (2018) Actin-myosin interaction: structure, function and drug discovery. Int J Mol Sci 19:2628

    Article  Google Scholar 

  • Hartmann S, Ridley AJ, Lutz S (2015) The function of rho-associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease. Front Pharmacol 6:276

    Article  Google Scholar 

  • Hawn MB, Akin E, Hartzell HC, Greenwood IA, Leblanc N (2021) Molecular mechanisms of activation and regulation of ANO1-encoded Ca2+-activated Cl− channels. Channels (Austin) 15:569–603

    Article  CAS  Google Scholar 

  • Heissler SM, Sellers JR (2016) Various themes of myosin regulation. J Mol Biol 428:1927–1946

    Article  CAS  Google Scholar 

  • Hong F, Brizendine RK, Carter MS, Alcala DB, Brown AE, Chattin AM, Haldeman BD, Walsh MP, Facemyer KC, Baker JE, Cremo CR (2015) Diffusion of myosin light chain kinase on actin: a mechanism to enhance myosin phosphorylation rates in smooth muscle. J Gen Physiol 146:267–280

    Article  CAS  Google Scholar 

  • Hong F, Haldeman BD, Jackson D, Carter M, Baker JE, Cremo CR (2011) Biochemistry of smooth muscle myosin light chain kinase. Arch Biochem Biophys 510:135–146

    Article  CAS  Google Scholar 

  • Igumenova TI (2015) Dynamics and membrane interactions of protein kinase C. Biochemistry 54:4953–4968

    Article  CAS  Google Scholar 

  • Ito M, Okamoto R, Ito H, Zhe Y, Dohi K (2022) Regulation of myosin light-chain phosphorylation and its roles in cardiovascular physiology and pathophysiology. Hypertens Res 45:40–52

    Article  CAS  Google Scholar 

  • Johnson RP, El-Yazbi AF, Takeya K, Walsh EJ, Walsh MP, Cole WC (2009) Ca2+ sensitization via phosphorylation of myosin phosphatase targeting subunit at threonine-855 by rho kinase contributes to the arterial myogenic response. J Physiol 587:2537–2553

    Article  CAS  Google Scholar 

  • Khapchaev AY, Shirinsky VP (2016) Myosin light chain kinase MYLK1: anatomy, interactions, functions, and regulation. Biochemistry (Mosc) 81:1676–1697

    Article  CAS  Google Scholar 

  • Kamm KE, Stull JT (2011) Signaling to myosin regulatory light chain in sarcomeres. J Biol Chem 286:9941–9947

    Article  CAS  Google Scholar 

  • Kaneko T, Amano M, Maeda A, Goto H, Takahashi K, Ito M, Kaibuchi K (2000) Identification of calponin as a novel substrate of rho-kinase. Biochem Biophys Res Commun 273:110–116

    Article  CAS  Google Scholar 

  • Khasnis M, Nakatomi A, Gumpper K, Eto M (2014) Reconstituted human myosin light chain phosphatase reveals distinct roles of two inhibitory phosphorylation sites of the regulatory subunit, MYPT1. Biochemistry 53:2701–2709

    Article  CAS  Google Scholar 

  • Kiss A, ErdÅ‘di F, Lontay B (2019) Myosin phosphatase: unexpected functions of a long-known enzyme. Biochim Biophys Acta, Mol Cell Res 1866:2–15

    Article  CAS  Google Scholar 

  • Krause T, Grote-Wessels S, Balzer F, Boknik P, Gergs U, Kirchhefer U, Buchwalow IB, Müller FU, Schmitz W, Neumann J (2018) Successful overexpression of wild-type inhibitor-2 of PP1 in cardiovascular cells. Naunyn Schmiedeberg’s Arch Pharmacol 391:859–873

    Article  CAS  Google Scholar 

  • Lien CF, Chen SJ, Tsai MC, Lin CS (2021) Potential role of protein kinase c in the pathophysiology of diabetes-associated atherosclerosis. Front Pharmacol 12:716332

    Article  CAS  Google Scholar 

  • Liu Z, Khalil RA (2018) Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem Pharmacol 153:91–122

    Article  CAS  Google Scholar 

  • Loirand G, Pacaud P (2010) The role of rho protein signaling in hypertension. Nat Rev Cardiol 7:637–647

    Article  CAS  Google Scholar 

  • Logvinova DS, Levitsky DI (2018) Essential light chains of myosin and their role in functioning of the myosin motor. Biochemistry (Mosc) 83:944–960

    Article  CAS  Google Scholar 

  • MacDonald JA, Walsh MP (2018) Regulation of smooth muscle myosin light chain phosphatase by multisite phosphorylation of the myosin targeting subunit, MYPT1. Cardiovasc Hematol Disord Drug Targets 18:4–13

    Article  CAS  Google Scholar 

  • Man KNM, Navedo MF, Horne MC, Hell JW (2020) β2 adrenergic receptor complexes with the L-type Ca2+ channel CaV1.2 and AMPA-type glutamate receptors: paradigms for pharmacological targeting of protein interactions. Annu Rev Pharmacol Toxicol 60:155–174

    Article  CAS  Google Scholar 

  • Manna PT, Smith AJ, Taneja TK, Howell GJ, Lippiat JD, Sivaprasadarao A (2010) Constitutive endocytic recycling and protein kinase C-mediated lysosomal degradation control KATP channel surface density. J Biol Chem 285:5963–5973

    Article  CAS  Google Scholar 

  • MÃ¥nsson A, Rassier D, Tsiavaliaris G (2015) Poorly understood aspects of striated muscle contraction. Biomed Res Int 2015:245154

    Article  Google Scholar 

  • Mellor H, Parker PJ (1998) The extended protein kinase C superfamily. Biochem J 332:281–292

    Article  CAS  Google Scholar 

  • Mueller BK, Mack H, Teusch N (2005) Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov 4:387–398

    Article  CAS  Google Scholar 

  • Ohashi K, Nagata K, Maekawa M, Ishizaki T, Narumiya S, Mizuno K (2000) Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J Biol Chem 275:3577–3582

    Article  CAS  Google Scholar 

  • Park WS, Kim N, Youm JB, Warda M, Ko JH, Kim SJ, Earm YE, Han J (2006) Angiotensin II inhibits inward rectifier K+ channels in rabbit coronary arterial smooth muscle cells through protein kinase Cα. Biochem Biophys Res Commun 341:728–735

    Article  CAS  Google Scholar 

  • Reho JJ, Zheng X, Fisher SA (2014) Smooth muscle contractile diversity in the control of regional circulations. Am J Physiol Heart Circ Physiol 306:H163–H172

    Article  CAS  Google Scholar 

  • Riento K, Guasch RM, Garg R, Jin B, Ridley AJ (2003) RhoE binds to ROCK I and inhibits downstream signaling. Mol Cell Biol 23:4219–4229

    Article  CAS  Google Scholar 

  • Ringvold HC, Khalil RA (2017) Protein kinase C as regulator of vascular smooth muscle function and potential target in vascular disorders. Adv Pharmacol 78:203–301

    Article  CAS  Google Scholar 

  • Saddouk FZ, Ginnan R, Singer HA (2017) Ca2+/calmodulin-dependent protein kinase ii in vascular smooth muscle. Adv Pharmacol 78:171–202

    Article  CAS  Google Scholar 

  • Sebbagh M, Hamelin J, Bertoglio J, Solary E, Bréard J (2005) Direct cleavage of ROCK II by granzyme B induces target cell membrane blebbing in a caspase-independent manner. J Exp Med 201:465–471

    Article  CAS  Google Scholar 

  • Seccia TM, Rigato M, Ravarotto V, Calò LA (2020) ROCK (RhoA/rho kinase) in cardiovascular-renal pathophysiology: a review of new advancements. J Clin Med 9:1328

    Article  CAS  Google Scholar 

  • Shimokawa H, Sunamura S, Satoh K (2016) RhoA/rho-kinase in the cardiovascular system. Circ Res 118:352–366

    Article  CAS  Google Scholar 

  • Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139:468–484

    Article  CAS  Google Scholar 

  • Shimizu T, Liao JK (2016) Rho kinases and cardiac remodeling. Circ J 80:1491–1498

    Article  CAS  Google Scholar 

  • Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 834:1325–1358

    Article  Google Scholar 

  • Sorensen DW, Carreon D, Williams JM, Pearce WJ (2021) Hypoxic modulation of fetal vascular MLCK abundance, localization, and function. Am J Physiol Regul Integr Comp Physiol 320:R1–R18

    Article  CAS  Google Scholar 

  • Steinberg SF (2008) Structural basis of protein kinase C isoform function. Physiol Rev 88:1341–1378

    Article  CAS  Google Scholar 

  • Strassheim D, Gerasimovskaya E, Irwin D, Dempsey EC, Stenmark K, Karoor V (2019) RhoGTPase in vascular disease. Cells 8:551

    Article  CAS  Google Scholar 

  • Sun YB, Irving M (2010) The molecular basis of the steep force-calcium relation in heart muscle. J Mol Cell Cardiol 48:859–865

    Article  CAS  Google Scholar 

  • Sweeney HL, Houdusse A, Robert-Paganin J (2020) Myosin structures. Adv Exp Med Biol 1239:7–19

    Article  CAS  Google Scholar 

  • Syed AU, Koide M, Brayden JE, Wellman GC (2019) Tonic regulation of middle meningeal artery diameter by ATP-sensitive potassium channels. J Cereb Blood Flow Metab 39:670–679

    Article  CAS  Google Scholar 

  • Szasz T, Webb RC (2017) Rho-mancing to sensitize calcium signaling for contraction in the vasculature: role of rho kinase. Adv Pharmacol 78:303–322

    Article  CAS  Google Scholar 

  • Takashima S (2009) Phosphorylation of myosin regulatory light chain by myosin light chain kinase, and muscle contraction. Circ J 73:208–213

    Article  CAS  Google Scholar 

  • Taylor KA, Feig M, Brooks CL 3rd, Fagnant PM, Lowey S, Trybus KM (2014) Role of the essential light chain in the activation of smooth muscle myosin by regulatory light chain phosphorylation. J Struct Biol 185:375–382

    Article  CAS  Google Scholar 

  • Tobias IS, Newton AC (2016) Protein scaffolds control localized protein kinase Cζ activity. J Biol Chem 291:13809–13822

    Article  CAS  Google Scholar 

  • Touyz RM, Alves-Lopes R, Rios FJ, Camargo LL, Anagnostopoulou A, Arner A, Montezano AC (2018) Vascular smooth muscle contraction in hypertension. Cardiovasc Res 114:529–539

    Article  CAS  Google Scholar 

  • Uemura A, Fukushima Y (2021) Rho GTPases in retinal vascular diseases. Int J Mol Sci 22:3684

    Article  CAS  Google Scholar 

  • Velnati S, Centonze S, Girivetto F, Capello D, Biondi RM, Bertoni A, Cantello R, Ragnoli B, Malerba M, Graziani A, Baldanzi G (2021) Identification of key phospholipids that bind and activate atypical PKCs. Biomedicine 9:45

    CAS  Google Scholar 

  • Wagoner JA, Dill KA (2021) Evolution of mechanical cooperativity among myosin II motors. Proc Natl Acad Sci U S A 118:e2101871118

    Article  CAS  Google Scholar 

  • Wooldridge AA, MacDonald JA, Erdodi F, Ma C, Borman MA, Hartshorne DJ, Haystead TAJ (2004) Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of serine 695 in response to cyclic nucleotides. J Biol Chem 279:34496–34504

    Article  CAS  Google Scholar 

  • Wray S, Smith RD (2004) Mechanisms of action of pH-induced effects on vascular smooth muscle. Mol Cell Biochem 263:163–172

    Article  CAS  Google Scholar 

  • Yang Q, Hori M (2021) Characterization of contractile machinery of vascular smooth muscles in hypertension. Life (Basel) 11:702

    CAS  Google Scholar 

  • Zhang X, Connelly J, Levitan ES, Sun D, Wang JQ (2021) Calcium/calmodulin- dependent protein kinase ii in cerebrovascular diseases. Transl Stroke Res 12:513–529

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, Y. (2022). Regulation of Myosin Light Chain Phosphorylation. In: Biology of Vascular Smooth Muscle. Springer, Singapore. https://doi.org/10.1007/978-981-19-7122-8_12

Download citation

Publish with us

Policies and ethics