Skip to main content

In-Situ Optical TEM

  • Chapter
  • First Online:
In-Situ Transmission Electron Microscopy

Abstract

Functional materials with various photoresponse performances have attracted much attention for their irreplaceable role in key fields such as clean energy, communications, and pollution disposal. The ability of in situ characterizing the dynamic behavior under light illumination would provide an in-depth understanding of structure–property relationships, which is essential for further improvements. In the past few decades, specialized TEMs, TEM holders as well as MEMS chips have been developed to realize in situ stimulation and detection of light signals and related physical responses of TEM sample. These significant technical progresses have promoted the investigation of functional materials and devices. This chapter focuses on the basic technique principles and implementations of three typical routes in present in situ optical TEM, including integration of light-paths inside TEMs or holders, modification of TEM-STM holders, and development of optical MEMS chips. Several application cases based on the associated methods are reviewed to demonstrate the design and operation of in situ optical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhai T, Li L, Wang X, Fang X, Bando Y, Golberg D (2010) Recent developments in one-dimensional inorganic nanostructures for photodetectors. Adv Func Mater 20(24):4233–4248. https://doi.org/10.1002/adfm.201001259

    Article  CAS  Google Scholar 

  2. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev 42(7):2824–2860. https://doi.org/10.1039/c2cs35335k

    Article  CAS  Google Scholar 

  3. Khalid NR, Majid A, Tahir MB, Niaz NA, Khalid S (2017) Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: a review. Ceram Int 43(17):14552–14571. https://doi.org/10.1016/j.ceramint.2017.08.143

    Article  CAS  Google Scholar 

  4. Dincer I, Acar C (2015) A review on clean energy solutions for better sustainability. Int J Energy Res 39(5):585–606. https://doi.org/10.1002/er.3329

    Article  Google Scholar 

  5. Li Y, Qian F, Xiang J, Lieber CM (2006) Nanowire electronic and optoelectronic devices. Mater Today 9(10):18–27. https://doi.org/10.1016/S1369-7021(06)71650-9

    Article  CAS  Google Scholar 

  6. Kim Judy S, LaGrange T, Reed Bryan W, Taheri Mitra L, Armstrong Michael R, King Wayne E, Browning Nigel D, Campbell Geoffrey H (2008) Imaging of transient structures using nanosecond in situ TEM. Science 321(5895):1472–1475. https://doi.org/10.1126/science.1161517

    Article  CAS  Google Scholar 

  7. Golberg D, Costa PMFJ, Wang M-S, Wei X, Tang D-M, Xu Z, Huang Y, Gautam UK, Liu B, Zeng H, Kawamoto N, Zhi C, Mitome M, Bando Y (2012) Nanomaterial engineering and property studies in a transmission electron microscope. Adv Mater 24(2):177–194. https://doi.org/10.1002/adma.201102579

    Article  CAS  Google Scholar 

  8. Ji D, Cai S, Paudel TR, Sun H, Zhang C, Han L, Wei Y, Zang Y, Gu M, Zhang Y, Gao W, Huyan H, Guo W, Wu D, Gu Z, Tsymbal EY, Wang P, Nie Y, Pan X (2019) Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570(7759):87–90. https://doi.org/10.1038/s41586-019-1255-7

    Article  CAS  Google Scholar 

  9. Dou Z, Chen Z, Li N, Yang S, Yu Z, Sun Y, Li Y, Liu B, Luo Q, Ma T, Liao L, Liu Z, Gao P (2019) Atomic mechanism of strong interactions at the graphene/sapphire interface. Nat Commun 10(1):5013. https://doi.org/10.1038/s41467-019-13023-6

    Article  CAS  Google Scholar 

  10. Sun Y, Abid AY, Tan C, Ren C, Li M, Li N, Chen P, Li Y, Zhang J, Zhong X, Wang J, Liao M, Liu K, Bai X, Zhou Y, Yu D, Gao P (2019) Subunit cell–level measurement of polarization in an individual polar vortex. Sci Adv 5(11):eaav4355. https://doi.org/10.1126/sciadv.aav4355

  11. Zhu C, Yu M, Zhou J, He Y, Zeng Q, Deng Y, Guo S, Xu M, Shi J, Zhou W, Sun L, Wang L, Hu Z, Zhang Z, Guo W, Liu Z (2020) Strain-driven growth of ultra-long two-dimensional nano-channels. Nat Commun 11(1):772. https://doi.org/10.1038/s41467-020-14521-8

    Article  CAS  Google Scholar 

  12. Li W, Zhou J, Cai S, Yu Z, Zhang J, Fang N, Li T, Wu Y, Chen T, Xie X, Ma H, Yan K, Dai N, Wu X, Zhao H, Wang Z, He D, Pan L, Shi Y, Wang P, Chen W, Nagashio K, Duan X, Wang X (2019) Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat Electron 2(12):563–571. https://doi.org/10.1038/s41928-019-0334-y

    Article  CAS  Google Scholar 

  13. Chen Z, Zhang X, Dou Z, Wei T, Liu Z, Qi Y, Ci H, Wang Y, Li Y, Chang H, Yan J, Yang S, Zhang Y, Wang J, Gao P, Li J, Liu Z (2018) High-brightness blue light-emitting diodes enabled by a directly grown graphene buffer layer. Adv Mater 30(30):1801608. https://doi.org/10.1002/adma.201801608

    Article  CAS  Google Scholar 

  14. Chen Z, Liu Z, Wei T, Yang S, Dou Z, Wang Y, Ci H, Chang H, Qi Y, Yan J, Wang J, Zhang Y, Gao P, Li J, Liu Z (2019) Improved epitaxy of AlN film for deep-ultraviolet light-emitting diodes enabled by graphene. Adv Mater 31(23):1807345. https://doi.org/10.1002/adma.201807345

    Article  CAS  Google Scholar 

  15. Wan S, Zhu Z, Yin K, Su S, Bi H, Xu T, Zhang H, Shi Z, He L, Sun L (2018) A highly skin-conformal and biodegradable graphene-based strain sensor. Small Methods 2(10):1700374. https://doi.org/10.1002/smtd.201700374

    Article  CAS  Google Scholar 

  16. Golberg D, Zhang C, Xu Z (2014) Cubic lattice nanosheets: thickness-driven light emission. ACS Nano 8(7):6516–6519. https://doi.org/10.1021/nn502999g

    Article  CAS  Google Scholar 

  17. Suzuki K, Ichihara M, Takeuchi S, Nakagawa K, Maeda K, Iwanaga H (1984) In situ TEM observation of dislocation motion in II–VI compounds. Philos Mag A 49(3):451–461. https://doi.org/10.1080/01418618408233287

    Article  CAS  Google Scholar 

  18. Ohno Y, Takeda S (1995) A new apparatus for in situ photoluminescence spectroscopy in a transmission electron microscope. Rev Sci Instrum 66(10):4866–4869. https://doi.org/10.1063/1.1146166

    Article  CAS  Google Scholar 

  19. Ohno Y, Taishi T, Yonenaga I (2009) In situ analysis of optoelectronic properties of dislocations in ZnO in TEM observations. Phys Status Solidi (a) 206(8):1904–1911. https://doi.org/10.1002/pssa.200881466

  20. Ohno Y (2012) Development of an apparatus for in-situ near-field photoexcitation in a transmission electron microscope. Appl Phys Express 5(12):125204. https://doi.org/10.1143/apex.5.125204

    Article  Google Scholar 

  21. Ohno Y, Yonenaga I (2014) In-situ micro and near-field photo-excitation under transmission electron microscopy. Appl Surf Sci 302:29–31. https://doi.org/10.1016/j.apsusc.2013.11.061

    Article  CAS  Google Scholar 

  22. Picher M, Mazzucco S, Blankenship S, Sharma R (2015) Vibrational and optical spectroscopies integrated with environmental transmission electron microscopy. Ultramicroscopy 150:10–15. https://doi.org/10.1016/j.ultramic.2014.11.023

    Article  CAS  Google Scholar 

  23. Miller BK, Crozier PA (2013) System for in situ UV-visible illumination of environmental transmission electron microscopy samples. Microsc Microanal 19(2):461–469. https://doi.org/10.1017/S1431927612014122

    Article  CAS  Google Scholar 

  24. Tanabe T, Muto S, Tohtake S (2002) Development of new TEM specimen holder for cathodoluminescence detection. J Electron Microsc 51(5):311–313. https://doi.org/10.1093/jmicro/51.5.311

    Article  CAS  Google Scholar 

  25. Shindo D, Takahashi K, Murakami Y, Yamazaki K, Deguchi S, Suga H, Kondo Y (2009) Development of a multifunctional TEM specimen holder equipped with a piezodriving probe and a laser irradiation port. J Electron Microsc 58(4):245–249. https://doi.org/10.1093/jmicro/dfp018

    Article  Google Scholar 

  26. Cavalca F, Laursen AB, Kardynal BE, Dunin-Borkowski RE, Dahl S, Wagner JB, Hansen TW (2012) In situtransmission electron microscopy of light-induced photocatalytic reactions. Nanotechnology 23(7):075705. https://doi.org/10.1088/0957-4484/23/7/075705

    Article  CAS  Google Scholar 

  27. Gao P, Wang ZZ, Liu KH, Xu Z, Wang WL, Bai XD, Wang EG (2009) Photoconducting response on bending of individual ZnO nanowires. J Mater Chem 19(7):1002–1005. https://doi.org/10.1039/b816791e

    Article  CAS  Google Scholar 

  28. Yang S, Wang L, Tian X, Xu Z, Wang W, Bai X, Wang E (2012) The piezotronic effect of zinc oxide nanowires studied by in situ TEM. Adv Mater 24(34):4676–4682. https://doi.org/10.1002/adma.201104420

    Article  CAS  Google Scholar 

  29. Dong H, Xu T, Sun Z, Zhang Q, Wu X, He L, Xu F, Sun L (2018) Simultaneous atomic-level visualization and high precision photocurrent measurements on photoelectric devices by in situ TEM. RSC Adv 8(2):948–953. https://doi.org/10.1039/c7ra10696c

    Article  CAS  Google Scholar 

  30. Dong H, Xu F, Sun Z, Wu X, Zhang Q, Zhai Y, Tan XD, He L, Xu T, Zhang Z, Duan X, Sun L (2019) In situ interface engineering for probing the limit of quantum dot photovoltaic devices. Nat Nanotechnol 14(10):950–956. https://doi.org/10.1038/s41565-019-0526-7

    Article  CAS  Google Scholar 

  31. Zhang M, Olson E, Twesten R, Wen J, Allen L, Robertson I, Petrov I (2005) In situ transmission electron microscopy studies enabled by microelectromechanical system technology. J Mater Res 20(7):1802–1807. https://doi.org/10.1557/JMR.2005.0225

    Article  CAS  Google Scholar 

  32. Zhu Y, Espinosa HD (2005) An electromechanical material testing system for in situ electron microscopy and applications. Proc Natl Acad Sci 102(41):14503–14508. https://doi.org/10.1073/pnas.0506544102

    Article  CAS  Google Scholar 

  33. Haque M, Espinosa H, Lee H (2010) MEMS for in situ testing—handling, actuation, loading, and displacement measurements. MRS Bull 35(5):375–381. https://doi.org/10.1557/mrs2010.570

    Article  Google Scholar 

  34. Cai S, Gu C, Wei Y, Gu M, Pan X, Wang P (2018) Development of in situ optical–electrical MEMS platform for semiconductor characterization. Ultramicroscopy 194:57–63. https://doi.org/10.1016/j.ultramic.2018.07.007

    Article  CAS  Google Scholar 

  35. Fernando JFS, Zhang C, Firestein KL, Golberg D (2017) Optical and optoelectronic property analysis of nanomaterials inside transmission electron microscope. Small 13(45):1701564. https://doi.org/10.1002/smll.201701564

    Article  CAS  Google Scholar 

  36. Zhang L, Miller BK, Crozier PA (2013) Atomic level in situ observation of surface amorphization in anatase nanocrystals during light irradiation in water vapor. Nano Lett 13(2):679–684. https://doi.org/10.1021/nl304333h

    Article  CAS  Google Scholar 

  37. Zhang C, Xu Z, Tian W, Tang D-M, Wang X, Bando Y, Fukata N, Golberg D (2015) In situfabrication and optoelectronic analysis of axial CdS/p-Si nanowire heterojunctions in a high-resolution transmission electron microscope. Nanotechnology 26(15):154001. https://doi.org/10.1088/0957-4484/26/15/154001

    Article  CAS  Google Scholar 

  38. Miller DR, Williams RE, Akbar SA, Morris PA, McComb DW (2017) STEM-cathodoluminescence of SnO2 nanowires and powders. Sens Actuators B Chem 240:193–203. https://doi.org/10.1016/j.snb.2016.08.145

    Article  CAS  Google Scholar 

  39. Vadai M, Angell DK, Hayee F, Sytwu K, Dionne JA (2018) In-situ observation of plasmon-controlled photocatalytic dehydrogenation of individual palladium nanoparticles. Nat Commun 9(1):4658. https://doi.org/10.1038/s41467-018-07108-x

    Article  CAS  Google Scholar 

  40. Huang JY, Zhong L, Wang CM, Sullivan JP, Xu W, Zhang LQ, Mao SX, Hudak NS, Liu XH, Subramanian A, Fan H, Qi L, Kushima A, Li J (2010) In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330(6010):1515–1520. https://doi.org/10.1126/science.1195628

    Article  CAS  Google Scholar 

  41. Yang Y, Gao P, Gaba S, Chang T, Pan X, Lu W (2012) Observation of conducting filament growth in nanoscale resistive memories. Nat Commun 3(1):732. https://doi.org/10.1038/ncomms1737

    Article  CAS  Google Scholar 

  42. Liu Q, Sun J, Lv H, Long S, Yin K, Wan N, Li Y, Sun L, Liu M (2012) Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv Mater 24(14):1844–1849. https://doi.org/10.1002/adma.201104104

    Article  CAS  Google Scholar 

  43. Sun J, He L, Lo Y-C, Xu T, Bi H, Sun L, Zhang Z, Mao SX, Li J (2014) Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nat Mater 13(11):1007–1012. https://doi.org/10.1038/nmat4105

    Article  CAS  Google Scholar 

  44. Costa PMFJ, Golberg D, Shen G, Mitome M, Bando Y (2008) ZnO low-dimensional structures: electrical properties measured inside a transmission electron microscope. J Mater Sci 43(4):1460–1470. https://doi.org/10.1007/s10853-007-2307-1

    Article  CAS  Google Scholar 

  45. Grapes MD, LaGrange T, Friedman LH, Reed BW, Campbell GH, Weihs TP, LaVan DA (2014) Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling. Rev Sci Instrum 85(8):084902. https://doi.org/10.1063/1.4892537

    Article  CAS  Google Scholar 

  46. Westenfelder B, Meyer JC, Biskupek J, Algara-Siller G, Lechner LG, Kusterer J, Kaiser U, Krill CE, Kohn E, Scholz F (2011) Graphene-based sample supports forin situhigh-resolution TEM electrical investigations. J Phys D Appl Phys 44(5):055502. https://doi.org/10.1088/0022-3727/44/5/055502

    Article  CAS  Google Scholar 

  47. Grogan JM, Rotkina L, Bau HH (2011) In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics. Phys Rev E 83(6):061405. https://doi.org/10.1103/PhysRevE.83.061405

    Article  CAS  Google Scholar 

  48. van Huis MA, Young NP, Pandraud G, Creemer JF, Vanmaekelbergh D, Kirkland AI, Zandbergen HW (2009) Atomic imaging of phase transitions and morphology transformations in nanocrystals. Adv Mater 21(48):4992–4995. https://doi.org/10.1002/adma.200902561

    Article  CAS  Google Scholar 

  49. Allard LF, Bigelow WC, Jose-Yacaman M, Nackashi DP, Damiano J, Mick SE (2009) A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures. Microsc Res Tech 72(3):208–215. https://doi.org/10.1002/jemt.20673

    Article  CAS  Google Scholar 

  50. Chen X, Li C, Grätzel M, Kostecki R, Mao SS (2012) Nanomaterials for renewable energy production and storage. Chem Soc Rev 41(23):7909–7937. https://doi.org/10.1039/c2cs35230c

    Article  CAS  Google Scholar 

  51. Yoshida K, Yamasaki J, Tanaka N (2004) In situ high-resolution transmission electron microscopy observation of photodecomposition process of poly-hydrocarbons on catalytic TiO2 films. Appl Phys Lett 84(14):2542–2544. https://doi.org/10.1063/1.1689747

    Article  CAS  Google Scholar 

  52. Yoshida K, Nanbara T, Yamasaki J, Tanaka N (2006) Oxygen release and structural changes in TiO2 films during photocatalytic oxidation. J Appl Phys 99(8):084908. https://doi.org/10.1063/1.2190721

    Article  CAS  Google Scholar 

  53. Zhang L, Miller B, Crozier P (2012) In situ analysis of TiO2 photocatalysts under light exposure in the environmental TEM. Microsc Microanal 18(S2):1126–1127. https://doi.org/10.1017/S1431927612007489

    Article  Google Scholar 

  54. Zhang L, Miller B, Crozier P (2012) CdS sensitized TiO2 nanorod photocatalysts under light exposure in the environmental TEM. Microsc Microanal 18(S2):1298–1299. https://doi.org/10.1017/S1431927612008343

    Article  Google Scholar 

  55. Yoshida K, Nozaki T, Tanaka N (2007) In-situ high-resolution transmission electron microscopy of liquid phase photocatalytic reaction that uses excited electrons by ionic liquid. Microsc Microanal 13(S02):982–983. https://doi.org/10.1017/S1431927607072534

    Article  Google Scholar 

  56. Cavalca F, Laursen AB, Wagner JB, Damsgaard CD, Chorkendorff I, Hansen TW (2013) Light-induced reduction of cuprous oxide in an environmental transmission electron microscope. ChemCatChem 5(9):2667–2672. https://doi.org/10.1002/cctc.201200887

    Article  CAS  Google Scholar 

  57. Griffiths JT, Zhang S, Rouet-Leduc B, Fu WY, Bao A, Zhu D, Wallis DJ, Howkins A, Boyd I, Stowe D, Kappers MJ, Humphreys CJ, Oliver RA (2015) Nanocathodoluminescence reveals mitigation of the Stark shift in InGaN quantum wells by Si doping. Nano Lett 15(11):7639–7643. https://doi.org/10.1021/acs.nanolett.5b03531

    Article  CAS  Google Scholar 

  58. White ER, Howkins A, Williams CK, Shaffer MS (2015) Investigating the origin of luminescence in zinc oxide nanostructures with STEM-cathodoluminescence. Microsc Microanal 21(S3):1257–1258. https://doi.org/10.1017/S1431927615007072

    Article  Google Scholar 

  59. Yang S, Tian X, Wang L, Wei J, Qi K, Li X, Xu Z, Wang W, Zhao J, Bai X, Wang E (2014) In-situ optical transmission electron microscope study of exciton phonon replicas in ZnO nanowires by cathodoluminescence. Appl Phys Lett 105(7):071901. https://doi.org/10.1063/1.4893444

    Article  CAS  Google Scholar 

  60. Lim SK, Brewster M, Qian F, Li Y, Lieber CM, Gradečak S (2009) Direct correlation between structural and optical properties of III−V nitride nanowire heterostructures with nanoscale resolution. Nano Lett 9(11):3940–3944. https://doi.org/10.1021/nl9025743

    Article  CAS  Google Scholar 

  61. Losquin A, Zagonel LF, Myroshnychenko V, Rodríguez-González B, Tencé M, Scarabelli L, Förstner J, Liz-Marzán LM, García de Abajo FJ, Stéphan O, Kociak M (2015) Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements. Nano Lett 15(2):1229–1237. https://doi.org/10.1021/nl5043775

    Article  CAS  Google Scholar 

  62. Ringe E, DeSantis CJ, Collins SM, Duchamp M, Dunin-Borkowski RE, Skrabalak SE, Midgley PA (2015) Resonances of nanoparticles with poor plasmonic metal tips. Sci Rep 5(1):17431. https://doi.org/10.1038/srep17431

    Article  CAS  Google Scholar 

  63. Zhao M, Bosman M, Danesh M, Zeng M, Song P, Darma Y, Rusydi A, Lin H, Qiu C-W, Loh KP (2015) Visible surface plasmon modes in single Bi2Te3 nanoplate. Nano Lett 15(12):8331–8335. https://doi.org/10.1021/acs.nanolett.5b03966

    Article  CAS  Google Scholar 

  64. Williams RE, Carnevale SD, Kent TF, Stowe DJ, Myers RC, McComb DW (2014) Electron energy loss spectroscopy and localized cathodoluminescence characterization of GaN quantum discs. Microsc Microanal 20(S3):578–579. https://doi.org/10.1017/S1431927614004619

    Article  Google Scholar 

  65. Fern GR, Silver J, Coe-Sullivan S (2015) Cathodoluminescence and electron microscopy of red quantum dots used for display applications. J Soc Inform Display 23(2):50–55. https://doi.org/10.1002/jsid.278

    Article  CAS  Google Scholar 

  66. Sutter P, Wimer S, Sutter E (2019) Chiral twisted van der Waals nanowires. Nature 570(7761):354–357. https://doi.org/10.1038/s41586-019-1147-x

    Article  CAS  Google Scholar 

  67. den Engelsen D, Harris PG, Ireland TG, Fern G, Silver J (2015) Symmetry-related transitions in the photoluminescence and cathodoluminescence spectra of nanosized cubic Y2O3:Tb3+. ECS J Solid State Sci Technol 4(12):R145–R152. https://doi.org/10.1149/2.0011512jss

    Article  CAS  Google Scholar 

  68. Kumar S, Nehra M, Deep A, Kedia D, Dilbaghi N, Kim K-H (2017) Quantum-sized nanomaterials for solar cell applications. Renew Sustain Energy Rev 73:821–839. https://doi.org/10.1016/j.rser.2017.01.172

    Article  CAS  Google Scholar 

  69. Zhu L, Wang ZL (2019) Recent progress in Piezo-phototronic effect enhanced solar cells. Adv Func Mater 29(41):1808214. https://doi.org/10.1002/adfm.201808214

    Article  CAS  Google Scholar 

  70. Wang X, Tian W, Liao M, Bando Y, Golberg D (2014) Recent advances in solution-processed inorganic nanofilm photodetectors. Chem Soc Rev 43(5):1400–1422. https://doi.org/10.1039/c3cs60348b

    Article  CAS  Google Scholar 

  71. Yang T, Zheng Y, Du Z, Liu W, Yang Z, Gao F, Wang L, Chou K-C, Hou X, Yang W (2018) Superior photodetectors based on all-inorganic perovskite CsPbI3 nanorods with ultrafast response and high stability. ACS Nano 12(2):1611–1617. https://doi.org/10.1021/acsnano.7b08201

    Article  CAS  Google Scholar 

  72. Duan X, Huang Y, Cui Y, Wang J, Lieber CM (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816):66–69. https://doi.org/10.1038/35051047

    Article  CAS  Google Scholar 

  73. Ide Y, Liu F, Zhang J, Kawamoto N, Komaguchi K, Bando Y, Golberg D (2014) Hybridization of Au nanoparticle-loaded TiO2 with BN nanosheets for efficient solar-driven photocatalysis. J Mater Chem A 2(12):4150–4156. https://doi.org/10.1039/c3ta13769d

    Article  CAS  Google Scholar 

  74. Li H, Wang X, Xu J, Zhang Q, Bando Y, Golberg D, Ma Y, Zhai T (2013) One-dimensional CdS nanostructures: a promising candidate for optoelectronics. Adv Mater 25(22):3017–3037. https://doi.org/10.1002/adma.201300244

    Article  CAS  Google Scholar 

  75. Wang W, Zhao Q, Laurent K, Leprince-Wang Y, Liao Z-M, Yu D (2012) Nanorainforest solar cells based on multi-junction hierarchical p-Si/n-CdS/n-ZnO nanoheterostructures. Nanoscale 4(1):261–268. https://doi.org/10.1039/c1nr11123j

    Article  CAS  Google Scholar 

  76. Yang H, Zhou Y, Yang Y, Yi D, Ye T, Lam TD, Golberg D, Bao B, Yao J, Wang X (2018) Crystal facet engineering induced anisotropic transport of charge carriers in a perovskite. J Mater Chem C 6(43):11707–11713. https://doi.org/10.1039/c8tc04961k

    Article  CAS  Google Scholar 

  77. Zhang C, Cretu O, Kvashnin DG, Kawamoto N, Mitome M, Wang X, Bando Y, Sorokin PB, Golberg D (2016) Statistically analyzed photoresponse of elastically bent CdS nanowires probed by light-compatible in situ high-resolution TEM. Nano Lett 16(10):6008–6013. https://doi.org/10.1021/acs.nanolett.6b01614

    Article  CAS  Google Scholar 

  78. Zhang C, Tian W, Xu Z, Wang X, Liu J, Li S-L, Tang D-M, Liu D, Liao M, Bando Y, Golberg D (2014) Photosensing performance of branched CdS/ZnO heterostructures as revealed by in situ TEM and photodetector tests. Nanoscale 6(14):8084–8090. https://doi.org/10.1039/c4nr00963k

    Article  CAS  Google Scholar 

  79. Han X, Wang L, Yue Y, Zhang Z (2015) In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals. Ultramicroscopy 151:94–100. https://doi.org/10.1016/j.ultramic.2014.11.035

    Article  CAS  Google Scholar 

  80. Zhu Y, Milas M, Han M-G, Rameau J, Sfeir M (2012) Multimodal optical nanoprobe for advanced in-situ electron microscopy. Microscopy Today 20(6):32–37. https://doi.org/10.1017/S1551929512000892

    Article  CAS  Google Scholar 

  81. Ophus C (2019) Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. Microsc Microanal 25(3):563–582. https://doi.org/10.1017/S1431927619000497

    Article  CAS  Google Scholar 

  82. Toyao T, Saito M, Dohshi S, Mochizuki K, Iwata M, Higashimura H, Horiuchi Y, Matsuoka M (2014) Development of a Ru complex-incorporated MOF photocatalyst for hydrogen production under visible-light irradiation. Chem Commun 50(51):6779–6781. https://doi.org/10.1039/c4cc02397h

    Article  CAS  Google Scholar 

  83. Toyao T, Ueno N, Miyahara K, Matsui Y, Kim T-H, Horiuchi Y, Ikeda H, Matsuoka M (2015) Visible-light, photoredox catalyzed, oxidative hydroxylation of arylboronic acids using a metal–organic framework containing tetrakis (carboxyphenyl) porphyrin groups. Chem Commun 51(89):16103–16106. https://doi.org/10.1039/C5CC06163F

    Article  CAS  Google Scholar 

  84. Shi E, Yuan B, Shiring SB, Gao Y, Akriti GY, Su C, Lai M, Yang P, Kong J, Savoie BM, Yu Y, Dou L (2020) Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 580(7805):614–620. https://doi.org/10.1038/s41586-020-2219-7

    Article  CAS  Google Scholar 

  85. Kwon O-H, Zewail AH (2010) 4D electron tomography. Science 328(5986):1668–1673. https://doi.org/10.1126/science.1190470

    Article  CAS  Google Scholar 

  86. Wang P, Zhang F, Gao S, Zhang M, Kirkland AI (2017) Electron ptychographic diffractive imaging of boron atoms in LaB6 crystals. Sci Rep 7(1):2857. https://doi.org/10.1038/s41598-017-02778-x

    Article  CAS  Google Scholar 

  87. Song B, Ding Z, Allen CS, Sawada H, Zhang F, Pan X, Warner J, Kirkland AI, Wang P (2018) Hollow electron ptychographic diffractive imaging. Phys Rev Lett 121(14):146101. https://doi.org/10.1103/PhysRevLett.121.146101

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, P., Xu, F., Gao, P., Cai, S., Bai, X. (2023). In-Situ Optical TEM. In: Sun, L., Xu, T., Zhang, Z. (eds) In-Situ Transmission Electron Microscopy. Springer, Singapore. https://doi.org/10.1007/978-981-19-6845-7_6

Download citation

Publish with us

Policies and ethics