Skip to main content

Prenatal Interventions for the Treatment of Congenital Disorders

  • Chapter
  • First Online:
Regenerative Medicine
  • 513 Accesses

Abstract

Congenital genetic defects are the leading cause of morbidity and mortality. With progress in diagnostic methods, many of these diseases can be diagnosed prenatally. Prenatal therapeutic interventions can help in improving pathological outcomes and therefore, they are evolving as central strategies to ameliorate congenital disorders. Small size, less developed biological barriers, accessible progenitor and stem cells, and immature immune response are inherent characteristics of the fetus. These characteristics make fetus an ideal candidate for early intervention and modern therapeutic strategies. Advancements in new diagnostic methodologies (e.g., next-generation sequencing), surgical modalities, and novel preclinical research (e.g., gene editing, cell therapy, and DNA barcoding) are paving way for treating congenital disorders even before pathological consequences start to set in. In this chapter, modern approaches and advances in prenatal pharmacotherapy, surgery, cell therapy, gene therapy, and gene editing are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adzick NS, Thom EA, Spong CY, Brock JW, Burrows PK, Johnson MP, Howell LJ, Farrell JA, Dabrowiak ME, Sutton LN, Gupta N, Tulipan NB, D’Alton ME, Farmer DL (2011) A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med 364:993–1004

    Article  CAS  Google Scholar 

  • Alapati D, Zacharias WJ, Hartman HA, Rossidis AC, Stratigis JD, Ahn NJ, Coons B, Zhou S, Li H, Singh K, Katzen J, Tomer Y, Chadwick AC, Musunuru K, Beers MF, Morrisey EE, Peranteau WH (2019) In utero gene editing for monogenic lung disease. Sci Transl Med 11. https://doi.org/10.1126/scitranslmed.aav8375

  • Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–157

    Article  CAS  Google Scholar 

  • Bose SK, White BM, Kashyap MV, Dave A, De Bie FR, Li H, Singh K, Menon P, Wang T, Teerdhala S, Swaminathan V, Hartman HA, Jayachandran S, Chandrasekaran P, Musunuru K, Jain R, Frank DB, Zoltick P, Peranteau WH (2021) In utero adenine base editing corrects multi-organ pathology in a lethal lysosomal storage disease. Nat Commun 12:4291

    Article  CAS  Google Scholar 

  • Brown JEH, Koenig BA (2021) Ethical, legal, and social implications of fetal gene therapy. Clin Obstet Gynecol 64:933–940

    Article  Google Scholar 

  • Cai M, Fu X, Xu L, Lin N, Huang H (2021) renatal diagnosis of 17p11.2 copy number abnormalities associated with Smith–Magenis and Potocki–Lupski syndromes in fetuses. Front Genet 12. https://www.frontiersin.org/article/10.3389/fgene.2021.779237

  • Chen J-C (2021a) Immunological consequences of in utero exposure to foreign antigens. Front Immunol 12:638435

    Article  CAS  Google Scholar 

  • Chen JC (2021b) Immunological consequences of in utero exposure to foreign antigens. Front Immunol 12:1227

    Google Scholar 

  • Clausen FB, Hellberg Å, Bein G, Bugert P, Schwartz D, Drnovsek TD, Finning K, Guz K, Haimila K, Henny C, O’Brien H, Orzinska A, Sørensen K, Thorlacius S, Wikman A, Denomme GA, Flegel WA, Gassner C, de Haas M, Hyland C, Ji Y, Lane WJ, Nogués N, Olsson ML, Peyrard T, van der Schoot CE, Weinstock C, Legler T (2022) Recommendation for validation and quality assurance of non-invasive prenatal testing for foetal blood groups and implications for IVD risk classification according to EU regulations. Vox Sang 117:157–165

    Article  Google Scholar 

  • Codsi E, Audibert F (2019) Fetal surgery: past, present, and future perspectives. J Obstet Gynaecol Can 41:S287–S289

    Article  Google Scholar 

  • Coons BE, Lawrence KM, Didier R, Sridharan A, Moon JK, Rossidis AC, Baumgarten HD, Kim AG, Mejaddam AY, Ozawa K, De Bie F, Davey M, Flake AW (2021) Fetoscopic insufflation modeled in the extrauterine environment for neonatal development (EXTEND): fetoscopic insufflation is safe for the fetus. J Pediatr Surg 56:170–179

    Article  Google Scholar 

  • Cortes MS, Chmait RH, Lapa DA, Belfort MA, Carreras E, Miller JL, Samaha RBB, Gonzalez GS, Gielchinsky Y, Yamamoto M, Persico N, Santorum M, Otaño L, Nicolaou E, Yinon Y, Faig-Leite F, Brandt R, Whitehead W, Maiz N, Baschat A, Kosinski P, Nieto-Sanjuanero A, Chu J, Kershenovich A, Nicolaides KH (2021) Experience of 300 cases of prenatal fetoscopic open spina bifida repair: report of the International Fetoscopic Neural Tube Defect Repair Consortium. Am J Obstet Gynecol 225(678):e1–678.e11

    Google Scholar 

  • Crombag N, Sacco A, Stocks B, De Vloo P, van der Merwe J, Gallagher K, David A, Marlow N, Deprest J (2021) ‘We did everything we could’—a qualitative study exploring the acceptability of maternal-fetal surgery for spina bifida to parents. Prenat Diagn 41:910–921

    Article  Google Scholar 

  • D’Aversa E, Breveglieri G, Boutou E, Balassopoulou A, Voskaridou E, Pellegatti P, Guerra G, Scapoli C, Gambari R, Borgatti M (2022) Droplet digital PCR for non-invasive prenatal detection of fetal single-gene point mutations in maternal plasma. Int J Mol Sci 23:2819

    Article  Google Scholar 

  • da Rocha LSN, Bunduki V, de Amorim Filho AG, Cardeal DD, Matushita H, Fernandes HS, Nani FS, de Francisco RPV, de Carvalho MHB (2021) Open fetal myelomeningocele repair at a university hospital: surgery and pregnancy outcomes. Arch Gynecol Obstet 304:1443–1454

    Article  Google Scholar 

  • Demirci S, Leonard A, Essawi K, Tisdale JF (2021) CRISPR-Cas9 to induce fetal hemoglobin for the treatment of sickle cell disease. Mol Ther Methods Clin Dev 23:276–285

    Article  CAS  Google Scholar 

  • Dieckmann L, Cruceanu C, Lahti-Pulkkinen M, Lahti J, Kvist T, Laivuori H, Sammallahti S, Villa PM, Suomalainen-König S, Rancourt RC, Plagemann A, Henrich W, Eriksson JG, Kajantie E, Entringer S, Braun T, Räikkönen K, Binder EB, Czamara D (2022) Reliability of a novel approach for reference-based cell type estimation in human placental DNA methylation studies. Cell Mol Life Sci 79:115

    Article  CAS  Google Scholar 

  • Diehl D, Belke F, Kohl T, Axt-Fliedner R, Degenhardt J, Khaleeva A, Oehmke F, Faas D, Ehrhardt H, Kolodziej M, Uhl E, Windhorst AC, Neubauer BA (2021) Fully percutaneous fetoscopic repair of myelomeningocele: 30-month follow-up data. Ultrasound Obstet Gynecol 57:113–118

    Article  CAS  Google Scholar 

  • Finkel RS, Lorson CL (2022) Friend or Foe(tal): challenges in development of a large animal model for pre-clinical fetal gene therapy. Gene Ther 29(6):316–318. https://www.nature.com/articles/s41434-022-00327-4

    Article  CAS  Google Scholar 

  • Flake AW (2003) Surgery in the human fetus: the future. J Physiol 547:45–51

    Article  CAS  Google Scholar 

  • Giambona A, Vinciguerra M, Leto F, Cassarà F, Cucinella G, Cigna V, Orlandi E, Piccione M, Picciotto F, Maggio A (2022) Very early prenatal diagnosis of Cockayne’s syndrome by coelocentesis. J Obstet Gynaecol 42(5):1524–1531

    Article  CAS  Google Scholar 

  • Gomez DA, Abdul-Rahman OA (2021) Fetal alcohol spectrum disorders: current state of diagnosis and treatment. Curr Opin Pediatr 33:570–575

    Article  CAS  Google Scholar 

  • Greenwood HL, Singer PA, Downey GP, Martin DK, Thorsteinsdóttir H, Daar AS (2006) Regenerative medicine and the developing world. PLoS Med 3:e381

    Article  Google Scholar 

  • Horie S, Gonzalez H, Brady J, Devaney J, Scully M, O’Toole D, Laffey JG (2021) Fresh and cryopreserved human umbilical-cord-derived mesenchymal stromal cells attenuate injury and enhance resolution and repair following ventilation-induced lung injury. Int J Mol Sci 22:12842

    Article  CAS  Google Scholar 

  • Horvei P, MacKenzie T, Kharbanda S (2021) Advances in the management of α-thalassemia major: reasons to be optimistic. Hematology 2021:592–599

    Article  Google Scholar 

  • Hui PW, Pang P, Tang MHY (2022) 20 years review of antenatal diagnosis of haemoglobin Bart’s disease and treatment with intrauterine transfusion. Prenat Diagn 42(9):1155–1161. https://doi.org/10.1002/pd.6125

    Article  CAS  Google Scholar 

  • Kunpalin Y, Subramaniam S, Perin S, Gerli MFM, Bosteels J, Ourselin S, Deprest J, De Coppi P, David AL (2021) Preclinical stem cell therapy in fetuses with myelomeningocele: a systematic review and meta-analysis. Prenat Diagn 41:283–300

    Article  Google Scholar 

  • Labuz DF, Whitlock AE, Kycia I, Zurakowski D, Fauza DO (2022) Intrauterine Growth Restriction (IUGR) as a potential target for transamniotic stem cell therapy. J Pediatr Surg 57(6):999–1003. S0022-3468(22)00141–5

    Article  Google Scholar 

  • Li C, Hou R, Liu C, Li H, Li-Ling J, Lyu Y (2022a) [Identification of pathogenic variant and preimplantation genetic testing for a Chinese family affected with osteogenesis imperfecta]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 39:21–25

    Google Scholar 

  • Li L et al (2022b) Genetic correction of concurrent α- and β-thalassemia patient-derived pluripotent stem cells by the CRISPR-Cas9 technology | EndNote Click. Stem Cell Res Ther 13:102. https://click.endnote.com/viewer?doi=10.1186%2Fs13287-022-02768-5&token=WzI1NzA4MzIsIjEwLjExODYvczEzMjg3LTAyMi0wMjc2OC01Il0.Wj2jLY6HvwTBLkZZWuwVTsbQWkA

    Article  Google Scholar 

  • Lillegard JB, Eyerly-Webb SA, Watson DA, Bahtiyar MO, Bennett KA, Emery SP, Fisher A, Goldstein RB, Goodnight WH, Lim F-Y, McCullough LB, Moehrlen U, Moldenhauer JS, Moon-Grady AJ, Ruano R, Skupski DW, Treadwell MC, Tsao K, Wagner AJ, Zaretsky MV (2022) Placental location in maternal-fetal surgery for myelomeningocele. Fetal Diagn Ther 49(3):117–124. https://doi.org/10.1159/000521379

    Article  Google Scholar 

  • Lin T-Y, Wataganara T, Shaw SW (2021) From non-invasive to invasive fetal therapy: a comprehensive review and current update. Taiwan J Obstet Gynecol 60:595–601

    Article  Google Scholar 

  • MacKenzie TC (2018) Future AAVenues for in utero gene therapy. Cell Stem Cell 23:320–321

    Article  CAS  Google Scholar 

  • MacKenzie TC, Amid A, Angastiniotis M, Butler C, Gilbert S, Gonzalez J, Keller RL, Kharbanda S, Kirby-Allen M, Koenig BA, Kyono W, Lal A, Lianoglou BR, Norton ME, Ogasawara KK, Panchalee T, Rosner M, Schwab M, Thompson A, Waye JS, Vichinsky E (2021) Consensus statement for the perinatal management of patients with α thalassemia major. Blood Adv 5:5636–5639

    Article  Google Scholar 

  • Mellis R, Eberhardt R, Hamilton S, PAGE Consortium, McMullan D, Kilby M, Maher E, Hurles M, Giordano J, Aggarwal V, Goldstein D, Wapner R, Chitty L (2022) Fetal exome sequencing for isolated increased nuchal translucency: should we be doing it? BJOG Int J Obstet Gynaecol 129:52–61

    Article  CAS  Google Scholar 

  • Moehrlen U, Ochsenbein N, Vonzun L, Mazzone L, Horst M, Schauer S, Wille DA, Hagmann C, Kottke R, Grehten P, Casanova B, Strübing N, Moehrlen T, Tharakan S, Padden B, Bassler D, Zimmermann R, Meuli M (2021) Fetal surgery for spina bifida in Zurich: results from 150 cases. Pediatr Surg Int 37:311–316

    Article  Google Scholar 

  • Mold JE, McCune JM (2012) Mccune. In: Advances in immunology. Elsevier, pp 73–111

    Google Scholar 

  • Peranteau WH, Adzick NS (2016) Prenatal surgery for myelomeningocele. Curr Opin Obstet Gynecol 28:111–118

    Article  Google Scholar 

  • Peranteau WH, Hayashi S, Hsieh M, Shaaban AF, Flake AW (2002) High-level allogeneic chimerism achieved by prenatal tolerance induction and postnatal nonmyeloablative bone marrow transplantation. Blood 100:2225–2234

    Article  CAS  Google Scholar 

  • Pomar L et al (2022) Prenatal diagnosis of Aicardi syndrome based on a suggestive imaging pattern: a multicenter case-series. Prenat Diagn 42(4):484–494. Wiley Online Library. https://obgyn.onlinelibrary.wiley.com/doi/10.1002/pd.6085

    Article  Google Scholar 

  • Poojari VG, Paladugu S, Vasudeva A, Mundkur A, Pai MV, Kumar P (2022) We need to improve prenatal screening practices in primary obstetric care: a representative data from a fetal medicine unit in coastal Karnataka. J Obstet Gynaecol India 72:19–25

    Article  Google Scholar 

  • Rashnonejad A, Amini Chermahini G, Gündüz C, Onay H, Aykut A, Durmaz B, Baka M, Su Q, Gao G, Özkınay F (2019) Fetal gene therapy using a single injection of recombinant AAV9 rescued SMA phenotype in mice. Mol Ther 27:2123–2133

    Article  CAS  Google Scholar 

  • Ricciardi AS, Bahal R, Farrelly JS, Quijano E, Bianchi AH, Luks VL, Putman R, López-Giráldez F, Coşkun S, Song E, Liu Y, Hsieh W-C, Ly DH, Stitelman DH, Glazer PM, Saltzman WM (2018) In utero nanoparticle delivery for site-specific genome editing. Nat Commun 9:2481. https://doi.org/10.1038/s41467-018-04894-2

    Article  CAS  Google Scholar 

  • Rossidis AC, Stratigis JD, Chadwick AC, Hartman HA, Ahn NJ, Li H, Singh K, Coons BE, Li L, Lv W, Zoltick PW, Alapati D, Zacharias W, Jain R, Morrisey EE, Musunuru K, Peranteau WH (2018) In utero CRISPR-mediated therapeutic editing of metabolic genes. Nat Med 24:1513–1518

    Article  CAS  Google Scholar 

  • Russo FM, Da Cunha MGMCM, Jimenez J, Lesage F, Eastwood MP, Toelen J, Deprest J (2022) Complementary effect of maternal sildenafil and fetal tracheal occlusion improves lung development in the rabbit model of congenital diaphragmatic hernia. Ann Surg 275:e586–e595

    Article  Google Scholar 

  • Scott DA, Gofin Y, Berry AM, Adams AD (2022) Underlying genetic etiologies of congenital diaphragmatic hernia. Prenat Diagn 42(3):373–386. https://doi.org/10.1002/pd.6099

    Article  Google Scholar 

  • Shahgaldi S, Rezaei Kahmini F, Moazzeni SM (2022) Mesenchymal stem cell therapy attenuates complement C3 deposition and improves the delicate equilibrium between angiogenic and anti-angiogenic factors in abortion-prone mice. Mol Immunol 141:246–256

    Article  CAS  Google Scholar 

  • Shieh HF, Tracy SA, Hong CR, Chalphin AV, Ahmed A, Rohrer L, Zurakowski D, Fauza DO (2019) Transamniotic stem cell therapy (TRASCET) in a rabbit model of spina bifida. J Pediatr Surg 54:293–296

    Article  Google Scholar 

  • Singh K, Evens H, Nair N, Rincón MY, Sarcar S, Samara-Kuko E, Chuah MK, VandenDriessche T (2018) Efficient in vivo liver-directed gene editing using CRISPR/Cas9. Mol Ther 26:1241–1254

    Article  CAS  Google Scholar 

  • Singh K et al (2021) In utero lipid nanoparticle delivery of CRISPR technology to correct hereditary tyrosinemia type ASGCT annual meeting abstracts. Mol Ther 29:1–427

    Google Scholar 

  • Taglauer ES et al (2022) Antenatal mesenchymal stromal cell extracellular vesicle therapy prevents preeclamptic lung injury in mice. Am J Respir Cell Mol Biol 66(1):86–95. https://www.atsjournals.org/doi/10.1165/rcmb.2021-0307OC

    Article  CAS  Google Scholar 

  • Tanaka M, Tokodai K, Sato M, Yamada S, Okita H, Ito T, Saito M, Hoshiai T, Miyagi S, Miki T, Unno M, Kamei T, Goto M (2022) Distribution of amniotic epithelial cells after intraportal infusion in a rat model. Transplant Proc 54(2):513–515. https://doi.org/10.1016/j.transproceed.2021.09.077

    Article  CAS  Google Scholar 

  • Vanuytsel K, Yeung AK, Dowrey TW, Murphy GJ, Belkina AC (2022) Comprehensive phenotyping of hematopoietic stem and progenitor cells in the human fetal liver. Cytometry A. https://doi.org/10.1002/cyto.a.24540

  • Vinit N, Gueneuc A, Bessières B, Dreux S, Heidet L, Salomon R, Lapillonne A, De Bernardis G, Salomon LJ, Stirnemann JJ, Blanc T, Ville Y (2020) Fetal cystoscopy and vesicoamniotic shunting in lower urinary tract obstruction: long-term outcome and current technical limitations. Fetal Diagn Ther 47:74–83

    Article  Google Scholar 

  • Vonzun L, Kahr M, Noll F, Mazzone L, Moehrlen U, Meuli M, Hüsler M, Krähenmann F, Zimmermann R, Ochsenbein-Kölble N (2021) Systematic classification of maternal and fetal intervention-related complications following open fetal myelomeningocele repair—results from a large prospective cohort. BJOG Int J Obstet Gynaecol 128:1184–1191

    Article  CAS  Google Scholar 

  • Wang M-Y, Zhou Y, Lai G-S, Huang Q, Cai W-Q, Han Z-W, Wang Y, Ma Z, Wang X-W, Xiang Y, Fang S-X, Peng X-C, Xin H-W (2021a) DNA barcode to trace the development and differentiation of cord blood stem cells (Review). Mol Med Rep 24:849

    Article  CAS  Google Scholar 

  • Wang M-Y, Zhou Y, Lai G-S, Huang Q, Cai W-Q, Han Z-W, Wang Y, Ma Z, Wang X-W, Xiang Y, Fang S-X, Peng X-C, Xin H-W (2021b) DNA barcode to trace the development and differentiation of cord blood stem cells (Review). Mol Med Rep 24:1–10

    Article  Google Scholar 

  • Wei X, Zhou X, Zhou J, Zou G, Yang Y, Zhou F, Xiong S, Chen J, Sun L (2022) The value of exome sequencing in thoracoamniotic shunt for severe pleural effusion with fetal hydrops: a retrospective clinical study. Fetal Diagn Ther. https://doi.org/10.1159/000521212

  • Whitlock AE, Labuz DF, Kycia I, Zurakowski D, Fauza DO (2022) Passive perinatal immunotherapy via transamniotic antibody delivery. J Pediatr Surg 57:52–55

    Article  Google Scholar 

  • Wozniak JR, Fink BA, Fuglestad AJ, Eckerle JK, Boys CJ, Sandness KE, Radke JP, Miller NC, Lindgren C, Brearley AM, Zeisel SH, Georgieff MK (2020) Four-year follow-up of a randomized controlled trial of choline for neurodevelopment in fetal alcohol spectrum disorder. J Neurodev Disord 12:9

    Article  Google Scholar 

  • Wu Q, Zheng L, Huang H, Lin H, Lin X, Xu L, Chen R, Lin D, Chen G (2022) Rapid and label-free prenatal detection of Down’s syndrome using body fluid surface enhanced Raman spectroscopy. J Biomed Nanotechnol 18:243–250

    Article  CAS  Google Scholar 

  • Zhang Q, Lai D (2020) Application of human amniotic epithelial cells in regenerative medicine: a systematic review. Stem Cell Res Ther 11:439

    Article  CAS  Google Scholar 

  • Zhao S-J, Muyayalo KP, Luo J, Huang D, Mor G, Liao A-H (2022) Next generation of immune checkpoint molecules in maternal-fetal immunity. Immunol Rev 308(1):40–54. https://doi.org/10.1111/imr.13073

    Article  CAS  Google Scholar 

  • Zia S, Martini G, Pizzuti V, Maggio A, Simonazzi G, Reschiglian P, Bonsi L, Alviano F, Roda B, Zattoni A (2021) A new predictive technology for perinatal stem cell isolation suited for cell therapy approaches. Micromachines 12:782

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kshitiz Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, K. (2023). Prenatal Interventions for the Treatment of Congenital Disorders. In: Chakravorty, N., Shukla, P.C. (eds) Regenerative Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-19-6008-6_12

Download citation

Publish with us

Policies and ethics