Skip to main content

Cryopreservation

  • Chapter
  • First Online:
Basics of Hematopoietic Stem Cell Transplant
  • 432 Accesses

Abstract

Cryopreservation is a method used to store cells and tissues for long periods at extremely low temperatures without damaging them. The process involves removal of water from the cells or abrogates its ability to form ice crystals, which can damage cells. With the development of cryobiology, it has become possible to store living tissues safely for long period. Many banks have also started cryopreserving various components of blood, stem cells, cord blood cells, oocytes, and sperms for their future use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao D, Critser JK. Mechanisms of cryoinjury in living cells. ILAR J. 2000;41(4):187–96.

    Article  CAS  PubMed  Google Scholar 

  2. Bojic S, Murray A, Bentley BL, Spindler R, Pawlik P, Cordeiro JL, et al. Winter is coming: the future of cryopreservation. BMC Biol. 2021;19(1):56.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pegg DE. Long-term preservation of cells and tissues: a review. J Clin Pathol. 1976;29(4):271–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Karlsson JO, Toner M. Long-term storage of tissues by cryopreservation: critical issues. Biomaterials. 1996;17(3):243–56.

    Article  CAS  PubMed  Google Scholar 

  5. Fleming KK, Hubel A. Cryopreservation of hematopoietic and non-hematopoietic stem cells. Transfus Apher Sci. 2006;34(3):309–15.

    Article  CAS  PubMed  Google Scholar 

  6. Berz D, McCormack EM, Winer ES, Colvin GA, Quesenberry PJ. Cryopreservation of hematopoietic stem cells. Am J Hematol. 2007;82(6):463–72.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Forman SJ, Negrin RS, Antin JH, Appelbaum FR. Thomas’ hematopoietic cell transplantation: stem cell transplantation. Chichester: John Wiley & Sons; 2015.

    Book  Google Scholar 

  8. Mazur P, Rall WF, Leibo SP. Kinetics of water loss and the likelihood of intracellular freezing in mouse ova. Cell Biophys. 1984;6(3):197–213.

    Article  CAS  PubMed  Google Scholar 

  9. Toner M. Nucleation of ice crystals inside biological cells. Adv Low Temp Biol. 1993;2:1–51.

    Google Scholar 

  10. Mazur P. Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol. 1963;47(2):347–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pegg DE. The history and principles of cryopreservation. Semin Reprod Med. 2002;20(1):5–13.

    Article  CAS  PubMed  Google Scholar 

  12. Pegg DE. Principles of cryopreservation. Methods Mol Biol. 2007;368:39–57.

    Article  CAS  PubMed  Google Scholar 

  13. Karow AM, Webb WR, Tissue freezing. A theory for injury and survival. Cryobiology. 1965;2(3):99–108.

    Article  PubMed  Google Scholar 

  14. Muldrew K, McGann LE. Mechanisms of intracellular ice formation. Biophys J. 1990;57(3):525–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mazur P. The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology. 1977;14(3):251–72.

    Article  CAS  PubMed  Google Scholar 

  16. Fahy GM, Wowk B. Principles of cryopreservation by vitrification. In: Cryopreservation and freeze-drying protocols. Springer; 2015. p. 21–82.

    Chapter  Google Scholar 

  17. Polge C, Smith AU, Parkes AS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature. 1949;164(4172):666.

    Article  CAS  PubMed  Google Scholar 

  18. Towey JJ, Dougan L. Structural examination of the impact of glycerol on water structure. J Phys Chem B. 2011;116(5):1633–41.

    Article  PubMed  Google Scholar 

  19. Meryman HT, Williams RJ, Douglas MSJ. Freezing injury from “solution effects” and its prevention by natural or artificial cryoprotection. Cryobiology. 1977;14(3):287–302.

    Article  CAS  PubMed  Google Scholar 

  20. Jang TH, Park SC, Yang JH, Kim JY, Seok JH, Park US, et al. Cryopreservation and its clinical applications. Integr Med Res. 2017;6(1):12–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Leaf A. Maintenance of concentration gradients and regulation of cell volume. Ann N Y Acad Sci. 1959;72(1):396–404.

    Article  CAS  PubMed  Google Scholar 

  22. Fahy GM, Wowk B. Principles of ice-free cryopreservation by vitrification. Methods Mol Biol. 2021;2180:27–97.

    Article  CAS  PubMed  Google Scholar 

  23. Tavukcuoglu S, Al-Azawi T, Khaki AA, Al-Hasani S. Is vitrification standard method of cryopreservation. Middle East Fertil Soc J. 2012;17(3):152–6.

    Article  Google Scholar 

  24. Katayama Y, Yano T, Bessho A, Deguchi S, Sunami K, Mahmut N, et al. The effects of a simplified method for cryopreservation and thawing procedures on peripheral blood stem cells. Bone Marrow Transplant. 1997;19(3):283.

    Article  CAS  PubMed  Google Scholar 

  25. Wong LK, Reinertson EL. Clinical considerations of dimethyl sulfoxide. Iowa State Univ Vet. 1984;46(2):2.

    Google Scholar 

  26. Harter JG. The status of dimethyl sulfoxide from the perspective of the Food and Drug Administration. Ann N Y Acad Sci. 1983;411(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  27. Gurtovenko AA, Anwar J. Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. J Phys Chem B. 2007;111(35):10453–60.

    Article  CAS  PubMed  Google Scholar 

  28. Shu Z, Heimfeld S, Gao D. Hematopoietic SCT with cryopreserved grafts: adverse reactions after transplantation and cryoprotectant removal before infusion. Bone Marrow Transplant. 2014;49(4):469.

    Article  CAS  PubMed  Google Scholar 

  29. Halle P, Tournilhac O, Knopinska-Posluszny W, Kanold J, Gembara P, Boiret N, et al. Uncontrolled-rate freezing and storage at–80° C, with only3. 5-percent DMSO in cryoprotective solution for 109 autologous peripheral blood progenitor cell transplantations. Transfusion (Paris). 2001;41(5):667–73.

    Article  CAS  Google Scholar 

  30. Calmels B, Houze P, Hengesse JC, Ducrot T, Malenfant C, Chabannon C. Preclinical evaluation of an automated closed fluid management device: Cytomate TM, for washing out DMSO from hematopoietic stem cell grafts after thawing. Bone Marrow Transplant. 2003;31(9):823.

    Article  CAS  PubMed  Google Scholar 

  31. McCullough J, Haley R, Clay M, Hubel A, Lindgren B, Moroff G. Long-term storage of peripheral blood stem cells frozen and stored with a conventional liquid nitrogen technique compared with cells frozen and stored in a mechanical freezer. Transfusion (Paris). 2010;50(4):808–19.

    Article  Google Scholar 

  32. Cordoba R, Arrieta R, Kerguelen A, Hernandez-Navarro F. The occurrence of adverse events during the infusion of autologous peripheral blood stem cells is related to the number of granulocytes in the leukapheresis product. Bone Marrow Transplant. 2007;40(11):1063.

    Article  CAS  PubMed  Google Scholar 

  33. Syme R, Bewick M, Stewart D, Porter K, Chadderton T, Glück S. The role of depletion of dimethyl sulfoxide before autografting: on hematologic recovery, side effects, and toxicity. Biol Blood Marrow Transplant. 2004;10(2):135–41.

    Article  CAS  PubMed  Google Scholar 

  34. Balaban B, Urman B, Ata B, Isiklar A, Larman MG, Hamilton R, et al. A randomized controlled study of human day 3 embryo cryopreservation by slow freezing or vitrification: vitrification is associated with higher survival, metabolism and blastocyst formation. Hum Reprod. 2008;23(9):1976–82.

    Article  CAS  PubMed  Google Scholar 

  35. Frisch BJ, Calvi LM. Hematopoietic stem cell cultures and assays. Methods Mol Biol. 2014;1130:315–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Matsuzaki Y, Kinjo K, Mulligan RC, Okano H. Unexpectedly efficient homing capacity of purified murine hematopoietic stem cells. Immunity. 2004;20(1):87–93.

    Article  CAS  PubMed  Google Scholar 

  37. van Os R, Kamminga LM, de Haan G. Stem cell assays: something old, something new, something borrowed. Stem Cells. 2004;22(7):1181–90.

    Article  PubMed  Google Scholar 

  38. Douay L, Lopez M, Gorin NC. A technical bias: differences in cooling rates prevent ampoules from being a reliable index of stem cell cryopreservation in large volumes. Cryobiology. 1986;23(4):296–301.

    Article  CAS  PubMed  Google Scholar 

  39. Smith DM, Weisenburger DD, Bierman P, Kessinger A, Vaughan WP, Armitage JO. Acute renal failure associated with autologous bone marrow transplantation. Bone Marrow Transplant. 1987;2(2):195–201.

    CAS  PubMed  Google Scholar 

  40. World Health Organization. Manual on the management, maintenance and use of blood cold chain equipment. Geneva: World Health Organization; 2005. p. 1–92.

    Google Scholar 

  41. Robinson S, Harris A, Atkinson S, Atterbury C, Bolton-Maggs P, Elliott C, et al. The administration of blood components: a British society for haematology guideline. Transfus Med. 2018;28(1):3–21.

    Article  CAS  PubMed  Google Scholar 

  42. Hess JR. An update on solutions for red cell storage. Vox Sang. 2006;91(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  43. Hess JR. Red cell changes during storage. Transfus Apher Sci. 2010;43(1):51–9.

    Article  PubMed  Google Scholar 

  44. Berezina TL, Zaets SB, Morgan C, Spillert CR, Kamiyama M, Spolarics Z, et al. Influence of storage on red blood cell rheological properties. J Surg Res. 2002;102(1):6–12.

    Article  CAS  PubMed  Google Scholar 

  45. Kerger H, Waschke KF, Ackern KV, Tsai AG, Intaglietta M. Systemic and microcirculatory effects of autologous whole blood resuscitation in severe hemorrhagic shock. Am J Physiol. 1999;276(6):H2035–43.

    CAS  PubMed  Google Scholar 

  46. Klein HG. Immunomodulatory aspects of transfusion a once and future risk? Anesthesiology. 1999;91(3):861.

    Article  CAS  PubMed  Google Scholar 

  47. Opelz G, Vanrenterghem Y, Kirste G, Gray DWR, Horsburgh T, Lachance JG, et al. Prospective evaluation of pretransplant blood transfusions in cadaver kidney recipients. Transplantation. 1997;63(7):964–7.

    Article  CAS  PubMed  Google Scholar 

  48. Carson JL, Grossman BJ, Kleinman S, Tinmouth AT, Marques MB, Fung MK, et al. Red blood cell transfusion: a clinical practice guideline from the AABB. Ann Intern Med. 2012;157(1):49–58.

    Article  PubMed  Google Scholar 

  49. Napolitano LM, Kurek S, Luchette FA, Corwin HL, Barie PS, Tisherman SA, et al. Clinical practice guideline: red blood cell transfusion in adult trauma and critical care. Crit Care Med. 2009;37(12):3124–57.

    Article  PubMed  Google Scholar 

  50. Valles J, Santos MT, Aznar J, Marcus AJ, Martinez-Sales V, Portoles M, et al. Erythrocytes metabolically enhance collagen-induced platelet responsiveness via increased thromboxane production, adenosine diphosphate release, and recruitment. Blood. 1991;78(1):154–62.

    Article  CAS  PubMed  Google Scholar 

  51. Retter A, Wyncoll D, Pearse R, Carson D, McKechnie S, Stanworth S, et al. Guidelines on the management of anaemia and red cell transfusion in adult critically ill patients. Br J Haematol. 2013;160(4):445–64.

    Article  CAS  PubMed  Google Scholar 

  52. Di Santo M, Tarozzi N, Nadalini M, Borini A. Human sperm cryopreservation: update on techniques, effect on DNA integrity, and implications for ART. Adv Urol. 2011;2012:e854837, 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S.K. (2023). Cryopreservation. In: Basics of Hematopoietic Stem Cell Transplant. Springer, Singapore. https://doi.org/10.1007/978-981-19-5802-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5802-1_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5801-4

  • Online ISBN: 978-981-19-5802-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics