Skip to main content

Enabling Precision Medicine with CRISPR-Cas Genome Editing Technology: A Translational Perspective

  • Chapter
  • First Online:
Genome Editing in Cardiovascular and Metabolic Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1396))

Abstract

Genome editing technologies, particularly CRISPR-Cas (clustered regularly interspaced short palindromic repeats (CRISPR) associated nucleases), are redefining the boundaries of therapeutic gene therapy. CRISPR-Cas is a robust, straightforward, and programmable genome editing tool capable of mediating site-specific DNA modifications. The rapid advancements from discovery to clinical adaptation have expanded the therapeutic landscape to treat genetically defined diseases. Together with the technical developments in human DNA and RNA sequencing, CRISPR-directed gene therapy enables a new era to realize precision medicine where pathogenic mutations underlying monogenic disorders can potentially be corrected. Also, protective or therapeutic genomic alterations can be introduced as preventative or curative therapy. Despite its high therapeutic potential, CRISPR-CasĀ“ clinical translation is still in its infancy and is highly dependent on its efficiency, specificity in gene corrections, and cell-specific delivery. Therefore, this chapter focuses on the challenges and opportunities the CRISPR-Cas toolbox offers together with delivery vehicles to realize its use for therapeutic gene editing. Furthermore, we discuss the obstacles the CRISPR-Cas system faces for successful clinical translation and summarize its current clinical progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Matthews E, Brassington R, Kuntzer T, Jichi F, Manzur AY (2016) Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst Rev 5:CD003725

    Google ScholarĀ 

  2. Eichhorn EJ, Gheorghiade M (2002) Digoxin. Prog Cardiovasc Dis 44(4):251ā€“266

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Uddin F, Rudin CM, Sen T (2020) CRISPR gene therapy: applications, limitations, and implications for the future. Front Oncol 10:1387

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  4. Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, Chattopadhyay S, Chandra D, Chilukuri N, Betapudi V (2019) Gene therapy leaves a vicious cycle. Front Oncol 9:297

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  5. Stoddard BL (2011) Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19(1):7ā€“15

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  6. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11(9):636ā€“646

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333(6051):1843ā€“1846

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823ā€“826

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9(1):1ā€“13

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819ā€“823

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:6213

    ArticleĀ  Google ScholarĀ 

  12. Cox DBT, Platt RJ, Zhang F (2015) Therapeutic genome editing: prospects and challenges. Nat Med 21(2):121ā€“131

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Oude Blenke E, Evers MJW, Mastrobattista E, van der Oost J (2016) CRISPR-Cas9 gene editing: delivery aspects and therapeutic potential. J Control Release 244:139ā€“148

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  14. Lee K, Conboy M, Park HM, Jiang F, Kim HJ, Dewitt MA, Mackley VA, Chang K, Rao A, Skinner C (2017) Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng 1:889

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Li L, He Z-Y, Wei X-W, Gao G-P, Wei Y-Q (2015) Challenges in CRISPR/CAS9 delivery: potential roles of nonviral vectors. Hum Gene Ther 26(7):452ā€“462

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262ā€“1278

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  17. Xiao-Jie L, Hui-Ying X, Zun-Ping K, Jin-Lian C, Li-Juan J (2015) CRISPR-Cas9: a new and promising player in gene therapy. J Med Genet 52(5):289ā€“296

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  18. Amoasii L, Hildyard JCW, Li H, Sanchez-Ortiz E, Mireault A, Caballero D, Harron R, Stathopoulou TR, Massey C, Shelton JM, Bassel-Duby R, Piercy RJ, Olson EN (2018) Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 362(6410):86ā€“91

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  19. Min Y-L, Bassel-Duby R, Olson EN (2019) CRISPR correction of Duchenne muscular dystrophy. Annu Rev Med 70:239ā€“255

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R, Olson EN (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351(6271):400ā€“403

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, Hauschka SD, Chamberlain JR, Chamberlain JS (2017) Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 8(1):1ā€“10

    Google ScholarĀ 

  22. Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Rivera RMC, Madhavan S, Pan X, Ran FA, Yan WX (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351(6271):403ā€“407

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Shao Y, Wang L, Guo N, Wang S, Yang L, Li Y, Wang M, Yin S, Han H, Zeng L, Zhang L, Hui L, Ding Q, Zhang J, Geng H, Liu M, Li D (2018) Cas9-nickaseā€“mediated genome editing corrects hereditary tyrosinemia in rats. J Biol Chem 293(18):6883ā€“6892

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. Rupp LJ, Schumann K, Roybal KT, Gate RE, Ye CJ, Lim WA, Marson A (2017) CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep 7(1):1ā€“10

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Mancuso P, Chen C, Kaminski R, Gordon J, Liao S, Robinson JA, Smith MD, Liu H, Sariyer IK, Sariyer R, Peterson TA, Donadoni M, Williams JB, Siddiqui S, Bunnell BA, Ling B, MacLean AG, Burdo TH, Khalili K (2020) CRISPR based editing of SIV proviral DNA in ART treated non-human primates. Nat Commun 11(1):1ā€“11

    ArticleĀ  Google ScholarĀ 

  26. Chadwick AC, Wang X, Musunuru K (2017) In vivo base editing of PCSK9 (proprotein convertase subtilisin/Kexin type 9) as a therapeutic alternative to genome editing. Arterioscler Thromb Vasc Biol 37(9):1741ā€“1747

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Chadwick AC, Evitt NH, Lv W, Musunuru K (2018) Reduced blood lipid levels with in vivo CRISPR-Cas9 base editing of ANGPTL3. Circulation 137(9):975ā€“977

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Ding Q, Strong A, Patel KM, Ng SL, Gosis BS, Regan SN, Cowan CA, Rader DJ, Musunuru K (2014) Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res 115(5):488ā€“492

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Xie C, Zhang YP, Song L, Luo J, Qi W, Hu J, Lu D, Yang Z, Zhang J, Xiao J, Zhou B, Du JL, Jing N, Liu Y, Wang Y, Li BL, Song BL, Yan Y (2016) Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome. Cell Res 26(10):1099ā€“1111

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Zeng Y, Li J, Li G, Huang S, Yu W, Zhang Y, Chen D, Chen J, Liu J, Huang X (2018) Correction of the Marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos. Mol Ther 26(11):2631ā€“2637

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Doudna JA (2020) The promise and challenge of therapeutic genome editing. Nature 578(7794):229ā€“236

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  32. Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, Van der Oost J (2016) Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353:6299

    ArticleĀ  Google ScholarĀ 

  33. Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO, Gootenberg JS, Makarova KS, Wolf YI, Severinov K, Zhang F, Koonin EV (2017) Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol 15(3):169ā€“182

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Bin MS, Kim DY, Ko JH, Kim YS (2019) Recent advances in the CRISPR genome editing tool set. Exp Mol Med 51(11):1ā€“11

    Google ScholarĀ 

  35. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNAā€“guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816ā€“821

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  36. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales APW, Li Z, Peterson RT, Yeh JRJ, Aryee MJ, Joung JK (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523(7561):481ā€“485

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  37. Lee JK, Jeong E, Lee J, Jung M, Shin E, Kim Y, Lee K, Jung I, Kim D, Kim S, Kim JS (2018) Directed evolution of CRISPR-Cas9 to increase its specificity. Nat Commun 9(1):1ā€“10

    ArticleĀ  Google ScholarĀ 

  38. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268):84ā€“88

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  39. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490ā€“495

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, Noda T, Abudayyeh OO, Gootenberg JS, Mori H (2018) Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361(6408):1259ā€“1262

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  41. Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556(7699):57ā€“63

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. KulcsĆ”r PI, TĆ”las A, HuszĆ”r K, Ligeti Z, TĆ³th E, Weinhardt N, Fodor E, Welker E (2017) Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage. Enome Biol 18(1):1ā€“17

    Google ScholarĀ 

  43. Vakulskas CA, Dever DP, Rettig GR, Turk R, Jacobi AM, Collingwood MA, Bode NM, McNeill MS, Yan S, Camarena J (2018) A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med 24(8):1216ā€“1122

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  44. Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA (2017) Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550(7676):407ā€“410

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  45. Casini A, Olivieri M, Petris G, Montagna C, Reginato G, Maule G, Lorenzin F, Prandi D, Romanel A, Demichelis F, Inga A, Cereseto A (2018) A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol 36(3):265

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  46. Walton RT, Christie KA, Whittaker MN, Kleinstiver BP (2020) Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368(6488):290ā€“296

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  47. Hu Z, Wang S, Zhang C, Gao N, Li M, Wang D, Wang D, Liu D, Liu H, Ong SG, Wang H, Wang Y (2020) A compact cas9 ortholog from staphylococcus auricularis (sauricas9) expands the DNA targeting scope. PLoS Biol 18(3):e3000686

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  48. Jakimo N, Chatterjee P, Nip L, Jacobson JM (2018) A Cas9 with complete PAM recognition for adenine dinucleotides. BioRxiv:429654

    Google ScholarĀ 

  49. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546):186ā€“191

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  50. Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV, Zheng Z, Joung JK (2015) Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol 33(12):1293ā€“1298

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  51. Chatterjee P, Jakimo N, Jacobson JM (2018) Minimal PAM specificity of a highly similar SpCas9 ortholog. Sci Adv 4(10):766

    ArticleĀ  Google ScholarĀ 

  52. Chatterjee P, Jakimo N, Lee J, Amrani N, RodrĆ­guez T, Koseki SRT, Tysinger E, Qing R, Hao S, Sontheimer EJ, Jacobson J (2020) An engineered ScCas9 with broad PAM range and high specificity and activity. Nat Biotechnol 38(10):1154ā€“1158

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  53. Kim E, Koo T, Park SW, Kim D, Kim K, Cho HY, Song DW, Lee KJ, Jung MH, Kim S, Kim JH, Kim JH, Kim JS (2017) In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun 8(1):1ā€“12

    Google ScholarĀ 

  54. Acharya S, Mishra A, Paul D, Ansari AH, Azhar M, Kumar M, Rauthan R, Sharma N, Aich M, Sinha D (2019) Francisella novicida Cas9 interrogates genomic DNA with very high specificity and can be used for mammalian genome editing. Proc Natl Acad Sci 116(42):20959ā€“20968

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  55. Hirano H, Gootenberg JS, Horii T, Abudayyeh OO, Kimura M, Hsu PD, Nakane T, Ishitani R, Hatada I, Zhang F, Nishimasu H, Nureki O (2016) Structure and Engineering of Francisella novicida Cas9. Cell 164(5):950ā€“961

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  56. Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ, Thomson JA (2013) Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci 110(39):15644ā€“15649

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  57. Edraki A, Mir A, Ibraheim R, Gainetdinov I, Yoon Y, Song CQ, Cao Y, Gallant J, Xue W, Rivera-PĆ©rez JA, Sontheimer EJ (2019) A compact, high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing. Mol Cell 73(4):714ā€“726

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  58. MĆ¼ller M, Lee CM, Gasiunas G, Davis TH, Cradick TJ, Siksnys V, Bao G, Cathomen T, Mussolino C (2016) Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome. Mol Ther 24(3):636ā€“644

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  59. Karvelis T, Gasiunas G, Young J, Bigelyte G, Silanskas A, Cigan M, Siksnys V (2015) Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol 16(1):1ā€“13

    ArticleĀ  Google ScholarĀ 

  60. Gao N, Zhang C, Hu Z, Li M, Wei J, Wang Y, Liu H (2020) Characterization of Brevibacillus laterosporus Cas9 (BlatCas9) for mammalian genome editing. Front Cell Dev Biol 8:1131

    ArticleĀ  Google ScholarĀ 

  61. Harrington LB, Paez-Espino D, Staahl BT, Chen JS, Ma E, Kyrpides NC, Doudna JA (2017) A thermostable Cas9 with increased lifetime in human plasma. Nat Commun 8(1):1ā€“8

    ArticleĀ  CASĀ  Google ScholarĀ 

  62. Zuo Z, Liu J (2016) Cas9-catalyzed DNA cleavage generates staggered ends: evidence from molecular dynamics simulations. Sci Rep 6(1):1ā€“9

    ArticleĀ  CASĀ  Google ScholarĀ 

  63. Ding Q, Strong A, Patel KM, Ng S-L, Gosis BS, Regan SN, Rader DJ, Musunuru K (2014) Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res 115(5):488ā€“492

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  64. Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32(6):551ā€“553

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  65. Yin H, Song C-Q, Dorkin JR, Zhu LJ, Li Y, Wu Q, Park A, Yang J, Suresh S, Bizhanova A (2016) Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 34(3):328ā€“333

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  66. Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao R, Ran FA (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351(6271):407ā€“411

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  67. Maeder ML, Stefanidakis M, Wilson CJ, Baral R, Barrera LA, Bounoutas GS, Bumcrot D, Chao H, Ciulla DM, DaSilva JA (2019) Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med 25(2):229ā€“233

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  68. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-Ī³uided platform for sequence-specific control of gene expression. Cell 152(5):1173ā€“1183

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  69. Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41(15):7429ā€“7437

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  70. Wang D, Zhang F, Gao G (2020) CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell 181(1):136ā€“150

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  71. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420ā€“424

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  72. Rees HA, Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19(12):770ā€“788

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  73. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of T to G C in genomic DNA without DNA cleavage. Nature 551(7681):464ā€“471

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  74. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576(7785):149ā€“157

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  75. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, Van Der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 Is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759ā€“771

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  76. Liu Y, Han J, Chen Z, Wu H, Dong H, Nie G (2017) Engineering cell signaling using tunable CRISPRā€“Cpf1-based transcription factors. Nat Commun 8(1):1ā€“8

    ArticleĀ  Google ScholarĀ 

  77. Zhang Y, Long C, Li H, McAnally JR, Baskin KK, Shelton JM, Bassel-Duby R, Olson EN (2017) CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci Adv 3(4):e1602814

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  78. Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, DeGennaro EM, Winblad N, Choudhury SR, Abudayyeh OO, Gootenberg JS (2017) Multiplex gene editing by CRISPRā€“Cpf1 using a single crRNA array. Nat Biotechnol 35(1):31ā€“34

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  79. Strecker J, Ladha A, Gardner Z, Schmid-Burgk JL, Makarova KS, Koonin EV, Zhang F (2019) RNA-guided DNA insertion with CRISPR-associated transposases. Science 365(6448):48ā€“53

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  80. Teng F, Cui T, Feng G, Guo L, Xu K, Gao Q, Li T, Li J, Zhou Q, Li W (2018) Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Dis 4(1):1ā€“15

    CASĀ  Google ScholarĀ 

  81. Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60(3):385ā€“397

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  82. Strecker J, Jones S, Koopal B, Schmid-Burgk J, Zetsche B, Gao L, Makarova KS, Koonin EV, Zhang F (2019) Engineering of CRISPR-Cas12b for human genome editing. Nat Commun 10(1):1ā€“8

    ArticleĀ  Google ScholarĀ 

  83. Yamano T, Zetsche B, Ishitani R, Zhang F, Nishimasu H, Nureki O (2017) Structural basis for the canonical and non-canonical PAM recognition by CRISPR-Cpf1. Mol Cell 67(4):633ā€“645

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  84. Kim HK, Song M, Lee J, Menon AV, Jung S, Kang Y-M, Choi JW, Woo E, Koh HC, Nam J-W (2017) In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat Methods 14(2):153ā€“159

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  85. Tu M, Lin L, Cheng Y, He X, Sun H, Xie H, Fu J, Liu C, Li J, Chen D, Xi H, Xue D, Liu Q, Zhao J, Gao C, Song Z, Qu J, Gu F (2017) A ā€œnew lease of lifeā€: FnCpf1 possesses DNA cleavage activity for genome editing in human cells. Nucleic Acids Res 45(19):11295ā€“11304

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  86. Li P, Zhang L, Li Z, Xu C, Du X, Wu S (2019) Cas12a mediates efficient and precise endogenous gene tagging via MITI: microhomology-dependent targeted integrations. Cell Mol Life Sci 2019:1ā€“10

    Google ScholarĀ 

  87. Gao L, Cox DBT, Yan WX, Manteiga JC, Schneider MW, Yamano T, Nishimasu H, Nureki O, Crosetto N, Zhang F (2017) Engineered Cpf1 variants with altered PAM specificities. Nat Biotechnol 35(8):789ā€“792

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  88. Teng F, Li J, Cui T, Xu K, Guo L, Gao Q, Feng G, Chen C, Han D, Zhou Q, Li W (2019) Enhanced mammalian genome editing by new Cas12a orthologs with optimized crRNA scaffolds. Genome Biol 20(1):1ā€“6

    ArticleĀ  Google ScholarĀ 

  89. Zetsche B, Strecker J, Abudayyeh OO, Gootenberg JS, Scott DA, Zhang F (2019) A survey of genome editing activity for 16 Cas12a orthologs. Keio J Med 69(3):59ā€“65

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  90. Yang H, Gao P, Rajashankar KR, Patel DJ (2016) PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease. Cell 167(7):1814ā€“1828

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  91. Harrington LB, Ma E, Chen JS, Witte IP, Gertz D, Paez-Espino D, Al-Shayeb B, Kyrpides NC, Burstein D, Banfield JF, Doudna JA (2020) A scoutRNA is required for some type V CRISPR-Cas systems. Mol Cell 79(3):416ā€“424

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  92. Liu J-J, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KLM, Chuck J, Tan D, Knott GJ, Harrington LB (2019) CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566(7743):218ā€“223

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  93. Huynh N, Depner N, Larson R, King-Jones K (2020) A versatile toolkit for CRISPR-Cas13-based RNA manipulation in Drosophila. Genome Biol 21(1):1ā€“29

    ArticleĀ  Google ScholarĀ 

  94. Shmakov SA, Sitnik V, Makarova KS, Wolf YI, Severinov KV, Koonin EV (2017) The CRISPR spacer space is dominated by sequences from species-specific mobilomes. MBio 8:5

    ArticleĀ  Google ScholarĀ 

  95. Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F (2017) RNA editing with CRISPR-Cas13. Science 358(6366):1019ā€“1027

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  96. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A, Lander ES, Voytas DF, Ting AY, Zhang F (2017) RNA targeting with CRISPR-Cas13. Nature 550(7675):280ā€“284

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  97. Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DBT, Shmakov S, Makarova KS, Semenova E, Minakhin L, Severinov K, Regev A, Lander ES, Koonin EV, Zhang F (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353:6299

    ArticleĀ  Google ScholarĀ 

  98. Lin P, Qin S, Pu Q, Wang Z, Wu Q, Gao P, Schettler J, Guo K, Li R, Li G (2020) CRISPR-Cas13 inhibitors block RNA editing in bacteria and mammalian cells. Mol Cell 78(5):850ā€“861

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  99. Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F (2018) Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360(6387):439ā€“444

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  100. Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F (2019) SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc 14(10):2986ā€“3012

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  101. Liu C, Zhang L, Liu H, Cheng K (2017) Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release 266:17ā€“26

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  102. Yip BH (2020) Recent advances in CRISPR/Cas9 delivery strategies. Biomol Ther 10(6):839

    CASĀ  Google ScholarĀ 

  103. Mout R, Ray M, Lee Y-W, Scaletti F, Rotello VM (2017) In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: progress and challenges. Bioconjug Chem 28(4):880ā€“884

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  104. Li L, Hu S, Chen X (2018) Non-viral delivery systems for CRISPR/Cas9-based genome editing: challenges and opportunities. Biomaterials 171:207ā€“218

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  105. Cullis PR, Hope MJ (2017) Lipid nanoparticle systems for enabling gene therapies. Mol Ther 25(7):1467ā€“1475

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  106. Rosenblum D, Gutkin A, Dammes N, Peer D (2020) Progress and challenges towards CRISPR/Cas clinical translation. Adv Drug Deliv Rev 154-155:176ā€“186

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  107. Li L, Natarajan P, Allen C, Peshwa MV (2014) CGMP-compliant, clinical scale, non-viral platform for efficient gene editing using CRISPR/Cas9. Cytotherapy 16(4):S37

    Google ScholarĀ 

  108. Boo SH, Kim YK (2020) The emerging role of RNA modifications in the regulation of mRNA stability. Exp Mol Med 52(3):400ā€“408

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  109. Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB, Bacchetta R, Tsalenko A, Dellinger D, Bruhn L, Porteus MH (2015) Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol 33(9):3290

    ArticleĀ  Google ScholarĀ 

  110. Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, Carte J, Chen W, Roark N, Ranganathan S, Ravinder N, Chesnut JD (2015) Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol 208:44ā€“53

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  111. Kim S, Kim D, Cho SW, Kim J, Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24(6):1012ā€“1019

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  112. Zhang S, Shen J, Li D, Cheng Y (2021) Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics 11(2):614ā€“648

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  113. Xu CL, Ruan MZC, Mahajan VB, Tsang SH (2019) Viral delivery systems for CRISPR. Viruses 11(1):28

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  114. Yang Y, Wang L, Bell P, McMenamin D, He Z, White J, Yu H, Xu C, Morizono H, Musunuru K (2016) A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol 34(3):334ā€“338

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  115. Nakai H, Montini E, Fuess S, Storm TA, Grompe M, Kay MA (2003) AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat Genet 34(3):297ā€“302

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  116. Liu J, Chang J, Jiang Y, Meng X, Sun T, Mao L, Xu Q, Wang M (2019) Fast and efficient CRISPR/Cas9 genome editing in vivo enabled by bioreducible lipid and messenger RNA nanoparticles. Adv Mater 31(33):1902575

    ArticleĀ  Google ScholarĀ 

  117. Timin AS, Muslimov AR, Lepik KV, Epifanovskaya OS, Shakirova AI, Mock U, Riecken K, Okilova MV, Sergeev VS, Afanasyev BV (2018) Efficient gene editing via non-viral delivery of CRISPRā€“Cas9 system using polymeric and hybrid microcarriers. Nanomedicine 14(1):97ā€“108

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  118. Wells DJ (2004) Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther 11(18):1363ā€“1369

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  119. Horii T, Arai Y, Yamazaki M, Morita S, Kimura M, Itoh M, Abe Y, Hatada I (2014) Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering. Sci Rep 4(1):1ā€“6

    Google ScholarĀ 

  120. Niola F, DagnƦs-Hansen F, Frƶdin M (2019) In vivo editing of the adult mouse liver using CRISPR/Cas9 and hydrodynamic tail vein injection. In: CRISPR gene editing. Humana Press, New York, pp 329ā€“341

    ChapterĀ  Google ScholarĀ 

  121. Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB, Mantri S (2016) CRISPR/Cas9 Ī²-globin gene targeting in human haematopoietic stem cells. Nature 539(7629):384ā€“389

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  122. Liu F, Song YK, Liu D (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6(7):1258ā€“1266

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  123. Suda T, Liu D (2007) Hydrodynamic gene delivery: its principles and applications. Mol Ther 15(12):2063ā€“2069

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  124. Khorsandi SE, Bachellier P, Weber JC, Greget M, Jaeck D, Zacharoulis D, Rountas C, Helmy S, Helmy A, Al-Waracky M (2008) Minimally invasive and selective hydrodynamic gene therapy of liver segments in the pig and human. Cancer Gene Ther 15(4):225ā€“230

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  125. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG (2014) Non-viral vectors for gene-based therapy. Nat Rev Genet 15(8):541ā€“555

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  126. Wang H-X, Song Z, Lao Y-H, Xu X, Gong J, Cheng D, Chakraborty S, Park JS, Li M, Huang D, Yin L, Cheng J, Leong KW (2018) Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide. Proc Natl Acad Sci 115(19):4903ā€“4908

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  127. Sokolova V, Epple M (2008) Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem Int Ed 47(8):1382ā€“1395

    ArticleĀ  CASĀ  Google ScholarĀ 

  128. Li W, Szoka FC (2007) Lipid-based nanoparticles for nucleic acid delivery. Pharm Res 24(3):438ā€“449

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  129. Mintzer MA, Simanek EE (2008) Nonviral vectors for gene delivery. Chem Rev 109(2):259ā€“302

    ArticleĀ  Google ScholarĀ 

  130. Pack DW, Hoffman AS, Pun S, Stayton PS (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4(7):581ā€“593

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  131. Lee CC, MacKay JA, FrĆ©chet JMJ, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23(12):1517ā€“1526

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  132. Thomas M, Klibanov AM (2003) Non-viral gene therapy: polycation-mediated DNA delivery. Appl Microbiol Biotechnol 62(1):27ā€“34

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  133. Yang Q, Fang J, Lei Z, Sluijter JPG, Schiffelers R (2020) Repairing the heart: State-of the art delivery strategies for biological therapeutics. Adv Drug Deliv Rev 160:1ā€“18

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  134. Sun W, Ji W, Hall JM, Hu Q, Wang C, Beisel CL, Gu Z (2015) Self-assembled DNA nanoclews for the efficient delivery of CRISPRā€“Cas9 for genome editing. Angew Chem 127(41):12197ā€“12201

    ArticleĀ  Google ScholarĀ 

  135. Wang M, Zuris JA, Meng F, Rees H, Sun S, Deng P, Han Y, Gao X, Pouli D, Wu Q, Georgakoudi I, Liu DR, Xu Q (2016) Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci 113(11):2868ā€“2873

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  136. Montagna C, Petris G, Casini A, Maule G, Franceschini GM, Zanella I, Conti L, Arnoldi F, Burrone OR, Zentilin L (2018) VSV-G-enveloped vesicles for traceless delivery of CRISPR-Cas9. Mol Ther Nucl Acids 12:453ā€“462

    ArticleĀ  CASĀ  Google ScholarĀ 

  137. Campbell LA, Coke LM, Richie CT, Fortuno LV, Park AY, Harvey BK (2018) Gesicle-mediated delivery of CRISPR/Cas9 ribonucleoprotein complex for inactivating the HIV provirus. Mol Ther 27(1):1ā€“13

    Google ScholarĀ 

  138. Mout R, Ray M, Yesilbag Tonga G, Lee Y-W, Tay T, Sasaki K, Rotello VM (2017) Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano 11(3):2452ā€“2458

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  139. Dā€™Astolfo DS, Pagliero RJ, Pras A, Karthaus WR, Clevers H, Prasad V, Lebbink RJ, Rehmann H, Geijsen N (2015) Efficient intracellular delivery of native proteins. Cell 161(3):674ā€“690

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  140. Wilbie D, Walther J, Mastrobattista E (2019) Delivery aspects of CRISPR/Cas for in vivo genome editing. Acc Chem Res 52(6):1555ā€“1564

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  141. Axford DS, Morris DP, McMurry JL (2017) Cell penetrating peptide-mediated nuclear delivery of Cas9 to enhance the utility of CRISPR/Cas genome editing. FASEB J 31:909ā€“904

    Google ScholarĀ 

  142. Tsai SQ, Joung JK (2016) Defining and improving the genome-wide specificities of CRISPRā€“Cas9 nucleases. Nat Rev Genet 17(5):300ā€“312

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  143. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32(3):279ā€“284

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  144. Liang X, Potter J, Kumar S, Ravinder N, Chesnut JD (2017) Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA. J Biotechnol 241:136ā€“146

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  145. Yan WX, Mirzazadeh R, Garnerone S, Scott D, Schneider MW, Kallas T, Custodio J, Wernersson E, Li Y, Gao L, Federova Y, Zetsche B, Zhang F, Bienko M, Crosetto N (2017) BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks. Nat Commun 8(1):1ā€“9

    ArticleĀ  Google ScholarĀ 

  146. Hu J, Meyers RM, Dong J, Panchakshari RA, Alt FW, Frock RL (2016) Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing. Nat Protoc 11(5):853

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  147. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ, Joung JK (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33(2):187ā€“197

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  148. Kim D, Kim J-S (2018) DIG-seq: a genome-wide CRISPR off-target profiling method using chromatin DNA. Genome Res 28(12):1894ā€“1900

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  149. Scott DA, Zhang F (2017) Implications of human genetic variation in CRISPR-based therapeutic genome editing. Nat Med 23(9):1095

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  150. Hossain MA (2021) CRISPR-Cas9: a fascinating journey from bacterial immune system to human gene editing. Prog Mol Biol Transl Sci 178:63ā€“83

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  151. Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE (2016) Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol 34(3):339ā€“344

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  152. Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, KĆ¼hn R (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33(3):543ā€“548

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  153. Mehta A, Merkel OM (2020) Immunogenicity of Cas9 protein. J Pharm Sci 109(1):62ā€“67

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  154. Wagner DL, Amini L, Wendering DJ, Burkhardt LM, AkyĆ¼z L, Reinke P, Volk HD, Schmueck-Henneresse M (2019) High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat Med 25(2):242ā€“248

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  155. Crudele JM, Chamberlain JS (2018) Cas9 immunity creates challenges for CRISPR gene editing therapies. Nat Commun 9(1):1ā€“3

    ArticleĀ  CASĀ  Google ScholarĀ 

  156. Simhadri VL, McGill J, McMahon S, Wang J, Jiang H, Sauna ZE (2018) Prevalence of pre-existing antibodies to CRISPR-associated nuclease Cas9 in the USA population. Mol Ther Methods Clin Dev 10:105ā€“112

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  157. Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, Vakulskas CA, Collingwood MA, Zhang L, Bode NM, Behlke MA, Dejene B, Cieniewicz B, Romano R, Lesch BJ, Gomez-Ospina N, Mantri S, Pavel-Dinu M, Weinberg KI, Porteus MH (2019) Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 25(2):249ā€“254

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  158. Tay LS, Palmer N, Panwala R, Chew WL, Mali P (2020) Translating CRISPR-Cas therapeutics: approaches and challenges. CRISPR J 3(4):253ā€“275

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  159. Moreno AM, Palmer N, AlemĆ”n F, Chen G, Pla A, Jiang N, Leong Chew W, Law M, Mali P (2019) Immune-orthogonal orthologues of AAV capsids and of Cas9 circumvent the immune response to the administration of gene therapy. Nat Biomed Eng 3(10):806ā€“816

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  160. Li A, Tanner MR, Lee CM, Hurley AE, De Giorgi M, Jarrett KE, Davis TH, Doerfler AM, Bao G, Beeton C, Lagor WR (2020) AAV-CRISPR gene editing is negated by pre-existing immunity to Cas9. Mol Ther 28(6):1432ā€“1441

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  161. Ferdosi SR, Ewaisha R, Moghadam F, Krishna S, Park JG, Ebrahimkhani MR, Kiani S, Anderson KS (2019) Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes. Nat Commun 10(1):1ā€“10

    ArticleĀ  CASĀ  Google ScholarĀ 

  162. Moretti A, Fonteyne L, Giesert F, Hoppmann P, Meier AB, Bozoglu T, Baehr A, Schneider CM, Sinnecker D, Klett K, Frƶhlich T, Rahman FA, Haufe T, Sun S, Jurisch V, Kessler B, Hinkel R, Dirschinger R, Martens E, Jilek C, Graf A, Krebs S, Santamaria G, Kurome M, Zakhartchenko V, Campbell B, Voelse K, Wolf A, Ziegler T, Reichert S, Lee S, Flenkenthaler F, Dorn T, Jeremias I, Blum H, Dendorfer A, Schnieke A, Krause S, Walter MC, Klymiuk N, Laugwitz KL, Wolf E, Wurst W, Kupatt C (2020) Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy. Nat Med 26(2):207ā€“214

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  163. McGreevy JW, Hakim CH, McIntosh MA, Duan D (2015) Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech 8(3):195ā€“213

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  164. Sharma G, Sharma AR, Bhattacharya M, Lee S-S, Chakraborty C (2021) CRISPR-Cas9: a preclinical and clinical perspective for the treatment of human diseases. Mol Ther 29:571ā€“586

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  165. Gregory-Evans K, Emran Bashar A, Tan M (2012) Ex vivo gene therapy and vision. Curr Gene Ther 12(2):103ā€“115

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  166. Ji J, Ng SH, Sharma V, Neculai D, Hussein S, Sam M, Trinh Q, Church GM, Mcpherson JD, Nagy A (2012) Elevated coding mutation rate during the reprogramming of human somatic cells into induced pluripotent stem cells. Stem Cells 30(3):435ā€“440

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  167. Gore A, Li Z, Fung H-L, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471(7336):63ā€“67

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  168. Savić N, Schwank G (2016) Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res 168:15ā€“21

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  169. Huch M, Gehart H, Van Boxtel R, Hamer K, Blokzijl F, Verstegen MMA, Ellis E, Van Wenum M, Fuchs SA, de Ligt J (2015) Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160(2):299ā€“312

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  170. Hoban MD, Lumaquin D, Kuo CY, Romero Z, Long J, Ho M, Young CS, Mojadidi M, Fitz-Gibbon S, Cooper AR, Lill GR, Urbinati F, Campo-Fernandez B, Bjurstrom CF, Pellegrini M, Hollis RP, Kohn DB (2016) CRISPR/Cas9-mediated correction of the sickle mutation in human CD34+ cells. Mol Ther 24(9):1561ā€“1569

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  171. Depil S, Duchateau P, Grupp SA, Mufti G, Poirot L (2020) ā€˜Off-the-shelfā€™ allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov 19(3):185ā€“199

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  172. Lin S-R, Yang H-C, Kuo Y-T, Liu C-J, Yang T-Y, Sung K-C, Lin Y-Y, Wang H-Y, Wang C-C, Shen Y-C (2014) The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol Ther Nucl Acids 3:e186

    ArticleĀ  CASĀ  Google ScholarĀ 

  173. Xu L, Yang H, Gao Y, Chen Z, Xie L, Liu Y, Liu Y, Wang X, Li H, Lai W (2017) CRISPR/Cas9-mediated CCR5 ablation in human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo. Mol Ther 25(8):1782ā€“1789

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  174. Hossain MA, Bungert J (2017) Genome editing for sickle cell disease: a little BCL11A goes a long way. Mol Ther 25(3):561ā€“562

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  175. Xu C-F, Chen G-J, Luo Y-L, Zhang Y, Zhao G, Lu Z-D, Czarna A, Gu Z, Wang J (2021) Rational designs of in vivo CRISPR-Cas delivery systems. Adv Drug Deliv Rev 168:3ā€“29

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  176. Lao Y, Li M, Gao MA, Shao D, Chi C, Huang D, Chakraborty S, Ho T, Jiang W, Wang H (2018) HPV oncogene manipulation using nonvirally delivered CRISPR/Cas9 or Natronobacterium gregoryi argonaute. Adv Sci 5(7):1700540

    ArticleĀ  Google ScholarĀ 

  177. Ren C, Li X, Mao L, Xiong J, Gao C, Shen H, Wang L, Zhu D, Ding W, Wang H (2019) An effective and biocompatible polyethylenimine based vaginal suppository for gene delivery. Nanomedicine 20:101994

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  178. Nakamura M, Bodily JM, Beglin M, Kyo S, Inoue M, Laimins LA (2009) Hypoxia-specific stabilization of HIF-1alpha by human papillomaviruses. Virology 387(2):442ā€“448

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  179. German DM, Mitalipov S, Mishra A, Kaul S (2019) Therapeutic genome editing in cardiovascular diseases. JACC 4(1):122ā€“131

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  180. Lander ES, Baylis F, Zhang F, Charpentier E, Berg P, Bourgain C, Friedrich B, Joung JK, Li J, Liu D (2019) Adopt a moratorium on heritable genome editing. Nature 567(7747):165ā€“168

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgments

This work was supported by the Project EVICARE (No. 725229) of the European Research Council (ERC) to J.P.G.S, co-funded by the Project SMARTCARE-II of the BioMedicalMaterials institute to JPGS, the ZonMw-TAS program (No. 116002016) to J.P.G.S./Z.L., PPS grant (No. 2018B014) to J.P.G.S./P.V/Z.L, the Dutch Ministry of Economic Affairs, Agriculture and Innovation and the Netherlands CardioVascular Research Initiative (CVON): the Dutch Heart Foundation to J.P.G.S, Dutch Federations of University Medical Centers, the Netherlands Organization for Health Research and Development, and the Royal Netherlands Academy of Sciences. We thank Marieke Roefs for her comments and suggestions to improve this review. The figures were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost P. G. Sluijter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ilahibaks, N.F., Hulsbos, M.J., Lei, Z., Vader, P., Sluijter, J.P.G. (2023). Enabling Precision Medicine with CRISPR-Cas Genome Editing Technology: A Translational Perspective. In: Xiao, J. (eds) Genome Editing in Cardiovascular and Metabolic Diseases. Advances in Experimental Medicine and Biology, vol 1396. Springer, Singapore. https://doi.org/10.1007/978-981-19-5642-3_20

Download citation

Publish with us

Policies and ethics