Skip to main content

Therapeutics in Metabolic Diseases

  • Chapter
  • First Online:
Genome Editing in Cardiovascular and Metabolic Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1396))

  • 879 Accesses

Abstract

Metabolic diseases have important effects on the health and healthcare costs of an individual. It adversely affects various body processes. Metabolic diseases are characterized as the accumulation of many conditions that collectively increase a person’s risk of atherosclerotic coronary disease, insulin, and diabetes mellitus intolerance, as well as vascular and neurological complications, such as stroke. Rare metabolic disease has also been reported in literatures and clinical research. Understanding the history and causes of the disease, associated symptoms, disease severity, physical and vital evaluations, etc. is recommended to provide or improve some appropriate therapeutic measure. The experience with patients starts with a critical and general presentation to a healthcare provider that may indicate potential conditions such as dyslipidemia, hypertension, and metabolic diseases. The main factors in the treatment and management of metabolic disorders are lifestyle changes. Whenever behavioral changes are not effective or cannot be implemented, pharmacotherapies should be initiated including for most of the rare diseases. Moreover, pharmaceutical molecules are the very commonly used therapies. The prospect of therapy through gene transfer into somatic cells unlocks a new field of treatment and opportunity for people affected by these genetic conditions. Like other medical treatments, many gene therapies can relieve some, though not every indications of a specific disease, which can increase patients’ quality of life. Hormone-based therapies are also implemented in the treatment of metabolic diseases. It has been suggested to use herbal extracts with different forms of nano-drug delivery techniques, such as nanobiocomposites, solid lipid nanoparticles, nanoemulsions, green-synthesized gold, zinc oxide, and silver nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alberti K, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart J-C, James WPT, Loria CM, Smith SC Jr (2009) Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation 120(16):1640–1645

    Article  CAS  PubMed  Google Scholar 

  2. Alberti KG, Zimmet P, Shaw J (2005) The metabolic syndrome—a new worldwide definition. Lancet 366(9491):1059–1062

    Article  PubMed  Google Scholar 

  3. Kassi E, Pervanidou P, Kaltsas G, Chrousos G (2011) Metabolic syndrome: definitions and controversies. BMC Med 9(1):48

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rask Larsen J, Dima L, Correll CU, Manu P (2018) The pharmacological management of metabolic syndrome. Expert Rev Clin Pharmacol 11(4):397–410

    Article  CAS  PubMed  Google Scholar 

  5. Putzeist M, Mantel-Teeuwisse AK, Gispen-de Wied CC, Hoes AW, Leufkens HG, de Vrueh RL (2013) Drug development for exceptionally rare metabolic diseases: challenging but not impossible. Orphanet J Rare Dis 8(1):179

    Article  PubMed  PubMed Central  Google Scholar 

  6. Burrage E, Marshall KL, Santanam N, Chantler PD (2018) Cerebrovascular dysfunction with stress and depression. Brain Circ 4(2):43

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kim J-Y, Yi E-S (2018) Analysis of the relationship between physical activity and metabolic syndrome risk factors in adults with intellectual disabilities. J Exerc Rehabil 14(4):592

    Article  PubMed  PubMed Central  Google Scholar 

  8. van der Pal KC, Koopman ADM, Lakerveld J, van der Heijden AA, Elders PJ, Beulens JW, Rutters F (2018) The association between multiple sleep-related characteristics and the metabolic syndrome in the general population: the New Hoorn study. Sleep Med 52:51–57

    Article  PubMed  Google Scholar 

  9. Catharina AS, Modolo R, Ritter AMV, Sabbatini AR, Lopes HF, Moreno Junior H, Faria AP (2018) Metabolic syndrome-related features in controlled and resistant hypertensive subjects. Arq Bras Cardiol 110(6):514–521

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cozma A, Sitar-Taut A, Orăşan O, Leucuta D, Alexescu T, Stan A, Negrean V, Sampelean D, Pop D, Zdrenghea D (2018) Determining factors of arterial stiffness in subjects with metabolic syndrome. Metab Syndr Relat Disord 16(9):490–496

    Article  CAS  PubMed  Google Scholar 

  11. White LS, Van den Bogaerde J, Kamm M (2018) The gut microbiota: cause and cure of gut diseases. Med J Aust 209(7):312–317

    Article  PubMed  Google Scholar 

  12. De Boer MP, Meijer RI, Wijnstok NJ, Jonk AM, Houben AJ, Stehouwer CD, Smulders YM, Eringa EC, Serne EH (2012) Microvascular dysfunction: a potential mechanism in the pathogenesis of obesity-associated insulin resistance and hypertension. Microcirculation 19(1):5–18

    Article  PubMed  Google Scholar 

  13. Cӑtoi AF, Pârvu AE, Andreicuț AD, Mironiuc A, Crӑciun A, Cӑtoi C, Pop ID (2018) Metabolically healthy versus unhealthy morbidly obese: chronic inflammation, nitro-oxidative stress, and insulin resistance. Nutrients 10(9):1199

    Article  PubMed  PubMed Central  Google Scholar 

  14. He Y, Wu W, Wu S, Zheng H-M, Li P, Sheng H-F, Chen M-X, Chen Z-H, Ji G-Y, Mujagond P (2018) Linking gut microbiota, metabolic syndrome and economic status based on a population-level analysis. Microbiome 6(1):1–11

    Article  Google Scholar 

  15. Marra F, Gastaldelli A, Baroni GS, Tell G, Tiribelli C (2008) Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol Med 14(2):72–81

    Article  CAS  PubMed  Google Scholar 

  16. Zak A, Zeman M, Slaby A, Vecka M (2014) Xanthomas: clinical and pathophysiological relations. Biomed Pap 158(2):181

    Article  Google Scholar 

  17. Chiarelli F, Mohn A (2017) Early diagnosis of metabolic syndrome in children. Lancet Child Adolesc Health 1(2):86–88

    Article  PubMed  Google Scholar 

  18. Klimova B, Kuca K, Maresova P (2018) Global view on Alzheimer’s Disease and Diabetes Mellitus: threats, risks and treatment Alzheimer’s Disease and Diabetes Mellitus. Curr Alzheimer Res 15(14):1277–1282

    Article  CAS  PubMed  Google Scholar 

  19. Stone GW, Ellis SG, Cox DA, Hermiller J, O'Shaughnessy C, Mann JT, Turco M, Caputo R, Bergin P, Greenberg J (2004) A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med 350(3):221–231

    Article  CAS  PubMed  Google Scholar 

  20. Byrne CD, Wild SH (2011) The metabolic syndrome. Wiley, Hoboken

    Book  Google Scholar 

  21. Lee KW, Lip GYH (2003) Effects of lifestyle on hemostasis, fibrinolysis, and platelet reactivity: a systematic review. Arch Intern Med 163(19):2368–2392

    Article  PubMed  Google Scholar 

  22. Slentz CA, Duscha BD, Johnson JL, Ketchum K, Aiken LB, Samsa GP, Houmard JA, Bales CW, Kraus WE (2004) Effects of the amount of exercise on body weight, body composition, and measures of central obesity: STRRIDE—a randomized controlled study. Arch Intern Med 164(1):31–39

    Article  PubMed  Google Scholar 

  23. Pan X-R, Li G-w, Hu Y-H, Wang J-X, Yang W-Y, An Z-X, Hu Z-X, Xiao J-Z, Cao H-B, Liu P-A (1997) Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and Diabetes Study. Diabetes Care 20(4):537–544

    Article  CAS  PubMed  Google Scholar 

  24. Whelton SP, Chin A, Xin X, He J (2002) Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med 136(7):493–503

    Article  PubMed  Google Scholar 

  25. Bonow RO, Eckel RH (2003) Diet, obesity, and cardiovascular risk. N Engl J Med 348(21):2057–2133

    Article  PubMed  Google Scholar 

  26. Garg A (1998) High-monounsaturated-fat diets for patients with diabetes mellitus: a meta-analysis. Am J Clin Nutr 67(3):577S–582S

    Article  CAS  PubMed  Google Scholar 

  27. Staessen J, Bulpitt C, Clement D, De Leeuw P, Fagard R, Fletcher A, Forette F, Leonetti G, Nissinen A, O’Malley K (1989) Relation between mortality and treated blood pressure in elderly patients with hypertension: report of the European Working Party on High Blood Pressure in the Elderly. Br Med J 298(6687):1552–1556

    Article  CAS  Google Scholar 

  28. Su X-z, Heatwole VM, Wertheimer SP, Guinet F, Herrfeldt JA, Peterson DS, Ravetch JA, Wellems TE (1995) The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82(1):89–100

    Article  CAS  PubMed  Google Scholar 

  29. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, Obarzanek E, Conlin PR, Miller ER, Simons-Morton DG (2001) Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. N Engl J Med 344(1):3–10

    Article  CAS  PubMed  Google Scholar 

  30. Whelton PK, Appel LJ, Espeland MA, Applegate WB, Ettinger WH Jr, Kostis JB, Kumanyika S, Lacy CR, Johnson KC, Folmar S (1998) Sodium reduction and weight loss in the treatment of hypertension in older persons: a randomized controlled trial of nonpharmacologic interventions in the elderly (TONE). JAMA 279(11):839–846

    Article  CAS  PubMed  Google Scholar 

  31. Appel LJ, Miller ER, Seidler AJ, Whelton PK (1993) Does supplementation of diet with ‘fish oil’ reduce blood pressure?: a meta-analysis of controlled clinical trials. Arch Intern Med 153(12):1429–1438

    Article  CAS  PubMed  Google Scholar 

  32. Abbasi J (2018) Interest in the ketogenic diet grows for weight loss and type 2 diabetes. JAMA 319(3):215–217

    Article  PubMed  Google Scholar 

  33. Atkinson RLDW, Foreyt JP, Goodwin NJ, Hill JO, Hirsch J et al (1993) Very low-calorie diets. National Task Force on the prevention and treatment of obesity. JAMA 270:967–974

    Article  Google Scholar 

  34. Caprio M, Infante M, Moriconi E, Armani A, Fabbri A, Mantovani G, Mariani S, Lubrano C, Poggiogalle E, Migliaccio S (2019) Very-low-calorie ketogenic diet (VLCKD) in the management of metabolic diseases: systematic review and consensus statement from the Italian Society of Endocrinology (SIE). J Endocrinol Investig 42(11):1365–1386

    Article  CAS  Google Scholar 

  35. Tabatabaei-Malazy O, Larijani B, Abdollahi M (2015) Targeting metabolic disorders by natural products. J Diabetes Metab Disord 14(1):57

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bell RA, Mayer-Davis EJ, Martin MA, D'Agostino RB, Haffner SM (2000) Associations between alcohol consumption and insulin sensitivity and cardiovascular disease risk factors: the Insulin Resistance and Atherosclerosis Study. Diabetes Care 23(11):1630–1636

    Article  CAS  PubMed  Google Scholar 

  37. Davies MJ, Baer DJ, Judd JT, Brown ED, Campbell WS, Taylor PR (2002) Effects of moderate alcohol intake on fasting insulin and glucose concentrations and insulin sensitivity in postmenopausal women: a randomized controlled trial. JAMA 287(19):2559–2562

    Article  CAS  PubMed  Google Scholar 

  38. Goude D, Fagerberg B, Hulthe J (2002) Alcohol consumption, the metabolic syndrome and insulin resistance in 58-year-old clinically healthy men (AIR study). Clin Sci 102(3):345–352

    Article  Google Scholar 

  39. Kiechl S, Willeit J, Poewe W, Egger G, Oberhollenzer F, Muggeo M, Bonora E (1996) Insulin sensitivity and regular alcohol consumption: large, prospective, cross sectional population study (Bruneck study). BMJ 313(7064):1040–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hendriks HF, Veenstra JAN, Van Tol A, Groener JE, Schaafsma G (1998) Moderate doses of alcoholic beverages with dinner and postprandial high density lipoprotein composition. Alcohol Alcohol 33(4):403–410

    Article  CAS  PubMed  Google Scholar 

  41. van Tol A, van der Gaag MS, Scheek LM, van Gent T, Hendriks HFJ (1998) Changes in postprandial lipoproteins of low and high density caused by moderate alcohol consumption with dinner. Atherosclerosis 141:S101–S103

    Article  PubMed  Google Scholar 

  42. Kato I, Kiyohara Y, Kubo M, Tanizaki Y, Arima H, Iwamoto H, Shinohara N, Nakayama K, Fujishima M (2003) Insulin-mediated effects of alcohol intake on serum lipid levels in a general population: the Hisayama Study. J Clin Epidemiol 56(2):196–204

    Article  PubMed  Google Scholar 

  43. Mukamal KJ (2003) Alcohol use and prognosis in patients with coronary heart disease. Prev Cardiol 6(2):93–98

    Article  PubMed  Google Scholar 

  44. Gastaldelli A, Folli F, Maffei S (2010) Impact of tobacco smoking on lipid metabolism, body weight and cardiometabolic risk. Curr Pharm Des 16(23):2526–2530

    Article  CAS  PubMed  Google Scholar 

  45. Voulgari C, Katsilambros N, Tentolouris N (2011) Smoking cessation predicts amelioration of microalbuminuria in newly diagnosed type 2 diabetes mellitus: a 1-year prospective study. Metabolism 60(10):1456–1464

    Article  CAS  PubMed  Google Scholar 

  46. Athyros VG, Katsiki N, Doumas M, Karagiannis A, Mikhailidis DP (2013) Effect of tobacco smoking and smoking cessation on plasma lipoproteins and associated major cardiovascular risk factors: a narrative review. Curr Med Res Opin 29(10):1263–1274

    Article  PubMed  Google Scholar 

  47. Lycett D, Munafò M, Johnstone E, Murphy M, Aveyard P (2011) Associations between weight change over 8 years and baseline body mass index in a cohort of continuing and quitting smokers. Addiction 106(1):188–196

    Article  PubMed  Google Scholar 

  48. Levine MD, Bush T, Magnusson B, Cheng Y, Chen X (2013) Smoking-related weight concerns and obesity: differences among normal weight, overweight, and obese smokers using a telephone tobacco quitline. Nicotine Tob Res 15(6):1136–1140

    Article  PubMed  Google Scholar 

  49. Knowler WC, Fowler SE et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346(6):393–403

    Article  CAS  PubMed  Google Scholar 

  50. Orchard TJ, Temprosa M, Goldberg R, Haffner S, Ratner R, Marcovina S, Fowler S (2005) The effect of metformin and intensive lifestyle intervention on the metabolic syndrome: the Diabetes Prevention Program randomized trial. Ann Intern Med 142(8):611–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Case CC, Jones PH, Nelson K, O'Brian Smith E, Ballantyne CM (2002) Impact of weight loss on the metabolic syndrome. Diabetes Obes Metab 4(6):407–414

    Article  CAS  PubMed  Google Scholar 

  52. Phelan S, Wadden TA, Berkowitz RI, Sarwer DB, Womble LG, Cato RK, Rothman R (2007) Impact of weight loss on the metabolic syndrome. Int J Obes 31(9):1442–1448

    Article  CAS  Google Scholar 

  53. Villareal DT, Miller Iii BV, Banks M, Fontana L, Sinacore DR, Klein S (2006) Effect of lifestyle intervention on metabolic coronary heart disease risk factors in obese older adults. Am J Clin Nutr 84(6):1317–1323

    Article  CAS  PubMed  Google Scholar 

  54. Wadden TA, Berkowitz RI, Womble LG, Sarwer DB, Phelan S, Cato RK, Hesson LA, Osei SY, Kaplan R, Stunkard AJ (2005) Randomized trial of lifestyle modification and pharmacotherapy for obesity. N Engl J Med 353(20):2111–2120

    Article  CAS  PubMed  Google Scholar 

  55. Heymsfield SB, Van Mierlo CAJ, Van der Knaap HCM, Heo M, Frier HI (2003) Weight management using a meal replacement strategy: meta and pooling analysis from six studies. Int J Obes 27(5):537–549

    Article  CAS  Google Scholar 

  56. Jeffery RW, Wing RR, Sherwood NE, Tate DF (2003) Physical activity and weight loss: does prescribing higher physical activity goals improve outcome? Am J Clin Nutr 78(4):684–689

    Article  CAS  PubMed  Google Scholar 

  57. Perri MG, Sears SF, Clark JE (1993) Strategies for improving maintenance of weight loss: toward a continuous care model of obesity management. Diabetes Care 16(1):200–209

    Article  CAS  PubMed  Google Scholar 

  58. Leibel RL, Rosenbaum M, Hirsch J (1995) Changes in energy expenditure resulting from altered body weight. N Engl J Med 332(10):621–628

    Article  CAS  PubMed  Google Scholar 

  59. Bray GA, Ryan DH (2007) Drug treatment of the overweight patient. Gastroenterology 132(6):2239–2252

    Article  CAS  PubMed  Google Scholar 

  60. Dalle Grave R, Calugi S, Corica F, Di Domizio S, Marchesini G (2009) Psychological variables associated with weight loss in obese patients seeking treatment at medical centers. J Am Diet Assoc 109(12):2010–2016

    Article  PubMed  Google Scholar 

  61. Dalle Grave R, Calugi S, Molinari E, Petroni ML, Bondi M, Compare A, Marchesini G (2005) Weight loss expectations in obese patients and treatment attrition: an observational multicenter study. Obes Res 13(11):1961–1969

    Article  PubMed  Google Scholar 

  62. Dalle Grave R, Melchionda N, Calugi S, Centis E, Tufano A, Fatati G, Fusco MA, Marchesini G (2005) Continuous care in the treatment of obesity: an observational multicentre study. J Intern Med 258(3):265–273

    Article  CAS  PubMed  Google Scholar 

  63. Brunner EJ, Hemingway H, Walker BR, Page M, Clarke P, Juneja M, Shipley MJ, Kumari M, Andrew R, Seckl JR (2002) Adrenocortical, autonomic, and inflammatory causes of the metabolic syndrome: nested case-control study. Circulation 106(21):2659–2665

    Article  CAS  PubMed  Google Scholar 

  64. Hemingway H, Shipley M, Brunner E, Britton A, Malik M, Marmot M (2005) Does autonomic function link social position to coronary risk? The Whitehall II study. Circulation 111(23):3071–3077

    Article  PubMed  Google Scholar 

  65. Liao D, Evans G, Arnett D, Pankow J, Liese A, Davis CE, Salomma V, Heiss G (1998) Multiple metabolic syndrome is associated with increased arterial stiffness-The ARIC study. Circulation 97(8):138

    Google Scholar 

  66. Singh JP, Larson MG, O’Donnell CJ, Wilson PF, Tsuji H, Lloyd-Jones DM, Levy D (2000) Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study). Am J Cardiol 86(3):309–312

    Article  CAS  PubMed  Google Scholar 

  67. Steptoe A, Brunner E, Marmot M (2004) Stress-induced inflammatory responses and risk of the metabolic syndrome: a longitudinal analysis. North Amer Assoc Study Obesity, Cancun, p 76

    Google Scholar 

  68. Björntorp P (1991) Visceral fat accumulation: the missing link between psychosocial factors and cardiovascular disease? J Intern Med 230(3):195–201

    Article  PubMed  Google Scholar 

  69. Phillips DIW, Barker DJP, Fall CHD, Seckl JR, Whorwood CB, Wood PJ, Walker BR (1998) Elevated plasma cortisol concentrations: a link between low birth weight and the insulin resistance syndrome? J Clin Endocrinol Metabol 83(3):757–760

    CAS  Google Scholar 

  70. Marmot MG, Bosma H, Hemingway H, Brunner E, Stansfeld S (1997) Contribution of job control and other risk factors to social variations in coronary heart disease incidence. Lancet 350(9073):235–239

    Article  CAS  PubMed  Google Scholar 

  71. Rosengren A, Hawken S, Ôunpuu S, Sliwa K, Zubaid M, Almahmeed WA, Blackett KN, Sitthi-amorn C, Sato H, Yusuf S (2004) Association of psychosocial risk factors with risk of acute myocardial infarction in 11 119 cases and 13 648 controls from 52 countries (the INTERHEART study): case-control study. Lancet 364(9438):953–962

    Article  PubMed  Google Scholar 

  72. Brunner E, Marmot M (2006) Social organization, stress, and health. Soc Determ Health 2:17–43

    Google Scholar 

  73. Vrijkotte TGM, Van Doornen LJP, De Geus EJC (1999) Work stress and metabolic and hemostatic risk factors. Psychosom Med 61(6):796–805

    Article  CAS  PubMed  Google Scholar 

  74. Chrousos GP, Gold PW (1998) A healthy body in a healthy mind—and vice versa—the damaging power of “uncontrollable” stress. J Clin Endocrinol Metabol 83(6):1842–1845

    CAS  Google Scholar 

  75. Björntorp P (1993) Visceral obesity: a “civilization syndrome”. Obes Res 1(3):206–222

    Article  PubMed  Google Scholar 

  76. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 112(17):2735–2752

    Article  PubMed  Google Scholar 

  77. Sun K, Liu J, Ning G (2012) Active smoking and risk of metabolic syndrome: a meta-analysis of prospective studies. PLoS One 7(10):e47791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Batsis JA, Romero-Corral A, Collazo-Clavell ML, Sarr MG, Somers VK, Lopez-Jimenez F (2008) Effect of bariatric surgery on the metabolic syndrome: a population-based, long-term controlled study. Elsevier, Amsterdam, pp 897–906

    Google Scholar 

  79. Rogozea L, Diaconescu DE, Dinu EA, Badea O, Popa D, Andreescu O, LeaŞU FG (2014) Biomedical research ethics - opportunities and ethical challenges. Romanian J Morphol Embryol 55(2):719–722

    Google Scholar 

  80. Janke J, Schupp M, Engeli S, Gorzelniak K, Boschmann M, Sauma L, Nystrom FH, Jordan J, Luft FC, Sharma AM (2006) Angiotensin type 1 receptor antagonists induce human in-vitro adipogenesis through peroxisome proliferator-activated receptor-γ activation. J Hypertens 24(9):1809–1816

    Article  CAS  PubMed  Google Scholar 

  81. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, Lingvay I, Rosenstock J, Seufert J, Warren ML (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375:1834–1844

    Article  CAS  PubMed  Google Scholar 

  82. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA, Nissen SE, Pocock S, Poulter NR, Ravn LS (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375(4):311–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Neal B, Perkovic V, Mahaffey KW, De Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377(7):644–657

    Article  CAS  PubMed  Google Scholar 

  84. Taylor FC, Huffman M, Ebrahim S (2013) Statin therapy for primary prevention of cardiovascular disease. JAMA 310(22):2451–2452

    Article  CAS  PubMed  Google Scholar 

  85. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373(22):2117–2128

    Article  CAS  PubMed  Google Scholar 

  86. Owen JG, Reisin E (2015) Anti-hypertensive drug treatment of patients with and the metabolic syndrome and obesity: a review of evidence, meta-analysis, post hoc and guidelines publications. Curr Hypertens Rep 17(6):46

    Article  Google Scholar 

  87. Giner-Galvañ V, Esteban-Giner MJ, Pallares-Carratala V (2016) Overview of guidelines for the management of dyslipidemia: EU perspectives. Vasc Health Risk Manag 12:357

    Article  PubMed  PubMed Central  Google Scholar 

  88. Barter PJ, Brandrup-Wognsen G, Palmer MK, Nicholls SJ (2010) Effect of statins on HDL-C: a complex process unrelated to changes in LDL-C: analysis of the VOYAGER Database. J Lipid Res 51(6):1546–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sugizaki T, Watanabe M, Horai Y, Kaneko-Iwasaki N, Arita E, Miyazaki T, Morimoto K, Honda A, Irie J, Itoh H (2014) The Niemann-Pick C1 like 1 (NPC1L1) inhibitor ezetimibe improves metabolic disease via decreased liver X receptor (LXR) activity in liver of obese male mice. Endocrinology 155(8):2810–2819

    Article  PubMed  Google Scholar 

  90. Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, Drexel H, Hoes AW, Jennings CS, Landmesser U, Pedersen TR (2016) 2016 ESC/EAS guidelines for the management of dyslipidaemias: the Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS) developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Atherosclerosis 253:281–344

    Article  CAS  PubMed  Google Scholar 

  91. Chang Y, Robidoux J (2017) Dyslipidemia management update. Curr Opin Pharmacol 33:47–55

    Article  CAS  PubMed  Google Scholar 

  92. Ooi CP, Loke SC (2014) Colesevelam for type 2 diabetes mellitus: an abridged Cochrane review. Diabet Med 31(1):2–14

    Article  CAS  PubMed  Google Scholar 

  93. Abifadel M, Varret M, Rabès J-P, Allard D, Ouguerram K, Devillers M, Cruaud C, Benjannet S, Wickham L, Erlich D (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34(2):154–156

    Article  CAS  PubMed  Google Scholar 

  94. Schmidt AF, Pearce LS, Wilkins JT, Overington JP, Hingorani AD, Casas JP (2017) PCSK9 monoclonal antibodies for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 4:CD011748

    PubMed  Google Scholar 

  95. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM (2017) Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 376(18):1713–1722

    Article  CAS  PubMed  Google Scholar 

  96. Lukasova M, Hanson J, Tunaru S, Offermanns S (2011) Nicotinic acid (niacin): new lipid-independent mechanisms of action and therapeutic potentials. Trends Pharmacol Sci 32(12):700–707

    Article  CAS  PubMed  Google Scholar 

  97. Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart J-C (1998) Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 98(19):2088–2093. https://doi.org/10.1161/01.cir.98.19.2088

    Article  CAS  PubMed  Google Scholar 

  98. Kraja T, Straka R, Ordovas J, Borecki I, Arnett D (2010) Fenofibrate and metabolic syndrome. Endocrine 10(2):138–148

    CAS  Google Scholar 

  99. Keech ASR, Barter P et al (2005) Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366(9500):1849–1861

    Article  CAS  PubMed  Google Scholar 

  100. Ip C-k, Jin D-m, Gao J-j, Meng Z, Meng J, Tan Z, Wang J-f, Geng D-f (2015) Effects of add-on lipid-modifying therapy on top of background statin treatment on major cardiovascular events: a meta-analysis of randomized controlled trials. Int J Cardiol 191:138–148

    Article  PubMed  Google Scholar 

  101. Keene D, Price C, Shun-Shin MJ, Francis DP (2014) Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: meta-analysis of randomised controlled trials including 117 411 patients. BMJ 349:4379

    Article  Google Scholar 

  102. Patel D (2015) Pharmacotherapy for the management of obesity. Metabolism 64(11):1376–1385

    Article  CAS  PubMed  Google Scholar 

  103. Wang ZJ, Zhou YJ, Galper BZ, Gao F, Yeh RW, Mauri L (2015) Association of body mass index with mortality and cardiovascular events for patients with coronary artery disease: a systematic review and meta-analysis. Heart 101(20):1631–1638

    Article  CAS  PubMed  Google Scholar 

  104. Nuffer WA, Trujillo JM (2015) Liraglutide: a new option for the treatment of obesity. Pharmacotherapy 35(10):926–934

    Article  CAS  PubMed  Google Scholar 

  105. Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, Lau DCW, Le Roux CW, Violante Ortiz R, Jensen CB (2015) A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med 373(1):11–22

    Article  PubMed  Google Scholar 

  106. Jakob T, Nordmann AJ, Schandelmaier S, Ferreira-González I, Briel M (2016) Fibrates for primary prevention of cardiovascular disease events. Cochrane Database Syst Rev 11:CD009753

    PubMed  Google Scholar 

  107. Silverstone T (1992) Appetite suppressants. Drugs 43(6):820–836

    Article  CAS  PubMed  Google Scholar 

  108. Gardin JM, Schumacher D, Constantine G, Davis KD, Leung C, Reid CL (2000) Valvular abnormalities and cardiovascular status following exposure to dexfenfluramine or phentermine/fenfluramine. JAMA 283(13):1703–1709

    Article  CAS  PubMed  Google Scholar 

  109. Kernan WN, Viscoli CM, Brass LM, Broderick JP, Brott T, Feldmann E, Morgenstern LB, Wilterdink JL, Horwitz RI (2000) Phenylpropanolamine and the risk of hemorrhagic stroke. N Engl J Med 343(25):1826–1832

    Article  CAS  PubMed  Google Scholar 

  110. Finer N (2002) Sibutramine: its mode of action and efficacy. Int J Obes Relat Metab Disord 26:29–33

    Article  Google Scholar 

  111. McNulty SJ, Ur E, Williams G (2003) A randomized trial of sibutramine in the management of obese type 2 diabetic patients treated with metformin. Diabetes Care 26(1):125–131

    Article  CAS  PubMed  Google Scholar 

  112. Padwal R, Li SK, Lau DCW (2003) Long-term pharmacotherapy for overweight and obesity: a systematic review and meta-analysis of randomized controlled trials. Int J Obes 27(12):1437–1446

    Article  CAS  Google Scholar 

  113. Thearle M, Aronne LJ (2003) Obesity and pharmacologic therapy. Endocrinol Metab Clin N Am 32(4):1005–1024

    Article  CAS  Google Scholar 

  114. Black SC (2004) Cannabinoid receptor antagonists and obesity. Curr Opin Investig Drugs 5(4):389–394

    CAS  PubMed  Google Scholar 

  115. Despres JP, Golay A, Sjöström L (2005) Effect of rimonabant on body weight and the metabolic syndrome in overweight patients. N Engl J Med 353:2121–2134

    Article  CAS  PubMed  Google Scholar 

  116. Scheen AJ, Finer N, Hollander P, Jensen MD, Van Gaal LF (2006) Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: a randomised controlled study. Lancet 368(9548):1660–1672

    Article  CAS  PubMed  Google Scholar 

  117. Van Gaal LF, Rissanen AM, Scheen AJ, Ziegler O, Rössner S (2005) Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 365(9468):1389–1397

    Article  PubMed  Google Scholar 

  118. Pi-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J (2006) Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 295(7):761–775

    Article  CAS  PubMed  Google Scholar 

  119. American Diabetes (2016) Approaches to glycemic treatment. Diabetes Care 39(1):52–59

    Article  Google Scholar 

  120. Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356(24):2457–2471

    Article  CAS  PubMed  Google Scholar 

  121. Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, Josse R, Kaufman KD, Koglin J, Korn S (2015) Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med 373(3):232–242

    Article  CAS  PubMed  Google Scholar 

  122. Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, Chan JC, Choi J, Gustavson SM, Iqbal N (2017) Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med 377(13):1228–1239

    Article  CAS  PubMed  Google Scholar 

  123. Perreault L, Færch K, Gregg EW (2017) Can cardiovascular epidemiology and clinical trials close the risk management gap between diabetes and prediabetes? Curr Diab Rep 17(9):77

    Article  PubMed  Google Scholar 

  124. Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Køber LV, Lawson FC, Ping L, Wei X, Lewis EF (2015) Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 373(23):2247–2257

    Article  CAS  PubMed  Google Scholar 

  125. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, Ohman P, Frederich R, Wiviott SD, Hoffman EB (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369(14):1317–1326

    Article  CAS  PubMed  Google Scholar 

  126. White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, Perez AT, Fleck PR, Mehta CR, Kupfer S (2013) Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 369:1327–1335

    Article  CAS  PubMed  Google Scholar 

  127. Wright JM, Musini VM, Gill R (2018) First-line drugs for hypertension. Cochrane Database Syst Rev 4:CD001841

    PubMed  Google Scholar 

  128. Gress TW, Nieto FJ, Shahar E, Wofford MR, Brancati FL (2000) Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. N Engl J Med 342(13):905–912

    Article  CAS  PubMed  Google Scholar 

  129. Furberg CD, Wright JT, Davis BR, Cutler JA, Alderman M, Black H, Cushman W, Grimm R, Haywood LJ, Leenen F (2002) Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). J Am Med Assoc 288(23):2981–2997

    Article  CAS  Google Scholar 

  130. Fergus IV, Connell KL, Ferdinand KC (2015) A comparison of vasodilating and non-vasodilating beta-blockers and their effects on cardiometabolic risk. Curr Cardiol Rep 17(6):38

    Article  PubMed  Google Scholar 

  131. Kintscher U, Bramlage P, Paar WD, Thoenes M, Unger T (2007) Irbesartan for the treatment of hypertension in patients with the metabolic syndrome: a sub analysis of the treat to target post authorization survey. Prospective observational, two armed study in 14,200 patients. Cardiovasc Diabetol 6(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  132. Bangalore S, Fakheri R, Toklu B, Messerli FH (2016) Diabetes mellitus as a compelling indication for use of renin angiotensin system blockers: systematic review and meta-analysis of randomized trials. BMJ 352:438

    Article  Google Scholar 

  133. Palmer SC, Mavridis D, Navarese E, Craig JC, Tonelli M, Salanti G, Wiebe N, Ruospo M, Wheeler DC, Strippoli GFM (2015) Comparative efficacy and safety of blood pressure-lowering agents in adults with diabetes and kidney disease: a network meta-analysis. Lancet 385(9982):2047–2056

    Article  CAS  PubMed  Google Scholar 

  134. Remonti LR, Dias S, Leitão CB, Kramer CK, Klassman LP, Welton NJ, Ades AE, Gross JL (2016) Classes of antihypertensive agents and mortality in hypertensive patients with type 2 diabetes—network meta-analysis of randomized trials. J Diabetes Complicat 30(6):1192–1200

    Article  Google Scholar 

  135. Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA, Dagogo-Jack S, DeFronzo RA, Einhorn D, Fonseca VA (2017) Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm–2017 executive summary. Endocr Pract 23(2):207–238

    Article  PubMed  Google Scholar 

  136. Tambuyzer E, Vandendriessche B, Austin CP, Brooks PJ, Larsson K, Needleman KIM, Valentine J, Davies K, Groft SC, Preti R (2020) Therapies for rare diseases: therapeutic modalities, progress and challenges ahead. Nat Rev Drug Discov 19(2):93–111

    Article  CAS  PubMed  Google Scholar 

  137. Van Goor F, Hadida S, Grootenhuis PD, Burton B, Stack JH, Straley KS, Decker CJ, Miller M, McCartney J, Olson ER (2011) Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci 108(46):18843–18848

    Article  PubMed  PubMed Central  Google Scholar 

  138. Platt FM (2018) Emptying the stores: lysosomal diseases and therapeutic strategies. Nat Rev Drug Discov 17(2):133

    Article  CAS  PubMed  Google Scholar 

  139. Fleischmann RM, Schechtman J, Bennett R, Handel ML, Burmester GR, Tesser J, Modafferi D, Poulakos J, Sun G (2003) Anakinra, a recombinant human interleukin-1 receptor antagonist (r-metHuIL-1ra), in patients with rheumatoid arthritis: a large, international, multicenter, placebo-controlled trial. Arthritis Rheum 48(4):927–934

    Article  CAS  PubMed  Google Scholar 

  140. De Benedetti F, Gattorno M, Anton J, Ben-Chetrit E, Frenkel J, Hoffman HM, Koné-Paut I, Lachmann HJ, Ozen S, Simon A (2018) Canakinumab for the treatment of autoinflammatory recurrent fever syndromes. N Engl J Med 378(20):1908–1919

    Article  PubMed  Google Scholar 

  141. Mahlangu J, Oldenburg J, Paz-Priel I, Negrier C, Niggli M, Mancuso ME, Schmitt C, Jiménez-Yuste V, Kempton C, Dhalluin C (2018) Emicizumab prophylaxis in patients who have hemophilia A without inhibitors. N Engl J Med 379(9):811–822

    Article  CAS  PubMed  Google Scholar 

  142. LiverTox (2016) Clinical and research information on drug-induced liver injury. National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda

    Google Scholar 

  143. van Roon-Mom WMC, Roos RAC, de Bot ST (2018) Dose-dependent lowering of mutant Huntingtin using antisense oligonucleotides in Huntington disease patients. Nucl Acid Ther 28(2):59–62

    Article  Google Scholar 

  144. Kay MA, Woo SLC (1994) Gene therapy for metabolic diseases. ILAR J 36(3-4):47–53

    Article  Google Scholar 

  145. Chapin JC, Monahan PE (2018) Gene therapy for hemophilia: progress to date. BioDrugs 32(1):9–25

    Article  CAS  PubMed  Google Scholar 

  146. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, Lowes L, Alfano L, Berry K, Church K (2017) Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 377(18):1713–1722

    Article  CAS  PubMed  Google Scholar 

  147. Taghipour YD, Hajialyani M, Naseri R, Hesari M, Mohammadi P, Stefanucci A, Mollica A, Farzaei MH, Abdollahi M (2019) Nanoformulations of natural products for management of metabolic syndrome. Int J Nanomedicine 14:5303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Khan ZUH, Khan A, Chen Y, Shah NS, Muhammad N, Khan AU, Tahir K, Khan FU, Murtaza B, Hassan SU (2017) Biomedical applications of green synthesized nobel metal nanoparticles. J Photochem Photobiol B Biol 173:150–164

    Article  Google Scholar 

  149. Holst JJ, Ørskov C, Vagn Nielsen O, Schwartz TW (1987) Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett 211(2):169–174

    Article  CAS  PubMed  Google Scholar 

  150. Kreymann B, Ghatei MA, Williams G, Bloom SR (1987) Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 330(8571):1300–1304

    Article  Google Scholar 

  151. Mojsov S, Weir GC, Habener JF (1987) Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest 79(2):616–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Flint A, Raben A, Astrup A, Holst JJ (1998) Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 101(3):515–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Tang-Christensen M, Larsen PJ, Goke R, Fink-Jensen A, Jessop DS, Moller M, Sheikh SP (1996) Central administration of GLP-1-(7-36) amide inhibits food and water intake in rats. Am J Physiol 271(4):848–856

    Google Scholar 

  154. Turton MD, O'Shea D, Gunn I, Beak SA, Edwards CMB, Meeran K, Choi SJ, Taylor GM, Heath MM, Lambert PD (1996) A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379(6560):69–72

    Article  CAS  PubMed  Google Scholar 

  155. Le Roux CW, Astrup A, Fujioka K, Greenway F, Lau DCW, Van Gaal L, Ortiz RV, Wilding JPH, Skjøth TV, Manning LS (2017) 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet 389(10077):1399–1409

    Article  PubMed  Google Scholar 

  156. O'Neil PM, Aroda VR, Astrup A, Kushner R, Lau DCW, Wadden TA, Brett J, Cancino AP, Wilding JPH (2017) Neuropsychiatric safety with liraglutide 3.0 mg for weight management: results from randomized controlled phase 2 and 3a trials. Diabetes Obes Metab 19(11):1529–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Mazidi M, Rezaie P, Gao HK, Kengne AP (2017) Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22,528 patients. J Am Heart Assoc 6(6):e004007

    Article  PubMed  PubMed Central  Google Scholar 

  158. Frías JP, Guja C, Hardy E, Ahmed A, Dong F, Öhman P, Jabbour SA (2016) Exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy (DURATION-8): a 28 week, multicentre, double-blind, phase 3, randomised controlled trial. Lancet Diabetes Endocrinol 4(12):1004–1016

    Article  PubMed  Google Scholar 

  159. Ludvik B, Frías JP, Tinahones FJ, Wainstein J, Jiang H, Robertson KE, García-Pérez L-E, Woodward DB, Milicevic Z (2018) Dulaglutide as add-on therapy to SGLT2 inhibitors in patients with inadequately controlled type 2 diabetes (AWARD-10): a 24-week, randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 6(5):370–381

    Article  CAS  PubMed  Google Scholar 

  160. Wästfelt M, Fadeel B, Henter JI (2006) A journey of hope: lessons learned from studies on rare diseases and orphan drugs. J Intern Med 260(1):1–10

    Article  PubMed  Google Scholar 

  161. Graf BL, Raskin I, Cefalu WT, Ribnicky DM (2010) Plant-derived therapeutics for the treatment of metabolic syndrome. Curr Opin Investig Drugs 11(10):1107

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Competing Financial Interests

The author declares no competing financial interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Natesan, V. (2023). Therapeutics in Metabolic Diseases. In: Xiao, J. (eds) Genome Editing in Cardiovascular and Metabolic Diseases. Advances in Experimental Medicine and Biology, vol 1396. Springer, Singapore. https://doi.org/10.1007/978-981-19-5642-3_17

Download citation

Publish with us

Policies and ethics