Skip to main content

Genome Editing and Fatty Liver

  • Chapter
  • First Online:
Genome Editing in Cardiovascular and Metabolic Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1396))

Abstract

Fatty liver disease is characterized as nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD). Fatty liver disease is one of the most common causes of chronic liver disease worldwide among adults and children. It is characterized by excessive fat accumulation in the liver cells. It has a genetically heterogenous background with complex pathogenesis and progressions and is accompanied by significant morbidity, mortality, and healthcare costs. NAFLD’s risk factors include metabolic syndrome, abdominal obesity, type 2 diabetes, and atherogenic dyslipidemia. ALD is associated with the excessive consumption of alcohol. Here, we describe the functions of various proteins encoded by gene variants contributing to the pathogenesis of nonalcoholic fatty liver disease and alcoholic fatty liver disease. Advancements in genome engineering technology have generated various in vivo and in vitro fatty liver disease models reflecting the genetic abnormalities contributing toward fatty liver disease. We will discuss currently developed different ALD and NAFLD models using the clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) genome editing tool.

Furthermore, we will also discuss the salient features of CRISPR/Cas9 editing technology and Cas9 variants such as prime and base editors to replicate genetic topographies linked specifically to ALD and NAFLD. The advantages and limitations of currently available genome delivery methods necessary for optimal gene editing will also be discussed in this review. This review will provide the essential guidance for appropriate genome editing tool selection and proper gene delivery approaches for the effective development of ALD and NAFLD models, leading to the development of clinical therapeutics for fatty liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brunt EM, Wong VW, Nobil V, Day CP, Sookoian S, Maher JJ, Bugianesi E, Sirlin CB, Neuschwander-Tetri BA, Rinella ME (2015) Nonalcoholic fatty liver disease. Nat Rev Dis Primers 2015:1–61

    Google Scholar 

  2. Anstee QM, Targher G, Day CP (1965) Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol 10:330–344

    Article  Google Scholar 

  3. Lieber CS, Jones DP, Decarli LM (1965) Effects of prolonged ethanol intake: production of fatty liver despite adequate diets. J Clin Investig 44:1009–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lieber CS, Decarli LM (1976) Animal models of ethanol dependence and liver injury in rats and baboons. Fed Proc 35:1232–1236

    CAS  PubMed  Google Scholar 

  5. Brandon-Warner E, Schrum LW, Schmidt CM (2012) Rodent models of alcoholic liver disease: of mice and men. Alcohol 46(8):715–725

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bellentani S, Saccoccio G, Costa G (1997) Drinking habits as cofactors of risk for alcohol induced liver damage. Gut 41(6):845–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Becker U, Deis A, Sorensen T (1996) Prediction of risk of liver disease by alcohol intake, sex, and age: a prospective population study. Hepatology 23(5):1025–1029

    Article  CAS  PubMed  Google Scholar 

  8. Hirschhorn JN, Gajdos ZK (2011) Genome-wide association studies: results from the first few years and potential implications for clinical medicine. Annu Rev Med 62:11–24

    Article  CAS  PubMed  Google Scholar 

  9. Sato N, Lindros KO, Baraona E (2001) Sex difference in alcohol-related organ injury. Alcohol Clin Exp Res 25(5):40S–45S

    Article  CAS  PubMed  Google Scholar 

  10. Stinson FS, Grant BF, Dufour MC (2001) The critical dimension of ethnicity in liver cirrhosis mortality statistics. Alcohol Clin Exp Res 25:1181–1187

    Article  CAS  PubMed  Google Scholar 

  11. Reed T, Page WF, Viken RJ (1996) Genetic predisposition to organ-specific endpoints of alcoholism. Alcohol Clin Exp Res 20(9):1528–1533

    Article  CAS  PubMed  Google Scholar 

  12. Hrubec Z, Omenn GS (1981) Evidence of genetic predisposition to alcoholic cirrhosis and psychosis: twin concordances for alcoholism and its biological end points by zygosity among male veterans. Alcohol Clin Exp Res 5(2):207–215

    Article  CAS  PubMed  Google Scholar 

  13. Whitfield JB, Rahman K, Haber PS (2015) Brief report: genetics of alcoholic cirrhosis-GenomALC multinational study. Alcohol Clin Exp Res 39:836–842

    Article  PubMed  PubMed Central  Google Scholar 

  14. Said A, Williams J, Holden J (2004) The prevalence of alcohol-induced liver disease and hepatitis C and their interaction in a tertiary care setting. Clin Gastroenterol Hepatol 2(10):928–934

    Article  PubMed  Google Scholar 

  15. Anstee QM, Day CP (2013) The genetics of NAFLD. Nat Rev Gastroenterol Hepatol 10:645–655

    Article  CAS  PubMed  Google Scholar 

  16. Masuoka HC, Chalasani N (2013) Nonalcoholic fatty liver disease: an emerging threat to obese and diabetic individuals. Ann N Y Acad Sci 1281(1):106–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sanyal AJ, Brunt EM, Kleiner DE (2011) Endpoints and clinical trial design for nonalcoholic steatohepatitis. Hepatology 54(1):344–353

    Article  PubMed  Google Scholar 

  18. Bettermann K, Hohensee T, Haybaeck J (2014) Steatosis and steatohepatitis: complex disorders. Int J Mol Sci 15(6):9924–9944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haybaeck J, Stumptner C, Thueringer A (2012) Genetic background effects of keratin 8 and 18 in a DDC-induced hepatotoxicity and Mallory-Denk body formation mouse model. Lab Investig 92:857–867

    Article  CAS  PubMed  Google Scholar 

  20. Zatloukal B, Kufferath I, Thueringer A (2014) Sensitivity and specificity of in situ proximity ligation for protein interaction analysis in a model of steatohepatitis with Mallory-Denk bodies. PLoS ONE 9(5):e96690

    Article  PubMed  PubMed Central  Google Scholar 

  21. Younossi ZM, Koenig AB, Abdelatif D (2016) Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64(1):73–84

    Article  PubMed  Google Scholar 

  22. Bettermann K, Mehta AK, Hofer EM (2016) Keratin 18-deficiency results in steatohepatitis and liver tumors in old mice: A model of steatohepatitis-associated liver carcinogenesis. Oncotarget 7(45):73309–73322

    Article  PubMed  PubMed Central  Google Scholar 

  23. Golob-Schwarzl N, Bettermann K, Mehta AK (2019) High keratin 8/18 ratio predicts aggressive hepatocellular cancer phenotype. Transl Oncol 12:256–268

    Article  PubMed  Google Scholar 

  24. Mikolasevic I, Milic S, Turk Wensveen T (2016) Nonalcoholic fatty liver disease - a multisystem disease? World J Gastroenterol 22(43):9488–9505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Severson TJ, Besur S, Bonkovsky HL (2016) Genetic factors that affect nonalcoholic fatty liver disease: a systematic clinical review. World J Gastroenterol 22(29):6742–6756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Younes R, Bugianesi E (2019) NASH in lean individuals. Semin Liver Dis 39(1):86–95

    Article  CAS  PubMed  Google Scholar 

  27. Kim HJ, Kim HJ, Lee KE (2004) Metabolic significance of nonalcoholic fatty liver disease in nonobese, nondiabetic adults. Arch Intern Med 164(19):2169–2175

    Article  PubMed  Google Scholar 

  28. Sookoian S, Pirola CJ (2017) Genetic predisposition in nonalcoholic fatty liver disease. Clin Mol Hepatol 23(1):1–12

    Article  PubMed  PubMed Central  Google Scholar 

  29. Loomba R, Schork N, Chen CH (2015) Heritability of hepatic fibrosis and steatosis based on a prospective twin study. Gastroenterology 149:1784–1793

    Article  PubMed  Google Scholar 

  30. Machado MV, Cortez-Pinto H (2014) Non-alcoholic fatty liver disease: what the clinician needs to know. World J Gastroenterol 20:12956–12980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cardon LR, Bell JI (2001) Association study designs for complex diseases. Nat Rev Genet 2:91–99

    Article  CAS  PubMed  Google Scholar 

  32. Hirschhorn JN (2009) Genomewide association studies– illuminating biologic pathways. N Engl J Med 360:1699–1701

    Article  CAS  PubMed  Google Scholar 

  33. Chalasani N, Guo X, Loomba R (2010) Genome-wide association study identifies variants associated with histologic features of nonalcoholic fatty liver disease. Gastroenterology 139:1567–1576

    Article  PubMed  Google Scholar 

  34. Liu YL, Reeves HL, Burt AD, Tiniakos D, McPherson S, Leathart JB, Allison ME, Alexander GJ, Piguet AC (2014) TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat Commun 5:4309

    Article  CAS  PubMed  Google Scholar 

  35. Mahdessian H, Taxiarchis A, Popov S, Silveira A (2014) TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proc Natl Acad Sci U S A 111(24):8913–8918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Buch S, Stickel F, Trepo E (2015) A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat Genet 47:1443–1448

    Article  CAS  PubMed  Google Scholar 

  37. Speliotes EK, Yerges-Armstrong LM, Wu J, Hernaez R, Kim LJ, Palmer CD (2011) Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet 7:1001324

    Article  Google Scholar 

  38. Petta S, Miele L, Bugianesi E, Camma C, Rosso C, Boccia S, Cabibi D, Di Marco V, Grimaudo S, Grieco A (2014) Glucokinase regulatory protein gene polymorphism affects liver fibrosis in non-alcoholic fatty liver disease. PLoS ONE 9:e87523

    Article  PubMed  PubMed Central  Google Scholar 

  39. Falleti E, Cussigh A, Cmet S (2016) PNPLA3 rs738409 and TM6SF2 rs58542926 variants increase the risk of hepatocellular carcinoma in alcoholic cirrhosis. Dig Liver Dis 48:69–75

    Article  CAS  PubMed  Google Scholar 

  40. Hayashi S, Watanabe J, Kawajiri K (1991) Genetic polymorphisms in the 50 flanking regions change transcriptional regulation of the human cytochrome P450 IIE1 gene. J Biochem 10:559–565

    Article  Google Scholar 

  41. Buch S, Stickel F, Trepo E, Way M, Herrmann A, Nischalke HD, Brosch M, Rosendahl J, Berg T, Ridinger M (2015) A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat Genet 47:1443–1448

    Article  CAS  PubMed  Google Scholar 

  42. Mancina RM, Dongiovanni P, Petta S, Pingitore P, Meroni M, Rametta R, Boren J, Montalcini T, Pujia A, Wiklund O (2016) The MBOAT7-TMC4 variant rs641738 increases risk of nonalcoholic fatty liver disease in individuals of European descent. Gastroenterology 150:1219–1230.e6

    Article  CAS  PubMed  Google Scholar 

  43. Viitasalo A, Eloranta AM, Atalay M, Romeo S, Pihlajamaki J, Lakka TA (2016) Association of MBOAT7 gene variant with plasma ALT levels in children: the PANIC study. Pediatr Res 80(5):651–655

    Article  CAS  PubMed  Google Scholar 

  44. Donati B, Dongiovanni P, Romeo S, Meroni M, McCain M, Miele L, Petta S, Maier S, Rosso C, De Luca L (2017) MBOAT7 rs641738 variant and hepatocellular carcinoma in non-cirrhotic individuals. Sci Rep 7:4492

    Article  PubMed  PubMed Central  Google Scholar 

  45. Salley TN, Mishra M, Tiwari S, Jadhav A, Ndisang JF (2013) The heme oxygenase system rescues hepatic deterioration in the condition of obesity co-morbid with type-2 diabetes. PLoS ONE 8:e79270

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hinds TD Jr, Sodhi K, Meadows C, Fedorova L, Puri N, Kim DH, Peterson SJ, Shapiro J, Abraham NG, Kappas A (2014) Increased HO-1 levels ameliorate fatty liver development through a reduction of heme and recruitment of FGF21. Obesity 22:705–712

    Article  CAS  PubMed  Google Scholar 

  47. Tian C, Stokowski RP, Kershenobich D (2010) Variant in PNPLA3 is associated with alcoholic liver disease. Nat Genet 42:21–23

    Article  CAS  PubMed  Google Scholar 

  48. Salameh H, Raff E, Erwin A (2015) PNPLA3 gene polymorphism is associated with predisposition to and severity of alcoholic liver disease. Am J Gastroenterol 110:846–856

    Article  CAS  PubMed  Google Scholar 

  49. Kozlitina J, Smagris E, Stender S (2014) Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 46:352–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sookoian S, Castaño GO, Scian R, Mallardi P, Fernández Gianotti T, Burgueño AL, San Martino J, Pirola CJ (2015) Genetic variation in transmembrane 6 superfamily member 2 and the risk of nonalcoholic fatty liver disease and histological disease severity. Hepatology 61(2):515–525

    Article  CAS  PubMed  Google Scholar 

  51. Chen X, Zhou P, De L, Li B (2019) The roles of transmembrane 6 superfamily member 2 rs58542926 polymorphism in chronic liver disease: a meta-analysis of 24,147 subjects. Mol Genet Genom Med 7(8):e824

    Google Scholar 

  52. DiStefano JK, Kingsley C, Craig Wood G, Chu X, Argyropoulos G, Still CD, Doné SC, Legendre C, Tembe W, Gerhard GS (2015) Genome-wide analysis of hepatic lipid content in extreme obesity. Acta Diabetol 52(2):373–382

    Article  CAS  PubMed  Google Scholar 

  53. Way M, Atkinson S, McQuillin A (2015) A functional variant in tm6sf2 associates with alcohol related cirrhosis risk in a British and Irish population. J Hepatol 62(Suppl 2):S772

    Article  Google Scholar 

  54. Pirola CJ, Flichman D, Dopazo H, Fernández Gianotti T, San Martino J, Rohr C, Garaycoechea M, Gazzi C, Castaño GO, Sookoian S (2018) A rare nonsense mutation in the glucokinase regulator gene is associated with a rapidly progressive clinical form of nonalcoholic steatohepatitis. Hepatol Commun 2(9):1030–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li J, Zhao Y, Zhang H, Hua W, Jiao W, Du X, Rui J, Li S, Teng H, Shi B, Yang X, Zhu L (2020) Contribution of Rs780094 and Rs1260326 polymorphisms in GCKR gene to nonalcoholic fatty liver disease: a meta-analysis involving 26,552 participants. Endocr Metab Immune Disord 20:1696–1708

    Google Scholar 

  56. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, Boerwinkle E, Cohen JC, Hobbs HH (2008) Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 40:1461–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu YL, Patman GL, Leathart JB, Piguet AC, Burt AD, Dufour JF, Day CP, Daly AK, Reeves HL, Anstee QM (2014) Carriage of the PNPLA3 rs738409 C > G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J Hepatol 61:75–81

    Article  CAS  PubMed  Google Scholar 

  58. Xu R, Tao A, Zhang S, Deng Y, Chen G (2015) Association between patatin-like phospholipase domain containing 3 gene (PNPLA3) polymorphisms and nonalcoholic fatty liver disease: HuGE review and meta-analysis. Sci Rep 5:9284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chang PF, Lin YC, Liu K, Yeh SJ, Ni YH (2015) Heme oxygenase-1 gene promoter polymorphism and the risk of pediatric nonalcoholic fatty liver disease. Int J Obes 39:1236–1240

    Article  CAS  Google Scholar 

  60. Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Alves-Bezerra M, Furey N, Johnson CG, Bissig KD (2019) Using CRISPR/Cas9 to model human liver disease. JHEP Rep 1:392–402

    Article  PubMed  PubMed Central  Google Scholar 

  62. Barrangou R (2015) The roles of CRISPR-Cas systems in adaptive immunity and beyond. Curr Opin Immunol 32:36–41

    Article  CAS  PubMed  Google Scholar 

  63. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shin HY, Wang C, Lee HK, Yoo KH, Zeng X, Kuhns T, Yang CM, Mohr T, Liu C, Hennighausen L (2017) CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat Commun 8:15464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fan Y, Lu H, Guo Y, Zhu T, Garcia-Barrio MT, Jiang Z, Willer CJ, Zhang J, Chen YE (2016) Hepatic transmembrane 6 superfamily member 2 regulates cholesterol metabolism in mice. Gastroenterology 150:1208–1218

    Article  CAS  PubMed  Google Scholar 

  69. O’Hare EA, Yang R, Yerges-Armstrong LM, Sreenivasan U, McFarland R, Leitch CC, Wilson MH, Narina S, Gorden A, Ryan KA (2017) TM6SF2 rs58542926 impacts lipid processing in liver and small intestine. Hepatology 65:1526–1542

    Article  PubMed  Google Scholar 

  70. Luukkonen PK, Nick A, Holtta-Vuori M, Thiele C, Isokuortti E, Lallukka-Bruck S, Zhou Y, Hakkarainen A, Lundbom N, Peltonen M (2019) Human PNPLA3-I148M variant increases hepatic retention of polyunsaturated fatty acids. JCI Insight 4:e127902

    Article  PubMed  PubMed Central  Google Scholar 

  71. Meroni M, Dongiovanni P, Longo M, Carli F, Baselli G, Rametta R, Pelusi S, Badiali S, Maggioni M, Gaggini M (2020) Mboat7 down-regulation by hyper-insulinemia induces fat accumulation in hepatocytes. EBioMedicine 52:102658

    Article  PubMed  PubMed Central  Google Scholar 

  72. Trépo E, Romeo S, Zucman-Rossi J, Nahon P (2016) PNPLA3 gene in liver diseases. J Hepatol 65(2):399–412

    Article  PubMed  Google Scholar 

  73. Codner GF, Mianne J, Caulder A, Loeffler J, Fell R, King R, Allan AJ, Mackenzie M, Pike FJ, McCabe CV (2018) Application of long single-stranded DNA donors in genome editing: generation and validation of mouse mutants. Br Med J 16:70

    Google Scholar 

  74. Liu M, Rehman S, Tang X, Gu K, Fan Q, Chen D, Ma W (2018) Methodologies for improving HDR efficiency. Front Genet 9:691

    Article  CAS  PubMed  Google Scholar 

  75. Anzalone AV, Koblan LW, Liu DR (2020) Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38:824–844

    Article  CAS  PubMed  Google Scholar 

  76. Cox DB, Platt RJ, Zhang (2015) Therapeutic genome editing: prospects and challenges. Medicine 21(2):121–131

    CAS  Google Scholar 

  77. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551:464–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mout R, Ray M, Yesilbag Tonga G, Lee YW, Tay T, Sasaki K, Rotello VM (2017) Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano 11:2452–2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, Carte J, Chen W, Roark N, Ranganathan S (2015) Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol 208:44–53

    Article  CAS  PubMed  Google Scholar 

  83. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lau CH, Suh Y (2017) In vivo genome editing in animals using AAV-CRISPR system: applications to translational research of human disease. F1000Res 6:2153

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang Y, Wang M, Zheng T, Hou Y, Zhang P, Tang T, Wei J, Du Q (2020) Specificity profiling of CRISPR system reveals greatly enhanced off-target gene editing. Sci Rep 10:2269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lindel F, Dodd CR, Weidner N, Noll M, Bergemann F, Behrendt R, Fischer S, Dietrich J, Cartellieri M, Hamann MV (2019) TraFo-CRISPR: enhanced genome engineering by transient foamy virus vector-mediated delivery of CRISPR/Cas9 components. Mol Ther Nucl Acids 18:708–726

    Article  CAS  Google Scholar 

  88. Huo W, Zhao G, Yin J, Ouyang X, Wang Y, Yang C, Wang B, Dong P, Wang Z, Watari H (2017) Lentiviral CRISPR/Cas9 vector mediated miR-21 gene editing inhibits the epithelial to mesenchymal transition in ovarian cancer cells. J Cancer 8:57–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mansouri M, Ehsaei Z, Taylor V, Berger P (2017) Baculovirus-based genome editing in primary cells. Plasmid 90:5–9

    Article  CAS  PubMed  Google Scholar 

  90. Chen S, Lee B, Lee AY, Modzelewski AJ, He L (2016) Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J Biol Chem 291:14457–14467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shin HY, Willi M, HyunYoo K, Zeng X, Wang C, Metser G, Hennighausen L (2016) Hierarchy within the mammary STAT5-driven Wap super-enhancer. Nat Genet 48:904–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kim S, Kim D, Cho SW, Kim J, Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Horii T, Arai Y, Yamazaki M, Morita S, Kimura M, Itoh M, Abe Y, Hatada I (2014) Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering. Sci Rep 4:4513

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chuang CK, Chen CH, Huang CL, Su YH, Peng SH, Lin TY, Tai HC, Yang TS, Tu CF (2017) Generation of GGTA1 mutant pigs by direct pronuclear microinjection of CRISPR/Cas9 plasmid vectors. Anim Biotechnol 28:174–181

    Article  CAS  PubMed  Google Scholar 

  95. Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F, dos Santos-Neto PC, Nguyen TH, Creneguy A, Brusselle L, Anegon (2015) Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS ONE 10:e0136690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lino CA, Harper JC, Carney JP, Timlin JA (2018) Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 25:1234–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li L, Hu S, Chen X (2018) Non-viral delivery systems for CRISPR/Cas9-based genome editing: challenges and opportunities. Biomaterials 171:207–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Biagioni A, Laurenzana A, Margheri F, Chilla A, Fibbi G, Del Rosso M (2018) Delivery systems of CRISPR/Cas9-based cancer gene therapy. J Biol Eng 12:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kim E, Koo T, Park SW, Kim D, Kim K, Cho HY, Song DW, Lee KJ, Jung MH, Kim S (2017) In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun 8:14500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yoo KH, Hennighausen L, Shin HY (2019) Dissecting tissue-specific super-enhancers by integrating genome-wide analyses and CRISPR/Cas9 genome editing. J Mam Gland Biol 24:47–59

    Article  Google Scholar 

  101. Kim HK, Song M, Lee J, Menon AV, Jung S, Kang YM, Choi JW, Woo E, Koh HC, Nam JW (2017) In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat Methods 14:153–159

    Article  CAS  PubMed  Google Scholar 

  102. Ono C, Okamoto T, Abe T, Matsuura Y (2018) Baculovirus as a tool for gene delivery and gene therapy. Viruses 10:510

    Article  PubMed  PubMed Central  Google Scholar 

  103. Volkman LE, Goldsmith PA (1983) In vitro survey of autographa californica nuclear polyhedrosis virus interaction with nontarget vertebrate host cells. Appl Environ Microbiol 45:1085–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Smagris E, BasuRay S, Huang LJ, Lai KM, Gromada J, Cohen JC, Hobbs HH (2015) Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology 61:108–118

    Article  CAS  PubMed  Google Scholar 

  105. O’Hare EA, Yerges-Armstrong LM, Perry JA, Shuldiner AR, Zaghloul NA (2016) Assignment of functional relevance to genes at type 2 diabetes-associated loci through investigation of beta-cell mass deficits. Mol Endocrinol 30:429–445

    Article  PubMed  PubMed Central  Google Scholar 

  106. Tanaka Y, Shimanaka Y, Caddeo A, Kubo T, Mao Y, Kubota T, Kubota N, Yamauchi T, Mancina RM, Baselli G (2020) LPIAT1/MBOAT7 depletion increases triglyceride synthesis fueled by high phosphatidylinositol turnover. Gut 70(1):180–193

    Article  PubMed  Google Scholar 

  107. Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH (2015) Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucl Acids 4:e264

    Article  CAS  Google Scholar 

  108. Lee HK, Willi M, Miller SM, Kim S, Liu C, Liu DR, Hennighausen L (2018) Targeting fidelity of adenine and cytosine base editors in mouse embryos. Nat Commun 9:4804

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hayat, U., Siddiqui, A.A., Farhan, M.L., Haris, A., Hameed, N. (2023). Genome Editing and Fatty Liver. In: Xiao, J. (eds) Genome Editing in Cardiovascular and Metabolic Diseases. Advances in Experimental Medicine and Biology, vol 1396. Springer, Singapore. https://doi.org/10.1007/978-981-19-5642-3_13

Download citation

Publish with us

Policies and ethics